Aguirre, L., Fernández-Quintela, A., Arias, N., and Portillo, M., 2014. Resveratrol: Anti-Obesity Mechanisms of Action. Molecules, 19 (11), 18632–18655.
Akhmedov, D. and Berdeaux, R., 2013. The effects of obesity on skeletal muscle regeneration. Frontiers in Physiology, 4.
Altringham, J.D. and Young, I.S., 1991. Power output and the frequency of oscillatory work in mammalian diaphragm muscle: the effects of animal size. Journal of Experimental Biology, 157 (1), 381–389.
Askew, G.N. and Marsh, R.L., 1997. The effects of length trajectory on the mechanical power output of mouse skeletal muscles. The Journal of Experimental Biology, 200 (Pt 24), 3119–3131.
Askew, G.N., Young, I.S., and Altringham, J.D., 1997. Fatigue of mouse soleus muscle, using the work loop technique. The Journal of Experimental Biology, 200 (Pt 22), 2907–2912.
Barclay, C.J., 2005. Modelling diffusive O(2) supply to isolated preparations of mammalian skeletal and cardiac muscle. Journal of Muscle Research and Cell Motility, 26 (4–5), 225–235.
Baur, J.A., Pearson, K.J., Price, N.L., Jamieson, H.A., Lerin, C., Kalra, A., Prabhu, V.V., Allard, J.S., Lopez-Lluch, G., Lewis, K., Pistell, P.J., Poosala, S., Becker, K.G., Boss, O., Gwinn, D., Wang, M., Ramaswamy, S., Fishbein, K.W., Spencer, R.G., Lakatta, E.G., Le Couteur, D., Shaw, R.J., Navas, P., Puigserver, P., Ingram, D.K., de Cabo, R., and Sinclair, D.A., 2006. Resveratrol improves health and survival of mice on a high-calorie diet. Nature, 444 (7117), 337–342.
Bernardis, L.L. and Patterson, B.D., 1968. CORRELATION BETWEEN ‘LEE INDEX’ AND CARCASS FAT CONTENT IN WEANLING AND ADULT FEMALE RATS WITH HYPOTHALAMIC LESIONS. Journal of Endocrinology, 40 (4), 527–528.
Bonnichsen, M., Dragsted, N., and Hansen, A., 2005. The welfare impact of gavaging laboratory rats. ANIMAL WELFARE-POTTERS BAR THEN WHEATHAMPSTEAD, 14(3), 223.
Bott, K.N., Gittings, W., Fajardo, V.A., Baranowski, B.J., Vandenboom, R., LeBlanc, P.J., Ward, W.E., and Peters, S.J., 2017. Musculoskeletal structure and function in response to the combined effect of an obesogenic diet and age in male C57BL/6J mice. Molecular Nutrition & Food Research, 61 (10), 1700137.
Brenner, C., 2022. Sirtuins are not conserved longevity genes. Life Metabolism, 1 (2), 122–133.
Brooks, S.V. and Faulkner, J.A., 1991. Forces and powers of slow and fast skeletal muscles in mice during repeated contractions. The Journal of Physiology, 436, 701–710.
Brown, A.P., Dinger, N., and Levine, B.S., 2000. Stress produced by gavage administration in the rat. Contemporary Topics in Laboratory Animal Science, 39 (1), 17–21.
Caiozzo, V.J., 2002. Plasticity of skeletal muscle phenotype: mechanical consequences. Muscle & Nerve, 26 (6), 740–768.
Cho, S.-J., Jung, U.J., and Choi, M.-S., 2012. Differential effects of low-dose resveratrol on adiposity and hepatic steatosis in diet-induced obese mice. British Journal of Nutrition, 108 (12), 2166–2175.
Ciapaite, J., van den Berg, S.A., Houten, S.M., Nicolay, K., Willems van Dijk, K., and Jeneson, J.A., 2015. Fiber-type-specific sensitivities and phenotypic adaptations to dietary fat overload differentially impact fast- versus slow-twitch muscle contractile function in C57BL/6J mice. The Journal of Nutritional Biochemistry, 26 (2), 155–164.
Cohen, J., 1988. Statistical power analysis for the behavioral sciences. 2nd ed. Hillsdale, N.J: L. Erlbaum Associates.
