1. Mohamad, N.; Muthusamy, K.; Embong, R.; Kusbiantoro, A.; Hashim, M.H. Environmental Impact of Cement Production and
Solutions: A Review. Mater. Today Proc. 2021, 48, 741–746.
2. Yin, M.; Li, J.; Zheng, H.; Chen, L.; Li, H.; Wang, H.; Ma, Z.; Xu, X.; Gao, C. A genome recoding method enables scalable multiplex
base editing. Nat. Commun. 2025, 16, 6201. [CrossRef
3. Zeng, Q.; Liu, X.; Zhang, Z.; Wei, C.; Xu, C. Synergistic utilization of blast furnace slag with other industrial solid wastes in cement
and concrete industry: Synergistic mechanisms, applications, and challenges. Green. Energy Resour. 2023, 1, 100012.
4. Noor Azline, M.N.; Nabilah, A.B.; Nor Azizi, S.; Ernaleza, M.; Farah Nora Aznieta, A.A. Enhanced Autogeneous Self-Healing of
MgO Blended Composites Incorporating with Silica Fume. Clean. Eng. Technol. 2023, 16, 100670.
5. Li, X.; Mehdizadeh, H.; Ling, T.C. Environmental, Economic and Engineering Performances of Aqueous Carbonated Steel Slag
Powders as Alternative Material in Cement Pastes: Influence of Particle Size. Sci. Total Environ. 2023, 903, 166210.
6. da Silva Magalhães, M.; Cezar, B.F.; Lustosa, P.R. Influence of Brazilian Fly Ash Fineness on the Cementing Efficiency Factor,
Compressive Strength and Young’s Modulus of Concrete. Dev. Built Environ. 2023, 14, 100147.
7. Alyousef, R.; Abbass, W.; Aslam, F.; Shah, M.I. Potential of Waste Woven Polypropylene Fiber and Textile Mesh for Production of
Gypsum-Based Composite. Case Stud. Constr. Mater. 2023, 18, e02099.
8. Iqbal, S.; Zaheer, M.; Room, S. Mechanical & Microstructural Properties of Self-Compacting Concrete by Partial Replacement of
Cement with Marble Powder and Sand with Rice Husk Ash. Sciencetech 2023, 4, 82–99.
9. Nassar, R.U.D.; Saeed, D.; Ghebrab, T.; Room, S.; Deifalla, A.; Al Amara, K. Heat of Hydration, Water Sorption and Microstructural
Characteristics of Paste and Mortar Mixtures Produced with Powder Waste Glass. Cogent Eng. 2024, 11, 2297466.
10. Kusuma, R.T.; Hiremath, R.B.; Rajesh, P.; Kumar, B.; Renukappa, S. Sustainable Transition towards Biomass-Based Cement
Industry: A Review. Renew. Sustain. Energy Rev. 2022, 163, 112503.
11. Dai, T.; Fang, C.; Liu, T.; Zheng, S.; Lei, G.; Jiang, G. Waste Glass Powder as a High Temperature Stabilizer in Blended Oil Well
Cement Pastes: Hydration, Microstructure and Mechanical Properties. Constr. Build. Mater. 2024, 439, 137359.
12. Wei, M.; Chen, L.; Lei, N.; Li, H.; Huang, L. Mechanical Properties and Microstructures of Thermally Activated Ultrafine Recycled
Fine Powder Cementitious Materials. Constr. Build. Mater. 2025, 475, 141195.
13. Room, S.; Bahadori-Jahromi, A. Biochar-Enhanced Carbon-Negative and Sustainable Cement Composites: A Scientometric
Review. Sustainability 2024, 16, 10162.
14. Kant Bhatia, S.; Palai, A.K.; Kumar, A.; Kant Bhatia, R.; Kumar Patel, A.; Kumar Thakur, V.; Yang, Y.H. Trends in Renewable
Energy Production Employing Biomass-Based Biochar. Bioresour. Technol. 2021, 340, 158.
15. Gupta, S.; Kua, H.W. Effect of Water Entrainment by Pre-Soaked Biochar Particles on Strength and Permeability of Cement Mortar.
