[1] ITU-T Recommendation, E.800, Definitions of terms related to quality of 595 service, Tech. rep., International Telecommunication Union (2008).
[2] Z. N. Li, M. S. Drew, J. Liu, Fundamentals of Multimedia, Springer, 2004.
[3] Z. Wang, A. C. Bovik, H. R. Sheikh, E. P. Simoncelli, Image quality assessment: from error visibility to structural similarity, IEEE Transactions on Image Processing 13 (4) (2004) 600–612.
[4] M. Razaak, M. Martini, K. Savino, A study on quality assessment for medical ultrasound video compressed via HEVC, IEEE Journal of Biomedical and Health Informatics 18 (5) (2014) 1552–1559.
[5] K. Seshadrinathan, R. Soundararajan, A. Bovik, L. Cormack, Study of subjective and objective quality assessment of video, IEEE Transactions on Image Processing 19 (6) (2010) 1427–1441.
[6] Y. Chen, K. Wu, Q. Zhang, From QoS to QoE: A Tutorial on Video Quality Assessment, IEEE Communications Surveys & Tutorials 17 (2) (2014) 1126–1165.
[7] G. Liebl, H. Jenkac, T. Stockhammer, C. Buchner, Radio link buffer man610 agement and scheduling for wireless video streaming, Telecommunication Systems (1-3) (2005) 255–277.
[8] P. Pahalawatta, R. Berry, T. Pappas, A. Katsaggelos, Content-aware resource allocation and packet scheduling for video transmission over wireless networks, IEEE Journal on Selected Areas in Communications 25 (4) (2007) 749–759.
[9] S. Karachontzitis, T. Dagiuklas, L. Do unis, Novel cross-layer scheme for video transmission over LTE-based wireless systems, in: IEEE International Conference on Multimedia and Expo (ICME), 2011, pp. 1–6.
[10] R. Perera, A. Fernando, T. Mallikarachchi, H. K. Arachchi, M. Pourazad, QoE aware resource allocation for video communications over LTE based mobile networks, in: 10th International Conference on Heterogeneous Networking for Quality, Reliability, Security and Robustness, Rhodes, Greece, 2014, pp. 63–69.
[11] X. Ji, J. Huang, M. Chiang, G. Lafruit, F. Catthoor, Scheduling and re625 source allocation for SVC streaming over OFDM downlink systems, IEEE Transactions on Circuits and Systems for Video Technology 19 (10) (2009) 1549–1555.
[12] N. Khan, M. Martini, Z. Bharucha, Quality-aware fair downlink scheduling for scalable video transmission over LTE systems, in: IEEE Conf. on Sig630 nal Processing Advances in Wireless Communications (SPAWC), Cesme, Turkey, 2012.
[13] F. Li, D. Zhang, L. Wang, Packet importance based scheduling strategy for H.264 video transmission in wireless networks, Multimedia Tools and Applications (2014) 1–17.
[14] F. Li, G. Liu, L. He, A low complexity algorithm of packet scheduling and resource allocation for wireless VoD systems, IEEE Transactions on Consumer Electronics (2) (2010) 1057–1062.
[15] Y. Zhang, G. Liu, Fine granularity resource allocation algorithm for video transmission in orthogonal frequency division multiple access system, IET Communications 7 (13) (2013) 1383–1393.
[16] N. Khan, M. G. Martini, QoE-driven multi-user scheduling and rate adaptation with reduced cross-layer signaling for scalable video streaming over LTE wireless systems, EURASIP Journal on Wireless Communications and
Networking.
[17] T. Ghalut, H. Larijani, A. Shahrabi, QoE-aware optimization of video stream downlink scheduling over LTE networks using RNNs and genetic algorithm, Procedia Computer Science 94 (2016) 232–239.
[18] T. Zhao, Q. Liu, C. W. Chen, Qoe in video transmission: A user experiencedriven strategy, IEEE Communications Surveys & Tutorials 19 (1) (2017) 285–302.
[19] L. Qiao, P. Koutsakis, Adaptive bandwidth reservation and scheduling for efficient wireless telemedicine traffic transmission, IEEE Transactions on
Vehicular Technology 60 (2) (2011) 632–643.
[20] Y. Zhang, N. Ansari, H. Tsunoda, Wireless telemedicine services over integrated IEEE 802.11/WLAN and IEEE 802.16/WiMAX networks, IEEE Wireless Communications 17 (1) (2010) 30–36.