De Ligt, M., Bruls, Y.M.H., Hansen, J., Habets, M.-F., Havekes, B., Nascimento, E.B.M., Moonen-Kornips, E., Schaart, G., Schrauwen-Hinderling, V.B., Van Marken Lichtenbelt, W., and Schrauwen, P., 2018. Resveratrol improves ex vivo mitochondrial function but does not affect insulin sensitivity or brown adipose tissue in first degree relatives of patients with type 2 diabetes. Molecular Metabolism, 12, 39–47.
Delbaere, K., Bourgois, J., Witvrouw, E.E., Willems, T.M., and Cambier, D.C., 2003. Age-related changes in concentric and eccentric muscle strength in the lower and upper extremity: A cross-sectional study. Isokinetics and Exercise Science, 11 (3), 145–151.
Denu, J.M., 2005. The Sir2 family of protein deacetylases. Current Opinion in Chemical Biology, 9 (5), 431–440.
Dickinson, M.H., Farley, C.T., Full, R.J., Koehl, M.A., Kram, R., and Lehman, S., 2000. How animals move: an integrative view. Science (New York, N.Y.), 288 (5463), 100–106.
Dirks Naylor, A.J., 2009. Cellular effects of resveratrol in skeletal muscle. Life Sciences, 84 (19–20), 637–640.
Dolinsky, V.W., Jones, K.E., Sidhu, R.S., Haykowsky, M., Czubryt, M.P., Gordon, T., and Dyck, J.R.B., 2012. Improvements in skeletal muscle strength and cardiac function induced by resveratrol during exercise training contribute to enhanced exercise performance in rats: Resveratrol enhances exercise performance. The Journal of Physiology, 590 (11), 2783–2799.
Ebashi, S. and Endo, M., 1968. Calcium and muscle contraction. Progress in Biophysics and Molecular Biology, 18, 123–183.
Erskine, R.M., Tomlinson, D.J., Morse, C.I., Winwood, K., Hampson, P., Lord, J.M., and Onambélé, G.L., 2017. The individual and combined effects of obesity- and ageing-induced systemic inflammation on human skeletal muscle properties. International Journal of Obesity, 41 (1), 102–111.
Eshima, H., Tamura, Y., Kakehi, S., Kakigi, R., Hashimoto, R., Funai, K., Kawamori, R., and Watada, H., 2020. A chronic high-fat diet exacerbates contractile dysfunction with impaired intracellular Ca 2+ release capacity in the skeletal muscle of aged mice. Journal of Applied Physiology, 128 (5), 1153–1162.
Eshima, H., Tamura, Y., Kakehi, S., Kurebayashi, N., Murayama, T., Nakamura, K., Kakigi, R., Okada, T., Sakurai, T., Kawamori, R., and Watada, H., 2017. Long-term, but not short-term high-fat diet induces fiber composition changes and impaired contractile force in mouse fast-twitch skeletal muscle. Physiological Reports, 5 (7), e13250.
Ford, L.E., Huxley, A.F., and Simmons, R.M., 1977. Tension responses to sudden length change in stimulated frog muscle fibres near slack length. The Journal of Physiology, 269 (2), 441–515.
Frontera, W.R. and Ochala, J., 2015. Skeletal Muscle: A Brief Review of Structure and Function. Calcified Tissue International, 96 (3), 183–195.
Fu, X., Zhao, J.-X., Liang, J., Zhu, M.-J., Foretz, M., Viollet, B., and Du, M., 2013. AMP-activated protein kinase mediates myogenin expression and myogenesis via histone deacetylase 5. American Journal of Physiology-Cell Physiology, 305 (8), C887–C895.
Funai, K., Song, H., Yin, L., Lodhi, I.J., Wei, X., Yoshino, J., Coleman, T., and Semenkovich, C.F., 2013. Muscle lipogenesis balances insulin sensitivity and strength through calcium signaling. Journal of Clinical Investigation, 123 (3), 1229–1240.
Goldman, Y.E. and Simmons, R.M., 1984. Control of sarcomere length in skinned muscle fibres of Rana temporaria during mechanical transients. The Journal of Physiology, 350 (1), 497–518.
Hedges, L.V., 1981. Distribution Theory for Glass’s Estimator of Effect size and Related Estimators. Journal of Educational Statistics, 6 (2), 107–128.
Heo, J.-W., No, M.-H., Park, D.-H., Kang, J.-H., Seo, D.Y., Han, J., Neufer, P.D., and Kwak, H.-B., 2017. Effects of exercise on obesity-induced mitochondrial dysfunction in skeletal muscle. The Korean Journal of Physiology & Pharmacology, 21 (6), 567.