Constr. Build. Mater. 2018, 159, 107–125.
16. Hu, J.; Guo, H.; Wang, X.; Gao, M.T.; Yao, G.; Tsang, Y.F.; Li, J.; Yan, J.; Zhang, S. Utilization of the Saccharification Residue of Rice
Straw in the Preparation of Biochar Is a Novel Strategy for Reducing CO2 Emissions. Sci. Total Environ. 2019, 650, 1141–1148.
17. Barbhuiya, S.; Bhusan Das, B.; Kanavaris, F. Biochar-Concrete: A Comprehensive Review of Properties, Production and
Sustainability. Case Stud. Constr. Mater. 2024, 20, e02859.
18. Zaid, O.; Alsharari, F.; Ahmed, M. Utilization of Engineered Biochar as a Binder in Carbon Negative Cement-Based Composites:
A Review. Constr. Build. Mater. 2024, 417, 135246.
19. Yang, F.; Zhang, S.; Sun, Y.; Tsang, D.C.W.; Cheng, K.; Ok, Y.S. Assembling Biochar with Various Layered Double Hydroxides for
Enhancement of Phosphorus Recovery. J. Hazard Mater 2019, 365, 665–673.
20. Fang, Z.; Gao, Y.; Bolan, N.; Shaheen, S.M.; Xu, S.; Wu, X.; Xu, X.; Hu, H.; Lin, J.; Zhang, F.; et al. Conversion of Biological Solid
Waste to Graphene-Containing Biochar for Water Remediation: A Critical Review. Chem. Eng. J. 2020, 390, 124611.
21. Sahoo, S.S.; Vijay, V.K.; Chandra, R.; Kumar, H. Production and Characterization of Biochar Produced from Slow Pyrolysis of
Pigeon Pea Stalk and Bamboo. Clean. Eng. Technol. 2021, 3, 100101.
22. Zhao, W.; Yang, H.; He, S.; Zhao, Q.; Wei, L. A Review of Biochar in Anaerobic Digestion to Improve Biogas Production:
Performances, Mechanisms and Economic Assessments. Bioresour. Technol. 2021, 341, 125797.
23. Dissanayake, P.D.; You, S.; Igalavithana, A.D.; Xia, Y.; Bhatnagar, A.; Gupta, S.; Kua, H.W.; Kim, S.; Kwon, J.H.; Tsang, D.C.W.; et al.
Biochar-Based Adsorbents for Carbon Dioxide Capture: A Critical Review. Renew. Sustain. Energy Rev. 2020, 119, 109582.
24. Wang, L.; Chen, L.; Tsang, D.C.W.; Guo, B.; Yang, J.; Shen, Z.; Hou, D.; Ok, Y.S.; Poon, C.S. Biochar as Green Additives in
Cement-Based Composites with Carbon Dioxide Curing. J. Clean. Prod. 2020, 258, 120678.
25. Asadi Zeidabadi, Z.; Bakhtiari, S.; Abbaslou, H.; Ghanizadeh, A.R. Synthesis, Characterization and Evaluation of Biochar from
Agricultural Waste Biomass for Use in Building Materials. Constr. Build. Mater. 2018, 181, 301–308.
26. Osman, A.I.; Farghali, M.; Dong, Y.; Kong, J.; Yousry, M.; Rashwan, A.K.; Chen, Z.; Al-Fatesh, A.; Rooney, D.W.; Yap, P.S. Reducing
the Carbon Footprint of Buildings Using Biochar-Based Bricks and Insulating Materials: A Review. Environ. Chem. Lett. 2024, 22,
71–104.
27. Yang, C.; Yao, Q.; Li, L.; Xiao, X.; Lu, L.; Liu, C.; Zhu, C.; Zhan, S.; Yuan, H. The Isolated Ca-Nx Sites in Biochar Boosting Fe
Catalyzed Fenton-like Oxidation of Tris(2-Chloroethyl) Phosphate: Properties, Mechanisms, and Applications. Appl. Catal. B
Environ. Energy 2025, 366, 125056.
