Aasebo, E., Berven, F. S., Bartaula-Brevik, S., Stokowy, T., Hovland, R.,
Vaudel, M., Døskeland, S. O., McCormack, E., Batth, T. S., Olsen, J. V.,
Bruserud, Ø., Selheim, F., & Hernandez-Valladares, M. (2020). Proteome
and phosphoproteome changes associated with prognosis in
acute myeloid leukemia. Cancers, 12(3), 709. https://doi.org/10.3390/
cancers12030709
Agudo-Ibanez, L., Morante, M., Garcia-Gutierrez, L., Quintanilla, A.,
Rodriguez, J., Munoz, A., León, J., & Crespo, P. (2023). ERK2 stimulates
MYC transcription by anchoring CDK9 to the MYC promoter in a
kinase activity-independent manner. Science Signaling, 16(794),
eadg4193. https://doi.org/10.1126/scisignal.adg4193
Ahn, J. H., McAvoy, T., Rakhilin, S. V., Nishi, A., Greengard, P., &
Nairn, A. C. (2007). Protein kinase A activates protein phosphatase 2A
by phosphorylation of the B56delta subunit. Proceedings of the
National Academy of Sciences of the United States of America, 104(8),
2979–2984. https://doi.org/10.1073/pnas.0611532104
Alexander, S. P. H., Fabbro, D., Kelly, E., Mathie, A. A., Peters, J. A.,
Veale, E. L., Armstrong, J. F., Faccenda, E., Harding, S. D., Davies, J. A.,
Annett, S., Boison, D., Burns, K. E., Dessauer, C., Gertsch, J.,
Helsby, N. A., Izzo, A. A., Ostrom, R., Papapetropoulos, A., …
Wong, S. S. (2023a). The concise guide to PHARMACOLOGY
2023/24: Enzymes. British Journal of Pharmacology, 180, S289–S373.
https://doi.org/10.1111/bph.16181
Alexander, S. P. H., Fabbro, D., Kelly, E., Mathie, A. A., Peters, J. A.,
Veale, E. L., Armstrong, J. F., Faccenda, E., Harding, S. D., Davies, J. A.,
Amarosi, L., Anderson, C. M. H., Beart, P. M., Broer, S., Dawson, P. A.,
Gyimesi, G., Hagenbuch, B., Hammond, J. R., Hancox, J. C., … Verri, T.
(2023b). The Concise Guide to PHARMACOLOGY 2023/24: Transporters.
British Journal of Pharmacology, 180, S374–S469. https://doi.
org/10.1111/bph.16182
Alexander, S. P. H., Roberts, R. E., Broughton, B. R. S., Sobey, C. G.,
George, C. H., Stanford, S. C., Cirino, G., Docherty, J. R.,
Giembycz, M. A., Hoyer, D., Insel, P. A., Izzo, A. A., Ji, Y.,
MacEwan, D. J., Mangum, J., Wonnacott, S., & Ahluwalia, A. (2018).
Goals and practicalities of immunoblotting and immunohistochemistry:
A guide for submission to the British Journal of Pharmacology. British
Journal of Pharmacology, 175, 407–411. https://doi.org/10.1111/bph.
14112
Arroyo-Berdugo, Y., Sendino, M., Greaves, D., Nojszewska, N., Idilli, O.,
So, C. W., Di Silvio, L., Quartey-Papafio, R., Farzaneh, F.,
Rodriguez, J. A., & Calle, Y. (2023). High throughput fluorescencebased
in vitro experimental platform for the identification of effective
therapies to overcome tumour microenvironment-mediated drug resistance
in AML. Cancers (Basel), 15(7), 1988. https://doi.org/10.3390/
cancers15071988
Behrends, V., Tredwell, G. D., & Bundy, J. G. (2011). A software complement
to AMDIS for processing GC-MS metabolomic data. Analytical
Biochemistry, 415(2), 206–208. https://doi.org/10.1016/j.ab.2011.