Hill, C., James, R., Cox, V., and Tallis, J., 2019. Does Dietary-Induced Obesity in Old Age Impair the Contractile Performance of Isolated Mouse Soleus, Extensor Digitorum Longus and Diaphragm Skeletal Muscles? Nutrients, 11 (3), 505.
Hopkins, W.G., Marshall, S.W., Batterham, A.M., and Hanin, J., 2009. Progressive Statistics for Studies in Sports Medicine and Exercise Science: Medicine & Science in Sports & Exercise, 41 (1), 3–13.
Huang, Y., Xia, Q., Cui, Y., Qu, Q., Wei, Y., and Jiang, Q., 2020. Resveratrol increase the proportion of oxidative muscle fiber through the AdipoR1-AMPK-PGC-1α pathway in pigs. Journal of Functional Foods, 73, 104090.
Huang, Y., Zhu, X., Chen, K., Lang, H., Zhang, Y., Hou, P., Ran, L., Zhou, M., Zheng, J., Yi, L., Mi, M., and Zhang, Q., 2019. Resveratrol prevents sarcopenic obesity by reversing mitochondrial dysfunction and oxidative stress via the PKA/LKB1/AMPK pathway. Aging, 11 (8), 2217–2240.
Hurst, J., James, R.S., Cox, V.M., Hill, C., and Tallis, J., 2019. Investigating a dose–response relationship between high-fat diet consumption and the contractile performance of isolated mouse soleus, EDL and diaphragm muscles. European Journal of Applied Physiology, 119 (1), 213–226.
James, R.S., Altringham, J.D., and Goldspink, D.F., 1995. The mechanical properties of fast and slow skeletal muscles of the mouse in relation to their locomotory function. The Journal of Experimental Biology, 198 (Pt 2), 491–502.
James, R.S., Kohlsdorf, T., Cox, V.M., and Navas, C.A., 2005. 70 μM caffeine treatment enhances in vitro force and power output during cyclic activities in mouse extensor digitorum longus muscle. European Journal of Applied Physiology, 95 (1), 74–82.
James, R.S., Young, I.S., Cox, V.M., Goldspink, D.F., and Altringham, J.D., 1996. Isometric and isotonic muscle properties as determinants of work loop power output. Pflügers Archiv - European Journal of Physiology, 432 (5), 767–774.
Josephson, R.K., 1985. Mechanical power output from striated muscle during cyclic contractions. The Journal of Experimental Biology, (114), 493–512.
Josephson, R.K., 1993. Contraction dynamics and power output of skeletal muscle. Annual Review of Physiology, 55, 527–546.
Kan, N.-W., Lee, M.-C., Tung, Y.-T., Chiu, C.-C., Huang, C.-C., and Huang, W.-C., 2018. The Synergistic Effects of Resveratrol combined with Resistant Training on Exercise Performance and Physiological Adaption. Nutrients, 10 (10), 1360.
Kim, S., Jin, Y., Choi, Y., and Park, T., 2011. Resveratrol exerts anti-obesity effects via mechanisms involving down-regulation of adipogenic and inflammatory processes in mice. Biochemical Pharmacology, 81 (11), 1343–1351.
Konings, E., Timmers, S., Boekschoten, M.V., Goossens, G.H., Jocken, J.W., Afman, L.A., Müller, M., Schrauwen, P., Mariman, E.C., and Blaak, E.E., 2014. The effects of 30 days resveratrol supplementation on adipose tissue morphology and gene expression patterns in obese men. International Journal of Obesity, 38 (3), 470–473.
Lagouge, M., Argmann, C., Gerhart-Hines, Z., Meziane, H., Lerin, C., Daussin, F., Messadeq, N., Milne, J., Lambert, P., Elliott, P., Geny, B., Laakso, M., Puigserver, P., and Auwerx, J., 2006. Resveratrol Improves Mitochondrial Function and Protects against Metabolic Disease by Activating SIRT1 and PGC-1α. Cell, 127 (6), 1109–1122.
Lyons, C. and Roche, H., 2018. Nutritional Modulation of AMPK-Impact upon Metabolic-Inflammation. International Journal of Molecular Sciences, 19 (10), 3092.
van der Made, S.M., Plat, J., and Mensink, R.P., 2015. Resveratrol does not influence metabolic risk markers related to cardiovascular health in overweight and slightly obese subjects: a randomized, placebo-controlled crossover trial. PloS One, 10 (3), e0118393.