28. Qiu, Z.; Chen, F.; Yu, Y.; Gu, Y.; Wang, X.; Wang, Y. Effects of Water-Cement Ratio and Particle Diameter on the Mechanical
Properties of Cement Paste Particles. Opt. Lasers Eng. 2025, 187, 108874.
29. Yang, H.; Wang, X.; Wang, J.; Liu, H.; Jin, H.; Zhang, J.; Li, G.; Tang, Y.; Ye, C. High-Value Utilization of Agricultural Waste:
A Study on the Catalytic Performance and Deactivation Characteristics of Iron-Nickel Supported Biochar-Based Catalysts in the
Catalytic Cracking of Toluene. Energy 2025, 323, 135806.
30. Zhao, M.; Zou, G.; Li, Y.; Pan, B.; Wang, X.; Zhang, J.; Xu, L.; Li, C.; Chen, Y. Biodegradable Microplastics Coupled with Biochar
Enhance Cd Chelation and Reduce Cd Accumulation in Chinese Cabbage. Biochar 2025, 7, 31.
31. Ahmed, A.S.F.; Vanga, S.; Raghavan, V. Global Bibliometric Analysis of the Research in Biochar. J. Agric. Food Inf. 2018, 19,
228–236.
32. Ghorbani, M.; Neugschwandtner, R.W.; Soja, G.; Konvalina, P.; Kopecký, M. Carbon Fixation and Soil Aggregation Affected by
Biochar Oxidized with Hydrogen Peroxide: Considering the Efficiency of Pyrolysis Temperature. Sustainability 2023, 15, 7158.
33. Liu, J.; Liu, G.; Zhang, W.; Li, Z.; Xing, F.; Tang, L. Application Potential Analysis of Biochar as a Carbon Capture Material in
Cementitious Composites: A Review. Constr. Build. Mater. 2022, 350, 128715.
34. Yek, P.N.Y.; Cheng, Y.W.; Liew, R.K.; Wan Mahari, W.A.; Ong, H.C.; Chen, W.H.; Peng, W.; Park, Y.K.; Sonne, C.; Kong, S.H.; et al.
Progress in the Torrefaction Technology for Upgrading Oil Palm Wastes to Energy-Dense Biochar: A Review. Renew. Sustain.
Energy Rev. 2021, 151, 111645.
35. Winters, D.; Boakye, K.; Simske, S. Toward Carbon-Neutral Concrete through Biochar–Cement–Calcium Carbonate Composites:
A Critical Review. Sustainability 2022, 14, 4633.
36. Yang, X.; Liu, J.; McGrouther, K.; Huang, H.; Lu, K.; Guo, X.; He, L.; Lin, X.; Che, L.; Ye, Z.; et al. Effect of Biochar on the
Extractability of Heavy Metals (Cd, Cu, Pb, and Zn) and Enzyme Activity in Soil. Environ. Sci. Pollut. Res. 2016, 23, 974–984.
37. Alkhasha, A.; Al-Omran, A.; Louki, I. Impact of Deficit Irrigation and Addition of Biochar and Polymer on Soil Salinity and
Tomato Productivity. Can. J. Soil Sci. 2019, 99, 380–394.
38. Qin, Y.; Pang, X.; Tan, K.; Bao, T. Evaluation of Pervious Concrete Performance with Pulverized Biochar as Cement Replacement.
Cem. Concr. Compos. 2021, 119, 104022.
39. Gupta, S.; Muthukrishnan, S.; Kua, H.W. Comparing Influence of Inert Biochar and Silica Rich Biochar on Cement Mortar–
Hydration Kinetics and Durability under Chloride and Sulfate Environment. Constr. Build. Mater. 2021, 268, 121142.
40. Chen, T.; Zhao, L.; Gao, X.; Li, L.; Qin, L. Modification of Carbonation-Cured Cement Mortar Using Biochar and Its Environmental
Evaluation. Cem. Concr. Compos. 2022, 134, 104764.