04.009
Casado, P., Rio-Machin, A., Miettinen, J. J., Bewicke-Copley, F., Rouault-
Pierre, K., Krizsan, S., Parsons, A., Rajeeve, V., Miraki-Moud, F.,
Taussig, D. C., Bödör, C., Gribben, J., Heckman, C., Fitzgibbon, J., &
Cutillas, P. R. (2023). Integrative phosphoproteomics defines two biologically
distinct groups of KMT2A rearranged acute myeloid leukaemia
with different drug response phenotypes. Signal Transduction and
Targeted Therapy, 8(1), 80. https://doi.org/10.1038/s41392-022-
01288-1
Chen, J., Parsons, S., & Brautigan, D. L. (1994). Tyrosine phosphorylation
of protein phosphatase 2A in response to growth stimulation and
v-src transformation of fibroblasts. The Journal of Biological Chemistry,
269(11), 7957–7962. https://doi.org/10.1016/S0021-9258(17)
37144-2
Choi, C. H. (2005). ABC transporters as multidrug resistance mechanisms
and the development of chemosensitizers for their reversal. Cancer
Cell International, 5, 30. https://doi.org/10.1186/1475-2867-5-30
Cristobal, I., Garcia-Orti, L., Cirauqui, C., Alonso, M. M., Calasanz, M. J., &
Odero, M. D. (2011). PP2A impaired activity is a common event in
acute myeloid leukemia and its activation by forskolin has a potent
anti-leukemic effect. Leukemia, 25(4), 606–614. https://doi.org/10.
1038/leu.2010.294
Cristóbal, I., Rincón, R., Manso, R., Madoz-Gúrpide, J., Caramés, C., del
Puerto-Nevado, L., Rojo, F., & García-Foncillas, J. (2014). Hyperphosphorylation
of PP2A in colorectal cancer and the potential therapeutic
value showed by its forskolin-induced dephosphorylation and
activation. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease,
1842(9), 1823–1829. https://doi.org/10.1016/j.bbadis.2014.
06.032
Curtis, M. J., Alexander, S. P. H., Cortese-Krott, M., Kendall, D. A.,
Martemyanov, K. A., Mauro, C., Panettieri, R. A. Jr.,
Papapetropoulos, A., Patel, H. H., Santo, E. E., Schulz, R., Stefanska, B.,
Stephens, G. J., Teixeira, M. M., Vergnolle, N., Wang, X., &
Ferdinandy, P. (2025). Guidance on the planning and reporting of
experimental design and analysis. British Journal of Pharmacology,
182(7), 1413–1415. https://doi.org/10.1111/bph.17441
Di Mambro, A., Arroyo-Berdugo, Y., Fioretti, T., Randles, M., Cozzuto, L.,
Rajeeve, V., Cevenini, A., Austin, M. J., Esposito, G., Ponomarenko, J.,
Lucas, C. M., Cutillas, P., Gribben, J., Williams, O., Calle, Y., Patel, B., &
Esposito, M. T. (2023). SET-pp2a complex as a new therapeutic target
in KMT2A (MLL) rearranged AML. Oncogene, 42(50), 3670–3683.
https://doi.org/10.1038/s41388-023-02840-1
Di Mambro, A., & Esposito, M. T. (2022). Thirty years of SET/-
TAF1beta/I2PP2A: From the identification of the biological functions
to its implications in cancer and Alzheimer's disease. Bioscience
Reports, 42(11), BSR20221280. https://doi.org/10.1042/
BSR20221280
Dohner, H., Wei, A. H., & Lowenberg, B. (2021). Towards precision medicine
for AML. Nature Reviews Clinical Oncology, 18(9), 577–590.
https://doi.org/10.1038/s41571-021-00509-w
Esposito, M. (2019). The impact of PI3-kinase/RAS pathway cooperating
mutations in the evolution of KMT2A-rearranged leukemia.
HemaSphere, 3(3), e195. https://doi.org/10.1097/HS9.00000000000
00195
Esposito, M. T., Zhao, L., Fung, T. K., Rane, J. K., Wilson, A., Martin, N.,
Gil, J., Leung, A. Y., Ashworth, A., & So, C. W. (2015). Synthetic lethal
targeting of oncogenic transcription factors in acute leukemia by PARP
inhibitors. Nature Medicine, 21(12), 1481–1490. https://doi.org/10.
1038/nm.3993
Fang, X., Yu, S. X., Lu, Y., Bast, R. C. Jr., Woodgett, J. R., & Mills, G. B.