Manouze, H., Ghestem, A., Poillerat, V., Bennis, M., Ba-M’hamed, S., Benoliel, J.J., Becker, C., and Bernard, C., 2019. Effects of Single Cage Housing on Stress, Cognitive, and Seizure Parameters in the Rat and Mouse Pilocarpine Models of Epilepsy. eneuro, 6 (4), ENEURO.0179-18.2019.
Matsakas, A., Prosdocimo, D.A., Mitchell, R., Collins-Hooper, H., Giallourou, N., Swann, J.R., Potter, P., Epting, T., Jain, M.K., and Patel, K., 2015. Investigating mechanisms underpinning the detrimental impact of a high-fat diet in the developing and adult hypermuscular myostatin null mouse. Skeletal Muscle, 5 (1), 38.
Mendes, K.L., de Pinho, L., Andrade, J.M.O., Paraíso, A.F., Lula, J.F., Macedo, S.M., Feltenberger, J.D., Guimarães, A.L.S., de Paula, A.M.B., and Santos, S.H.S., 2016. Distinct metabolic effects of resveratrol on lipogenesis markers in mice adipose tissue treated with high-polyunsaturated fat and high-protein diets. Life Sciences, 153, 66–73.
Méndez, J. and Keys, A., 1960. Density and composition of mammalian muscle. Metabolism, 9, 184–188.
Méndez-del Villar, M., González-Ortiz, M., Martínez-Abundis, E., Pérez-Rubio, K.G., and Lizárraga-Valdez, R., 2014. Effect of Resveratrol Administration on Metabolic Syndrome, Insulin Sensitivity, and Insulin Secretion. Metabolic Syndrome and Related Disorders, 12 (10), 497–501.
Messa, G.A.M., Piasecki, M., Hurst, J., Hill, C., Tallis, J., and Degens, H., 2020. The impact of a high-fat diet in mice is dependent on duration and age, and differs between muscles. The Journal of Experimental Biology, 223 (6), jeb217117.
Montesano, A., Luzi, L., Senesi, P., Mazzocchi, N., and Terruzzi, I., 2013. Resveratrol promotes myogenesis and hypertrophy in murine myoblasts. Journal of Translational Medicine, 11 (1), 310.
Morgan, P.T., Smeuninx, B., and Breen, L., 2020. Exploring the Impact of Obesity on Skeletal Muscle Function in Older Age. Frontiers in Nutrition, 7, 569904.
Nishikawa, K.C., Lindstedt, S.L., and LaStayo, P.C., 2018. Basic science and clinical use of eccentric contractions: History and uncertainties. Journal of Sport and Health Science, 7 (3), 265–274.
Nishikawa, K.C., Monroy, J.A., and Tahir, U., 2018. Muscle Function from Organisms to Molecules. Integrative and Comparative Biology, 58 (2), 194–206.
Pardo, P.S. and Boriek, A.M., 2020. SIRT1 Regulation in Ageing and Obesity. Mechanisms of Ageing and Development, 188, 111249.
Park, C.E., Kim, M.-J., Lee, J.H., Min, B.-I., Bae, H., Choe, W., Kim, S.-S., and Ha, J., 2007. Resveratrol stimulates glucose transport in C2C12 myotubes by activating AMP-activated protein kinase. Experimental & Molecular Medicine, 39 (2), 222–229.
Pataky, T.C., 2010. Generalized n-dimensional biomechanical field analysis using statistical parametric mapping. Journal of Biomechanics, 43 (10), 1976–1982.
Pataky, T.C., Robinson, M.A., and Vanrenterghem, J., 2013. Vector field statistical analysis of kinematic and force trajectories. Journal of Biomechanics, 46 (14), 2394–2401.
Pataky, T.C., Vanrenterghem, J., and Robinson, M.A., 2015. Two-way ANOVA for scalar trajectories, with experimental evidence of non-phasic interactions. Journal of Biomechanics, 48 (1), 186–189.
Pfluger, P.T., Herranz, D., Velasco-Miguel, S., Serrano, M., and Tschöp, M.H., 2008. Sirt1 protects against high-fat diet-induced metabolic damage. Proceedings of the National Academy of Sciences of the United States of America, 105 (28), 9793–9798.