41. Khan, M.I.; Abdy Sayyed, M.A.; Ali, M.M.A. Examination of Cement Concrete Containing Micro Silica and Sugarcane Bagasse
Ash Subjected to Sulphate and Chloride Attack. Mater. Today Proc. 2021, 39, 558–562.
42. Murali, G.; Wong, L.S. A Comprehensive Review of Biochar-Modified Concrete: Mechanical Performance and Microstructural
Insights. Constr. Build. Mater. 2024, 425, 135986.
43. Nguyen, M.N. Potential Use of Silica-Rich Biochar for the Formulation of Adaptively Controlled Release Fertilizers: A Mini
Review. J. Clean. Prod. 2021, 307, 127188.
44. Xiao, X.; Chen, B.; Chen, Z.; Zhu, L.; Schnoor, J.L. Insight into Multiple and Multilevel Structures of Biochars and Their Potential
Environmental Applications: A Critical Review. Environ. Sci. Technol. 2018, 52, 5027–5047.
45. Zhang, Y.; Maierdan, Y.; Guo, T.; Chen, B.; Fang, S.; Zhao, L. Biochar as Carbon Sequestration Material Combines with Sewage
Sludge Incineration Ash to Prepare Lightweight Concrete. Constr. Build. Mater. 2022, 343, 128116.
46. Lv, C.; Shen, Z.; Cheng, Q.; Tang, C.S.; Wang, Y.; Gu, K. Effects of Biochar and Polypropylene Fibre on Mechanical Behaviour of
Cement-Solidified Sludge. Soil Use Manag. 2022, 38, 1667–1678.
47. Suarez-Riera, D.; Falliano, D.; Carvajal, J.F.; Celi, A.C.B.; Ferro, G.A.; Tulliani, J.M.; Lavagna, L.; Restuccia, L. The Effect of
Different Biochar on the Mechanical Properties of Cement-Pastes and Mortars. Buildings 2023, 13, 2900.
48. Ling, Y.; Wu, X.; Tan, K.; Zou, Z. Effect of Biochar Dosage and Fineness on the Mechanical Properties and Durability of Concrete.
Materials 2023, 16, 2809.
49. Chen, L.; Zhang, Y.; Labianca, C.; Wang, L.; Ruan, S.; Poon, C.S.; Ok, Y.S.; Tsang, D.C.W. Carbon-Negative Cement-Bonded
Biochar Particleboards. Biochar 2022, 4, 58.
50. Mensah, R.A.; Shanmugam, V.; Narayanan, S.; Razavi, S.M.J.; Ulfberg, A.; Blanksvärd, T.; Sayahi, F.; Simonsson, P.; Reinke, B.;
Försth, M.; et al. Biochar-Added Cementitious Materials—A Review on Mechanical, Thermal, and Environmental Properties.
Sustainability 2021, 13, 9336.
51. Ruscica, G.; Peinetti, F.; Natali Sora, I.; Savi, P. Analysis of Electromagnetic Shielding Properties of Cement-Based Composites
with Biochar and PVC as Fillers. C-J. Carbon Res. 2024, 10, 21.
52. Nahuat-Sansores, J.R.; Cruz-Argüello, J.C.; Gurrola, M.P.; Trejo-Arroyo, D.L. Suitability of Biochar as Supplementary Cementitious
Material (SCM) or Filler: Waste Revalorization, a Critical Review. Rev. Ing. Civ. 2022, 6, 12.
53. Wang, L.; Chen, L.; Poon, C.S.; Wang, C.H.; Ok, Y.S.; Mechtcherine, V.; Tsang, D.C.W. Roles of Biochar and CO2 Curing in
Sustainable Magnesia Cement-Based Composites. ACS Sustain. Chem. Eng. 2021, 9, 8603–8610.
54. Mrad, R.; Chehab, G. Mechanical and Microstructure Properties of Biochar-Based Mortar: An Internal Curing Agent for PCC.
Sustainability 2019, 11, 2491.
55. Aman, A.M.N.; Selvarajoo, A.; Lau, T.L.; Chen, W.H. Biochar as Cement Replacement to Enhance Concrete Composite Properties:
A Review. Energies 2022, 15, 7662.