(2000). Phosphorylation and inactivation of glycogen synthase kinase
3 by protein kinase A. Proceedings of the National Academy of Sciences
of the United States of America, 97(22), 11960–11965. https://doi.org/
10.1073/pnas.220413597
Feschenko, M. S., Stevenson, E., Nairn, A. C., & Sweadner, K. J. (2002). A
novel cAMP-stimulated pathway in protein phosphatase 2A activation.
Journal of Pharmacology and Experimental Therapeutics, 302(1), 111–
118. https://doi.org/10.1124/jpet.302.1.111
Flare. (2024). V7.2, Cresset, Litlington, Cambridgeshire, UK,. (accessed)
Follin-Arbelet, V., Misund, K., Naderi, E., Ugland, H., Sundan, A., &
Blomhoff, H. (2015). The natural compound forskolin synergizes with
dexamethasone to induce cell death in myeloma cells via BIM. Scientific
Reports, 5(1), 13001. https://doi.org/10.1038/srep13001
Frohner, I. E., Mudrak, I., Kronlachner, S., Schüchner, S., & Ogris, E. (2020).
Antibodies recognizing the C terminus of PP2A catalytic subunit are
unsuitable for evaluating PP2A activity and holoenzyme composition.
Science Signaling, 13(616), eaax6490. https://doi.org/10.1126/
scisignal.aax6490
Frohner, I. E., Mudrak, I., Schuchner, S., Anrather, D., Hartl, M.,
Sontag, J. M., Wadzinski, B. E., Preglej, T., Ellmeier, W., & Ogris, E.
(2020). PP2A(C) phospho-Tyr(307) antibodies are not specific for this
modification but are sensitive to other PP2A(C) modifications including
Leu(309) methylation. Cell Reports, 30(9), 3171–3182. https://doi.
org/10.1016/j.celrep.2020.02.035
Gausdal, G., Wergeland, A., Skavland, J., Nguyen, E., Pendino, F.,
Rouhee, N., McCormack, E., Herfindal, L., Kleppe, R., Havemann, U.,
Schwede, F., & Doskeland, S. O. (2013). Cyclic AMP can promote APL
progression and protect myeloid leukemia cells against anthracyclineinduced
apoptosis. Cell Death & Disease, 4(2), e516. https://doi.org/10.