Polanen, N., Zacharewicz, E., Ligt, M., Timmers, S., Moonen‐Kornips, E., Schaart, G., Hoeks, J., Schrauwen, P., and Hesselink, M.K.C., 2021. Resveratrol‐induced remodelling of myocellular lipid stores: A study in metabolically compromised humans. Physiological Reports, 9 (2).
Poulsen, M.M., Vestergaard, P.F., Clasen, B.F., Radko, Y., Christensen, L.P., Stødkilde-Jørgensen, H., Møller, N., Jessen, N., Pedersen, S.B., and Jørgensen, J.O.L., 2013. High-Dose Resveratrol Supplementation in Obese Men. Diabetes, 62 (4), 1186–1195.
Price, N.L., Gomes, A.P., Ling, A.J.Y., Duarte, F.V., Martin-Montalvo, A., North, B.J., Agarwal, B., Ye, L., Ramadori, G., Teodoro, J.S., Hubbard, B.P., Varela, A.T., Davis, J.G., Varamini, B., Hafner, A., Moaddel, R., Rolo, A.P., Coppari, R., Palmeira, C.M., de Cabo, R., Baur, J.A., and Sinclair, D.A., 2012. SIRT1 Is Required for AMPK Activation and the Beneficial Effects of Resveratrol on Mitochondrial Function. Cell Metabolism, 15 (5), 675–690.
Rogers, P. and Webb, G.P., 1980. Estimation of body fat in normal and obese mice. The British Journal of Nutrition, 43 (1), 83–86.
Saini, A., Al‐Shanti, N., Sharples, A.P., and Stewart, C.E., 2012. Sirtuin 1 regulates skeletal myoblast survival and enhances differentiation in the presence of resveratrol. Experimental Physiology, 97 (3), 400–418.
Schilder, R.J., Kimball, S.R., Marden, J.H., and Jefferson, L.S., 2011. Body weight-dependent troponin T alternative splicing is evolutionarily conserved from insects to mammals and is partially impaired in skeletal muscle of obese rats. Journal of Experimental Biology, 214 (9), 1523–1532.
Seebacher, F., Tallis, J., McShea, K., and James, R.S., 2017. Obesity-induced decreases in muscle performance are not reversed by weight loss. International Journal of Obesity, 41 (8), 1271–1278.
Shabani, M., Sadeghi, A., Hosseini, H., Teimouri, M., Babaei Khorzoughi, R., Pasalar, P., and Meshkani, R., 2020. Resveratrol alleviates obesity-induced skeletal muscle inflammation via decreasing M1 macrophage polarization and increasing the regulatory T cell population. Scientific Reports, 10 (1), 3791.
Shelley, S., James, R.S., Eustace, S., Eyre, E., and Tallis, J., 2021. The effects of high adiposity on concentric and eccentric muscle performance of upper and lower limb musculature in young and older adults. Applied Physiology, Nutrition, and Metabolism, 46 (9), 1047–1057.
Shelley, S., James, R.S., Eustace, S.J., Eyre, E., and Tallis, J., 2022. Effect of stimulation frequency on force, power, and fatigue of isolated mouse extensor digitorum longus muscle. Journal of Experimental Biology, jeb.243285.
Shelley, S.P., James, R.S., Eustace, S.J., Eyre, E.L.J., and Tallis, J., 2023. High‐fat diet effects on contractile performance of isolated mouse soleus and extensor digitorum longus when supplemented with high dose vitamin D. Experimental Physiology, 109 (2), 283–301.
Shelley, S.P., James, R.S., and Tallis, J., 2024. The effects of muscle starting length on work loop power output of isolated mouse soleus and extensor digitorum longus muscle. Journal of Experimental Biology, 227 (8), jeb247158.
Steinberg, G.R., Michell, B.J., van Denderen, B.J.W., Watt, M.J., Carey, A.L., Fam, B.C., Andrikopoulos, S., Proietto, J., Görgün, C.Z., Carling, D., et al., 2006. Tumor necrosis factor a-induced skeletal muscle insulin resistance involves suppression of AMP-kinase signaling. Cell Metabolism, 4 (6), 465–474.
Tallis, J., Duncan, M.J., and James, R.S., 2015. What can isolated skeletal muscle experiments tell us about the effects of caffeine on exercise performance? British Journal of Pharmacology, 172 (15), 3703–3713.
Tallis, J., Hill, C., James, R.S., Cox, V.M., and Seebacher, F., 2017. The effect of obesity on the contractile performance of isolated mouse soleus, EDL, and diaphragm muscles. Journal of Applied Physiology, 122 (1), 170–181.