56. Gupta, S.; Kashani, A.; Mahmood, A.H.; Han, T. Carbon Sequestration in Cementitious Composites Using Biochar and Fly Ash
–Effect on Mechanical and Durability Properties. Constr. Build. Mater. 2021, 291, 123363.
57. Sinha, S.; Pandey, A.; B, S.N.; Prasad, B. Preliminary Study of Agricultural Waste as Biochar Incorporated into Cementitious
Materials. J. Archit. Environ. Struct. Eng. Res. 2023, 6, 5695.
58. Vafaei, B.; Ghahremaninezhad, A. Effects of Biochar as a Green Additive on the Self-Healing and Properties of Sustainable
Cementitious Materials. ACS Sustain. Chem. Eng. 2024, 12, 8261–8275.
59. Yang, X.; Wang, X.Y. Strength and Durability Improvements of Biochar-Blended Mortar or Paste Using Accelerated Carbonation
Curing. J. CO2 Util. 2021, 54, 101766.
60. Bilal, H.; Chen, T.; Ren, M.; Gao, X.; Su, A. Influence of Silica Fume, Metakaolin & SBR Latex on Strength and Durability
Performance of Pervious Concrete. Constr. Build. Mater. 2021, 275, 122124.
61. Chen, X.; Li, J.; Xue, Q.; Huang, X.; Liu, L.; Poon, C.S. Sludge Biochar as a Green Additive in Cement-Based Composites:
Mechanical Properties and Hydration Kinetics. Constr. Build. Mater. 2020, 262, 120723.
62. Berti, D.; Biscontin, G.; Lau, J. Effect of Biochar Filler on the Hydration Products and Microstructure in Portland Cement–Stabilized
Peat. J. Mater. Civ. Eng. 2021, 33, 04021263.
63. Gupta, S.; Kua, H.W. Carbonaceous Micro-Filler for Cement: Effect of Particle Size and Dosage of Biochar on Fresh and Hardened
Properties of Cement Mortar. Sci. Total Environ. 2019, 662, 952–962.
64. Gupta, S.; Tulliani, J.M.; Kua, H.W. Carbonaceous Admixtures in Cementitious Building Materials: Effect of Particle Size Blending
on Rheology, Packing, Early Age Properties and Processing Energy Demand. Sci. Total Environ. 2022, 807, 150884.
65. Gupta, S.; Kua, H.W.; Koh, H.J. Application of Biochar from Food and Wood Waste as Green Admixture for Cement Mortar. Sci.
Total Environ. 2018, 619, 419–435.
66. Gupta, S.; Kua, H.W.; Pang, S.D. Biochar-Mortar Composite: Manufacturing, Evaluation of Physical Properties and Economic
Viability. Constr. Build. Mater. 2018, 167, 874–889.
67. Kumar, A.; Pippal, A.; Agarwal, R.; Kumar, R.; Bhanavath, S.N.; Athar, H.; Kushwah, S. Thermo-Physical Study of Biochar
Mixture into The Cement Based Material for Thermal Comfort. J. Build. Des. Environ. 2023, 2, 21478.
68. Zhang, D.; Han, T.; Wang, J.; Sun, C.; Jiang, X.Y.; Ni, Z.; Guo, J. An Insight into the Effect of Rice Straw Biochar on Compressive
Strength and Thermal Conductivity of Cement. Proc. J. Phys. Conf. Ser. 2022, 2168, 012012.
69. Zhang, Y.; He, M.; Wang, L.; Yan, J.; Ma, B.; Zhu, X.; Ok, Y.S.; Mechtcherine, V.; Tsang, D.C.W. Biochar as Construction Materials
for Achieving Carbon Neutrality. Biochar 2022, 4, 59.
70. Zhang, Y.; Chen, H.; Wang, Q. Accelerated Carbonation of Regenerated Cementitious Materials from Waste Concrete for CO2
Sequestration. J. Build. Eng. 2022, 55, 104701.