1038/cddis.2013.39
Gosline, S. J. C., Tognon, C., Nestor, M., Joshi, S., Modak, R.,
Damnernsawad, A., Posso, C., Moon, J., Hansen, J. R.,
Hutchinson-Bunch, C., Pino, J. C., Gritsenko, M. A., Weitz, K. K.,
Traer, E., Tyner, J., Druker, B., Agarwal, A., Piehowski, P.,
McDermott, J. E., & Rodland, K. (2022). Proteomic and phosphoproteomic
measurements enhance ability to predict ex vivo drug response
in AML. Clinical Proteomics, 19(1), 30. https://doi.org/10.1186/
s12014-022-09367-9
Goswami, S., Mani, R., Nunes, J., Chiang, C. L., Zapolnik, K., Hu, E.,
Frissora, F., Mo, X., Walker, L. A., Yan, P., Bundschuh, R., Beaver, L.,
Devine, R., Tsai, Y. T., Ventura, A., Xie, Z., Chen, M., Lapalombella, R.,
Walker, A., … Muthusamy, N. (2022). PP2A is a therapeutically targetable
driver of cell fate decisions via a c-Myc/p21 axis in human and
murine acute myeloid leukemia. Blood, 139(9), 1340–1358. https://
doi.org/10.1182/blood.2020010344
Hsu, W., Zeng, L., & Costantini, F. (1999). Identification of a domain of
Axin that binds to the serine/threonine protein phosphatase 2A and a
self-binding domain. Journal of Biological Chemistry, 274(6), 3439–
3445. https://doi.org/10.1074/jbc.274.6.3439
Illiano, M., Conte, M., Sapio, L., Nebbioso, A., Spina, A., Altucci, L., &
Naviglio, S. (2018). Forskolin sensitizes human acute myeloid leukemia
cells to H3K27me2/3 demethylases GSKJ4 inhibitor via protein kinase
A. Frontiers in Pharmacology, 9, 792. https://doi.org/10.3389/fphar.
2018.00792
Illiano, M., Sapio, L., Salzillo, A., Capasso, L., Caiafa, I., Chiosi, E.,
Spina, A., & Naviglio, S. (2018). Forskolin improves sensitivity to doxorubicin
of triple negative breast cancer cells via protein kinase
A-mediated ERK1/2 inhibition. Biochemical Pharmacology, 152, 104–
113. https://doi.org/10.1016/j.bcp.2018.03.023
Izzo, A. A., Teixeira, M., Alexander, S. P. H., Cirino, G., Docherty, J. R.,
George, C. H., Insel, P. A., Ji, Y., Kendall, D. A., Panettieri, R. A.,
Sobey, C. G., Stanford, S. C., Stefanska, B., Stephens, G., &
Ahluwalia, A. (2020). A practical guide for transparent reporting of
research on natural products in the British Journal of pharmacology:
Reproducibility of natural product research. British Journal of Pharmacology,
177(10), 2169–2178. https://doi.org/10.1111/bph.15054
Jo, S., Kim, T., Iyer, V. G., & Im, W. (2008). CHARMM-GUI: A web-based
graphical user interface for CHARMM. Journal of Computational Chemistry,
29(11), 1859–1865. https://doi.org/10.1002/jcc.20945
Jo, S., Lim, J. B., Klauda, J. B., & Im, W. (2009). CHARMM-GUI membrane
builder for mixed bilayers and its application to yeast membranes.
Biophysical Journal, 97(1), 50–58. https://doi.org/10.1016/j.bpj.2009.
04.013
Kandoth, C., McLellan, M. D., Vandin, F., Ye, K., Niu, B., Lu, C., Xie, M.,
Zhang, Q., McMichael, J. F., Wyczalkowski, M. A., Leiserson, M. D. M.,
Miller, C. A., Welch, J. S., Walter, M. J., Wendl, M. C., Ley, T. J.,
Wilson, R. K., Raphael, B. J., & Ding, L. (2013). Mutational landscape
and significance across 12 major cancer types. Nature, 502(7471),
333–339. https://doi.org/10.1038/nature12634
Kanne, H., Burte, N. P., Prasanna, V., & Gujjula, R. (2015). Extraction and
elemental analysis of Coleus forskohlii extract. Pharmacognosy Research,
7(3), 237–241. https://doi.org/10.4103/0974-8490.157966
Kauko, O., & Westermarck, J. (2018). Non-genomic mechanisms of protein
phosphatase 2A (PP2A) regulation in cancer. The International Journal
of Biochemistry & Cell Biology, 96, 157–164. https://doi.org/10.1016/j.
biocel.2018.01.005
Kim, R. B. (2002). Drugs as P-glycoprotein substrates, inhibitors, and
inducers. Drug Metabolism Reviews, 34(1–2), 47–54. https://doi.org/
10.1081/dmr-120001389
Knarr, M. J., Moon, J., Rawat, P., DiFeo, A., Hoon, D. S. B., & Drapkin, R.
(2024). Repurposing colforsin daropate to treat MYC-driven highgrade
serous ovarian carcinomas. Science Signaling, 17(863), eado8303.
https://doi.org/10.1126/scisignal.ado8303
Kramer, M. H., Zhang, Q., Sprung, R., Day, R. B., Erdmann-Gilmore, P.,
Li, Y., Xu, Z., Helton, N. M., George, D. R., Mi, Y., Westervelt, P.,
Payton, J. E., Ramakrishnan, S. M., Miller, C. A., Link, D. C.,
DiPersio, J. F., Walter, M. J., Townsend, R. R., & Ley, T. J. (2022). Proteomic
and phosphoproteomic landscapes of acute myeloid leukemia.
Blood, 140(13), 1533–1548. https://doi.org/10.1182/blood.
2022016033
Kumm, E. J., Pagel, O., Gambaryan, S., Walter, U., Zahedi, R. P.,
Smolenski, A., & Jurk, K. (2020). The cell cycle checkpoint system
MAST(L)-ENSA/ARPP19-PP2A is targeted by cAMP/PKA and
cGMP/PKG in anucleate human platelets. Cells, 9(2), 472. https://doi.
org/10.3390/cells9020472
Lavallee, V. P., Baccelli, I., Krosl, J., Wilhelm, B., Barabe, F., Gendron, P.,
Boucher, G., Lemieux, S., Marinier, A., Meloche, S., Hébert, J., &
Sauvageau, G. (2015). The transcriptomic landscape and
directed chemical interrogation of MLL-rearranged acute myeloid leukemias.