Tallis, J., James, R.S., Emma, L.J.E., Cox, V.M., and Hurst, J., 2022. High-fat diet affects measures of skeletal muscle contractile performance in a temperature specific manner but does not influence regional thermal sensitivity. Journal of Experimental Biology, jeb.244178.
Tallis, J., James, R.S., Eyre, E.L.J., Shelley, S.P., Hill, C., Renshaw, D., and Hurst, J., 2024. Effect of high‐fat diet on isometric, concentric and eccentric contractile performance of skeletal muscle isolated from female CD‐1 mice. Experimental Physiology, EP091832.
Tallis, J., James, R.S., and Seebacher, F., 2018. The effects of obesity on skeletal muscle contractile function. The Journal of Experimental Biology, 221 (13), jeb163840.
Tallis, J., Shelley, S., Degens, H., and Hill, C., 2021. Age-Related Skeletal Muscle Dysfunction Is Aggravated by Obesity: An Investigation of Contractile Function, Implications and Treatment. Biomolecules, 11 (3), 372.
Timmers, S., Konings, E., Bilet, L., Houtkooper, R.H., van de Weijer, T., Goossens, G.H., Hoeks, J., van der Krieken, S., Ryu, D., Kersten, S., Moonen-Kornips, E., Hesselink, M.K.C., Kunz, I., Schrauwen-Hinderling, V.B., Blaak, E.E., Auwerx, J., and Schrauwen, P., 2011. Calorie Restriction-like Effects of 30 Days of Resveratrol Supplementation on Energy Metabolism and Metabolic Profile in Obese Humans. Cell Metabolism, 14 (5), 612–622.
Toniolo, L., Concato, M., and Giacomello, E., 2023. Resveratrol, a Multitasking Molecule That Improves Skeletal Muscle Health. Nutrients, 15 (15), 3413.
Vassilakos, G., James, R.S., and Cox, V.M., 2009. Effect of stimulation frequency on force, net power output, and fatigue in mouse soleus muscle in vitro. Canadian Journal of Physiology and Pharmacology, 87 (3), 203–210.
Wakeling, J. and Rozitis, A., 2005. Motor unit recruitment during vertebrate locomotion. Animal Biology, 55 (1), 41–58.
Wang, Q., Liu, S., Zhai, A., Zhang, B., and Tian, G., 2018. AMPK-Mediated Regulation of Lipid Metabolism by Phosphorylation. Biological & Pharmaceutical Bulletin, 41 (7), 985–993.
Wang, S., Liang, X., Yang, Q., Fu, X., Rogers, C.J., Zhu, M., Rodgers, B.D., Jiang, Q., Dodson, M.V., and Du, M., 2015. Resveratrol induces brown-like adipocyte formation in white fat through activation of AMP-activated protein kinase (AMPK) α1. International Journal of Obesity, 39 (6), 967–976.
Wen, W., Chen, X., Huang, Z., Chen, D., Chen, H., Luo, Y., He, J., Zheng, P., Yu, J., and Yu, B., 2020. Resveratrol regulates muscle fiber type conversion via miR-22-3p and AMPK/SIRT1/PGC-1α pathway. The Journal of Nutritional Biochemistry, 77, 108297.
Wu, R.-E., Huang, W.-C., Liao, C.-C., Chang, Y.-K., Kan, N.-W., and Huang, C.-C., 2013. Resveratrol Protects against Physical Fatigue and Improves Exercise Performance in Mice. Molecules, 18 (4), 4689–4702.
Wu, Y., Wang, W., Liu, T., and Zhang, D., 2017. Association of Grip Strength With Risk of All-Cause Mortality, Cardiovascular Diseases, and Cancer in Community-Dwelling Populations: A Meta-analysis of Prospective Cohort Studies. Journal of the American Medical Directors Association, 18 (6), 551.e17-551.e35.
Wyke, S.M., Russell, S.T., and Tisdale, M.J., 2004. Induction of proteasome expression in skeletal muscle is attenuated by inhibitors of NF-κB activation. British Journal of Cancer, 91 (9), 1742–1750.
Zhou, J., Liao, Z., Jia, J., Chen, J.-L., and Xiao, Q., 2019. The effects of resveratrol feeding and exercise training on the skeletal muscle function and transcriptome of aged rats. PeerJ, 7, e7199.