71. Tan, K.; Pang, X.; Qin, Y.; Wang, J. Properties of Cement Mortar Containing Pulverized Biochar Pyrolyzed at Different Tempera tures. Constr. Build. Mater. 2020, 263, 120616.
72. Yang, X.; Wang, X.Y. Hydration-Strength-Durability-Workability of Biochar-Cement Binary Blends. J. Build. Eng. 2021, 42, 103064.
73. Choi, W.C.; Yun, H.D.; Lee, J.Y. Mechanical Properties of Mortar Containing Bio-Char From Pyrolysis. J. Korea Inst. Struct. Maint.
Insp. 2012, 16, 67–74.
74. Sirico, A.; Belletti, B.; Bernardi, P.; Malcevschi, A.; Pagliari, F.; Fornoni, P.; Moretti, E. Effects of Biochar Addition on Long-Term
Behavior of Concrete. Theor. Appl. Fract. Mech. 2022, 122, 103626.
75. Tan, K.-H.; Wang, T.-Y.; Zhou, Z.-H.; Qin, Y.-H. Biochar as a Partial Cement Replacement Material for Developing Sustainable
Concrete: An Overview. J. Mater. Civ. Eng. 2021, 33, 03121001.
76. Chi, L.; Du, T.; Lu, S.; Li, W.; Wang, M. Electrochemical Impedance Spectroscopy Monitoring of Hydration Behaviors of Cement
with Na2CO3 Accelerator. Constr. Build. Mater. 2022, 357, 129374.
77. Gupta, S.; Krishnan, P.; Kashani, A.; Kua, H.W. Application of Biochar from Coconut and Wood Waste to Reduce Shrinkage and
Improve Physical Properties of Silica Fume-Cement Mortar. Constr. Build. Mater. 2020, 262, 120688.
78. Akinyemi, B.A.; Adesina, A. Recent Advancements in the Use of Biochar for Cementitious Applications: A Review. J. Build. Eng.
2020, 32, 101705.
79. Wang, L.; Chen, L.; Tsang, D.C.W.; Kua, H.W.; Yang, J.; Ok, Y.S.; Ding, S.; Hou, D.; Poon, C.S. The Roles of Biochar as Green
Admixture for Sediment-Based Construction Products. Cem. Concr. Compos. 2019, 104, 103348.
53. Wang, L.; Chen, L.; Poon, C.S.; Wang, C.H.; Ok, Y.S.; Mechtcherine, V.; Tsang, D.C.W. Roles of Biochar and CO2 Curing in
Sustainable Magnesia Cement-Based Composites. ACS Sustain. Chem. Eng. 2021, 9, 8603–8610.
54. Mrad, R.; Chehab, G. Mechanical and Microstructure Properties of Biochar-Based Mortar: An Internal Curing Agent for PCC.
Sustainability 2019, 11, 2491.
55. Aman, A.M.N.; Selvarajoo, A.; Lau, T.L.; Chen, W.H. Biochar as Cement Replacement to Enhance Concrete Composite Properties:
A Review. Energies 2022, 15, 7662.
56. Gupta, S.; Kashani, A.; Mahmood, A.H.; Han, T. Carbon Sequestration in Cementitious Composites Using Biochar and Fly Ash
–Effect on Mechanical and Durability Properties. Constr. Build. Mater. 2021, 291, 123363.
57. Sinha, S.; Pandey, A.; B, S.N.; Prasad, B. Preliminary Study of Agricultural Waste as Biochar Incorporated into Cementitious
Materials. J. Archit. Environ. Struct. Eng. Res. 2023, 6, 5695.
58. Vafaei, B.; Ghahremaninezhad, A. Effects of Biochar as a Green Additive on the Self-Healing and Properties of Sustainable
Cementitious Materials. ACS Sustain. Chem. Eng. 2024, 12, 8261–8275.
59. Yang, X.; Wang, X.Y. Strength and Durability Improvements of Biochar-Blended Mortar or Paste Using Accelerated Carbonation
Curing. J. CO2 Util. 2021, 54, 101766.