Nature Genetics, 47(9), 1030–1037. https://doi.org/10.1038/
ng.3371
Leslie, S. N., & Nairn, A. C. (2019). cAMP regulation of protein phosphatases
PP1 and PP2A in brain. Biochimica et Biophysica Acta (BBA) -
Molecular Cell, 1866(1), 64–73. https://doi.org/10.1016/j.bbamcr.
2018.09.006
Letourneux, C., Rocher, G., & Porteu, F. (2006). B56-containing PP2A
dephosphorylate ERK and their activity is controlled by the early gene
IEX-1 and ERK. The EMBO Journal, 25(4), 727–738. https://doi.org/10.
1038/sj.emboj.7600980
Meyer, C., Larghero, P., Almeida Lopes, B., Burmeister, T., Groger, D.,
Sutton, R., Venn, N. C., Cazzaniga, G., Corral Abascal, L., Tsaur, G.,
Fechina, L., Emerenciano, M., Pombo-de-Oliveira, M. S., Lund-Aho, T.,
Lundán, T., Montonen, M., Juvonen, V., Zuna, J., Trka, J., …
Marschalek, R. (2023). The KMT2A recombinome of acute leukemias
in 2023. Leukemia, 37(5), 988–1005. https://doi.org/10.1038/
s41375-023-01877-1
Miyamoto, R., Kanai, A., Okuda, H., Komata, Y., Takahashi, S., Matsui, H.,
Inaba, T., & Yokoyama, A. (2021). HOXA9 promotes MYC-mediated
leukemogenesis by maintaining gene expression for multiple antiapoptotic
pathways. eLife, 10, e64148. https://doi.org/10.7554/eLife.
64148
Morris, D. I., Greenberger, L. M., Bruggemann, E. P., Cardarelli, C.,
Gottesman, M. M., Pastan, I., & Seamon, K. B. (1994). Localization of
the forskolin labeling sites to both halves of P-glycoprotein: Similarity
of the sites labeled by forskolin and prazosin. Molecular Pharmacology,
46(2), 329–337. https://doi.org/10.1016/S0026-895X(25)09687-7
Morris, D. I., Speicher, L. A., Ruoho, A. E., Tew, K. D., & Seamon, K. B.
(1991). Interaction of forskolin with the P-glycoprotein multidrug
transporter. Biochemistry, 30(34), 8371–8379. https://doi.org/10.
1021/bi00098a014
Musante, V., Li, L., Kanyo, J., Lam, T. T., Colangelo, C. M., Cheng, S. K.,
Brody, A. H., Greengard, P., Le Novère, N., & Nairn, A. C. (2017).
Reciprocal regulation of ARPP-16 by PKA and MAST3 kinases provides
a cAMP-regulated switch in protein phosphatase 2A inhibition.
eLife, 6, e24998. https://doi.org/10.7554/eLife.24998
Naderi, E., Findley, H. W., Ruud, E., Blomhoff, H., & Naderi, S. (2009). Activation
of cAMP signaling inhibits DNA damage–induced apoptosis in
BCP-ALL cells through abrogation of p53 accumulation. Blood, 114(3),
608–618. https://doi.org/10.1182/blood-2009-02-204883
Naderi, S., Wang, J. Y., Chen, T. T., Gutzkow, K. B., & Blomhoff, H. K.
(2005). cAMP-mediated inhibition of DNA replication and S phase progression:
Involvement of Rb, p21Cip1, and PCNA. Molecular Biology of
the Cell, 16(3), 1527–1542. https://doi.org/10.1091/mbc.e04-06-
0501
Neviani, P., Santhanam, R., Trotta, R., Notari, M., Blaser, B. W., Liu, S.,
Mao, H., Chang, J. S., Galietta, A., Uttam, A., Roy, D. C., Valtieri, M.,
Bruner-Klisovic, R., Caligiuri, M. A., Bloomfield, C. D., Marcucci, G., &
Perrotti, D. (2005). The tumor suppressor PP2A is functionally inactivated
in blast crisis CML through the inhibitory activity of the BCR/-
ABL-regulated SET protein. Cancer Cell, 8(5), 355–368. https://doi.
org/10.1016/j.ccr.2005.10.015
Ng, S. S., Mahmoudi, T., Danenberg, E., Bejaoui, I., de Lau, W.,
Korswagen, H. C., Schutte, M., & Clevers, H. (2009). Phosphatidylinositol
3-kinase signaling does not activate the Wnt cascade. Journal of
Biological Chemistry, 284(51), 35308–35313. https://doi.org/10.1074/
jbc.M109.078261
Nosol, K., Romane, K., Irobalieva, R. N., Alam, A., Kowal, J., Fujita, N., &
Locher, K. P. (2020). Cryo-EM structures reveal distinct mechanisms
of inhibition of the human multidrug transporter ABCB1. Proceedings
of the National Academy of Sciences of the United States of
America, 117(42), 26245–26253. https://doi.org/10.1073/pnas.