[21] S. Cicalo, M. Mazzotti, S. Moretti, V. Tralli, M. Chiani, Multiple video delivery in m-health emergency applications, IEEE Transactions on Multimedia 18 (10) (2016) 1988–2001.
[22] L. Anegekuh, L. Sun, E. Jammeh, I.-H. Mkwawa, E. Ifeachor, Contentbased video quality prediction for HEVC encoded videos streamed over packet networks, IEEE Transactions on Multimedia 17 (8) (2015) 1323–1334.
[23] Y. Chen, K. Wu, Q. Zhang, From QoS to QoE: a tutorial on video quality 665 assessment, IEEE Communications Surveys & Tutorials 17 (2) (2015) 1126–
1165.
[24] I. U. Rehman, Medical QoS and medical QoE for ultrasound video streaming over small cell networks, Ph.D. thesis, Kingston University, London, United Kingdom (September, 2017).
[25] M. Narwaria, W. Lin, A. Liu, Low-complexity video quality assessment using temporal quality variations, IEEE Transactions on Multimedia, 14 (3) (2012) 525–535.
[26] F. Yang, S. Wan, Q. Xie, H. R. Wu, No-reference quality assessment for networked video via primary analysis of bit stream, IEEE Transactions on Circuits and Systems for Video Technology, 20 (11) (2010) 1544–1554.
[27] J. S. Lappin, D. Tadin, J. B. Nyquist, A. L. Corn, Spatial and temporal limits of motion perception across variations in speed, eccentricity, and low vision, Journal of Vision 9 (1) (2009).
[28] A. Derrington, P. Lennie, Spatial and temporal contrast sensitivities of neu680 rones in lateral geniculate nucleus of macaque., The Journal of Physiology
357 (1984).
[29] H. D. Pham, S. Vafi, Motion-energy-based unequal error protection for H.264/AVC video bitstreams, Signal, Image and Video Processing 9 (8) (2015) 1759–1766.
[30] M. Razaak, Quality evaluation of medical ultrasound videos for e-health and telemedicine applications, Ph.D. thesis, Kingston University, London, United Kingdom (February, 2016).
[31] ITU-T Recommendation, P.910, Subjective video quality assessment methods for multimedia applications, Tech. rep., International Telecommunica690 tion Union (2008).
[32] R. S. Istepanaian, Y.-T. Zhang, Guest editorial introduction to the special section: 4G health?the long-term evolution of m-health, IEEE Transactions on information technology in biomedicine 16 (1) (2012) 1–5.
[33] R. S. Istepanian, N. Y. Philip, M. G. Martini, Medical QoS provision based on reinforcement learning in ultrasound streaming over 3.5 G wireless systems, IEEE Journal on Selected Areas in Communications 27 (4) (2009)
566–574.
[34] G. Piro, L. A. Grieco, G. Boggia, F. Capozzi, P. Camarda, Simulating LTE cellular systems: an open source framework, in: IEEE Transactions 700 on Vehicular Technology, Vol. 60, 2011, pp. 498–513.
[35] L. Qiao, P. Koutsakis, Guaranteed bandwidth allocation and QoS support for mobile telemedicine traffic, in: IEEE Sarnoff Symposium, 2008, pp. 1–5.
[36] J. G. Choi, S. Bahk, Cell-throughput analysis of the proportional fair scheduler in the single-cell environment, IEEE Transactions on Vehicular Technology 56 (2) (2007) 766–778.
[37] P. Ameigeiras, J. Wigard, P. Mogensen, Performance of the M-LWDF scheduling algorithm for streaming services in HSDPA, in: IEEE conference on Vehicular Technology, 2004, pp. 999–1003.
[38] M. M. Nasralla, M. G. Martini, A downlink scheduling approach for balanc710 ing QoS in LTE wireless networks, in: IEEE 24th International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), London,
United Kingdom, 2013, pp. 1571–1575.
[39] A. Khan, L. Sun, E. Ifeachor, Content clustering based video quality prediction model for MPEG4 video streaming over wireless networks, in: IEEE International Conference on Communications, 2009, pp. 1–5.
[40] I. U. Rehman, N. Y. Philip, M. M. Nasralla, A hybrid quality evaluation approach based on fuzzy inference system for medical video streaming over small cell technology, in: IEEE 18th International Conference on e-Health Networking, Applications and Services (Healthcom), 2016, pp. 1–6.
[41] S. Misra, S. Sarkar, Priority-based time-slot allocation in wireless body area networks during medical emergency situations: An evolutionary game theoretic perspective, IEEE Journal of Biomedical and Health Informatics 19 (2) (2015) 541–548.