2010264117
Ogris, E., Sontag, E., Wadzinski, B., & Narla, G. (2018). Specificity of
research antibodies: “Trust is good, validation is better”. Human
Pathology, 72, 199–201. https://doi.org/10.1016/j.humpath.2017.
12.003
Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E.,
Chipot, C., Skeel, R. D., Kalé, L., & Schulten, K. (2005). Scalable molecular
dynamics with NAMD. Journal of Computational Chemistry, 26(16),
1781–1802. https://doi.org/10.1002/jcc.20289
Pippa, R., & Odero, M. D. (2020). The role of MYC and PP2A in the initiation
and progression of myeloid leukemias. Cells, 9(3), 544. https://doi.
org/10.3390/cells9030544
Ramaswamy, K., Spitzer, B., & Kentsis, A. (2015). Therapeutic re-activation
of protein phosphatase 2A in acute myeloid leukemia. Frontiers in
Oncology, 5, 16. https://doi.org/10.3389/fonc.2015.00016
Safa, A. R. (2004). Identification and characterization of the binding sites
of P-glycoprotein for multidrug resistance-related drugs and modulators.
Current Medicinal Chemistry. Anti-Cancer Agents, 4(1), 1–17.
https://doi.org/10.2174/1568011043482142
Sapio, L., Gallo, M., Illiano, M., Chiosi, E., Naviglio, D., Spina, A., &
Naviglio, S. (2017). The natural cAMP elevating compound forskolin in
cancer therapy: Is it time? Journal of Cellular Physiology, 232(5), 922–
927. https://doi.org/10.1002/jcp.25650
Sontag, J. M., Schuhmacher, D., Taleski, G., Jordan, A., Khan, S.,
Hoffman, A., Gomez, R. J., Mazalouskas, M. D., Hanks, S. K.,
Spiller, B. W., Sontag, E., & Wadzinski, B. E. (2022). A new paradigm
for regulation of protein phosphatase 2A function via Src and Fyn
kinase-mediated tyrosine phosphorylation. Journal of Biological
Chemistry, 298(8), 102248. https://doi.org/10.1016/j.jbc.2022.
102248
Takahashi, S. (2023). Combination therapies with kinase inhibitors for
acute myeloid leukemia treatment. Hematology Reports, 15(2), 331–
346. https://doi.org/10.3390/hematolrep15020035
Tazi, Y., Arango-Ossa, J. E., Zhou, Y., Bernard, E., Thomas, I.,
Gilkes, A., Freeman, S., Pradat, Y., Johnson, S. J., Hills, R., Dillon, R.,
Levine, M. F., Leongamornlert, D., Butler, A., Ganser, A., Bullinger, L.,
Döhner, K., Ottmann, O., Adams, R., … Papaemmanuil, E. (2022). Unified
classification and risk-stratification in acute myeloid leukemia.
Nature Communications, 13(1), 4622. https://doi.org/10.1038/
s41467-022-32103-8
Thangapandian, S., Kapoor, K., & Tajkhorshid, E. (2020). Probing cholesterol
binding and translocation in P-glycoprotein. Biochimica et Biophysica
Acta, 1862(1), 183090. https://doi.org/10.1016/j.bbamem.2019.
183090
Vervoort, S. J., Welsh, S. A., Devlin, J. R., Barbieri, E., Knight, D. A.,
Offley, S., Bjelosevic, S., Costacurta, M., Todorovski, I., Kearney, C. J.,
Sandow, J. J., & Johnstone, R. W. (2021). The PP2A-integrator-CDK9
axis fine-tunes transcription and can be targeted therapeutically in
cancer. Cell, 184(12), 3143–3162. https://doi.org/10.1016/j.cell.2021.
04.022
Wagstaff, M., Coke, B., Hodgkiss, G. R., & Morgan, R. G. (2022). Targeting
beta-catenin in acute myeloid leukaemia: Past, present, and future perspectives.
Bioscience Reports, 42(4), BSR20211841. https://doi.org/10.
1042/BSR20211841
Wang, H., Lou, C., & Ma, N. (2019). Forskolin exerts anticancer roles in
non-Hodgkin's lymphomas via regulating Axin/beta-catenin signaling
pathway. Cancer Management and Research, 11, 1685–1696. https://
doi.org/10.2147/CMAR.S180754
Wang, Y. H., Li, Y., Yang, S. L., & Yang, L. (2005). Classification of substrates
and inhibitors of P-glycoprotein using unsupervised machine
learning approach. Journal of Chemical Information and Modeling, 45(3),
750–757. https://doi.org/10.1021/ci050041k
Wang, Z., Iwasaki, M., Ficara, F., Lin, C., Matheny, C., Wong, S. H.,
Wong, S. H. K., Smith, K. S., & Cleary, M. L. (2010). GSK-3 promotes
conditional association of CREB and its coactivators with MEIS1 to
facilitate HOX-mediated transcription and oncogenesis. Cancer Cell,
17(6), 597–608. https://doi.org/10.1016/j.ccr.2010.04.024
Wang, Z., Smith, K. S., Murphy, M., Piloto, O., Somervaille, T. C., &
Cleary, M. L. (2008). Glycogen synthase kinase 3 in MLL leukaemia
maintenance and targeted therapy. Nature, 455(7217), 1205–1209.
https://doi.org/10.1038/nature07284
Winters, A. C., & Bernt, K. M. (2017). MLL-rearranged leukemias-an
update on science and clinical approaches. Frontiers in Pediatrics, 5(4).
https://doi.org/10.3389/fped.2017.00004
Xiao, L. Y., & Kan, W. M. (2017). Cyclic AMP (cAMP) confers drug resistance
against DNA damaging agents via PKAIA in CML cells. European
Journal of Pharmacology, 794, 201–208. https://doi.org/10.1016/j.
ejphar.2016.11.043
Xing, Y., Xu, Y., Chen, Y., Jeffrey, P. D., Chao, Y., Lin, Z., Li, Z., Strack, S.,
Stock, J. B., & Shi, Y. (2006). Structure of protein phosphatase 2A core
enzyme bound to tumor-inducing toxins. Cell, 127(2), 341–353.
https://doi.org/10.1016/j.cell.2006.09.025
Yeh, E., Cunningham, M., Arnold, H., Chasse, D., Monteith, T., Ivaldi, G.,
Hahn, W. C., Stukenberg, P. T., Shenolikar, S., Uchida, T.,
Counter, C. M., Nevins, J. R., Means, A. R., & Sears, R. (2004). A signalling
pathway controlling c-Myc degradation that impacts oncogenic
transformation of human cells. Nature Cell Biology, 6(4), 308–318.
https://doi.org/10.1038/ncb1110
Yeung, J., Esposito, M. T., Gandillet, A., Zeisig, B. B., Griessinger, E.,
Bonnet, D., & So, C. W. (2010). Beta-catenin mediates the establishment
and drug resistance of MLL leukemic stem cells. Cancer Cell,
18(6), 606–618. https://doi.org/10.1016/j.ccr.2010.10.032
Yokoyama, N., Reich, N. C., & Miller, W. T. (2003). Determinants for the
interaction between Janus kinase 2 and protein phosphatase 2A.
Archives of Biochemistry and Biophysics, 417(1), 87–95. https://doi.org/
10.1016/s0003-9861(03)00333-3
Yu, U. Y., & Ahn, J. H. (2010). Phosphorylation on the PPP2R5D B regulatory
subunit modulates the biochemical properties of protein phosphatase
2A. BMB Reports, 43(4), 263–267. https://doi.org/10.5483/
bmbrep.2010.43.4.263
Zeino, M., Saeed, M. E., Kadioglu, O., & Efferth, T. (2014). The ability of
molecular docking to unravel the controversy and challenges related
to P-glycoprotein—A well-known, yet poorly understood drug transporter.
Investigational New Drugs, 32(4), 618–625. https://doi.org/10.
1007/s10637-014-0098-1