60. Bilal, H.; Chen, T.; Ren, M.; Gao, X.; Su, A. Influence of Silica Fume, Metakaolin & SBR Latex on Strength and Durability
Performance of Pervious Concrete. Constr. Build. Mater. 2021, 275, 122124.
61. Chen, X.; Li, J.; Xue, Q.; Huang, X.; Liu, L.; Poon, C.S. Sludge Biochar as a Green Additive in Cement-Based Composites:
Mechanical Properties and Hydration Kinetics. Constr. Build. Mater. 2020, 262, 120723.
62. Berti, D.; Biscontin, G.; Lau, J. Effect of Biochar Filler on the Hydration Products and Microstructure in Portland Cement–Stabilized
Peat. J. Mater. Civ. Eng. 2021, 33, 04021263.
63. Gupta, S.; Kua, H.W. Carbonaceous Micro-Filler for Cement: Effect of Particle Size and Dosage of Biochar on Fresh and Hardened
Properties of Cement Mortar. Sci. Total Environ. 2019, 662, 952–962.
64. Gupta, S.; Tulliani, J.M.; Kua, H.W. Carbonaceous Admixtures in Cementitious Building Materials: Effect of Particle Size Blending
on Rheology, Packing, Early Age Properties and Processing Energy Demand. Sci. Total Environ. 2022, 807, 150884.
65. Gupta, S.; Kua, H.W.; Koh, H.J. Application of Biochar from Food and Wood Waste as Green Admixture for Cement Mortar. Sci.
Total Environ. 2018, 619, 419–435.
66. Gupta, S.; Kua, H.W.; Pang, S.D. Biochar-Mortar Composite: Manufacturing, Evaluation of Physical Properties and Economic
Viability. Constr. Build. Mater. 2018, 167, 874–889.
67. Kumar, A.; Pippal, A.; Agarwal, R.; Kumar, R.; Bhanavath, S.N.; Athar, H.; Kushwah, S. Thermo-Physical Study of Biochar
Mixture into The Cement Based Material for Thermal Comfort. J. Build. Des. Environ. 2023, 2, 21478.
68. Zhang, D.; Han, T.; Wang, J.; Sun, C.; Jiang, X.Y.; Ni, Z.; Guo, J. An Insight into the Effect of Rice Straw Biochar on Compressive
Strength and Thermal Conductivity of Cement. Proc. J. Phys. Conf. Ser. 2022, 2168, 012012.
69. Zhang, Y.; He, M.; Wang, L.; Yan, J.; Ma, B.; Zhu, X.; Ok, Y.S.; Mechtcherine, V.; Tsang, D.C.W. Biochar as Construction Materials
for Achieving Carbon Neutrality. Biochar 2022, 4, 59.
70. Zhang, Y.; Chen, H.; Wang, Q. Accelerated Carbonation of Regenerated Cementitious Materials from Waste Concrete for CO2
Sequestration. J. Build. Eng. 2022, 55, 104701.
71. Tan, K.; Pang, X.; Qin, Y.; Wang, J. Properties of Cement Mortar Containing Pulverized Biochar Pyrolyzed at Different Tempera tures. Constr. Build. Mater. 2020, 263, 120616.
72. Yang, X.; Wang, X.Y. Hydration-Strength-Durability-Workability of Biochar-Cement Binary Blends. J. Build. Eng. 2021, 42, 103064.
73. Choi, W.C.; Yun, H.D.; Lee, J.Y. Mechanical Properties of Mortar Containing Bio-Char From Pyrolysis. J. Korea Inst. Struct. Maint.
Insp. 2012, 16, 67–74.
74. Sirico, A.; Belletti, B.; Bernardi, P.; Malcevschi, A.; Pagliari, F.; Fornoni, P.; Moretti, E. Effects of Biochar Addition on Long-Term
Behavior of Concrete. Theor. Appl. Fract. Mech. 2022, 122, 103626.
75. Tan, K.-H.; Wang, T.-Y.; Zhou, Z.-H.; Qin, Y.-H. Biochar as a Partial Cement Replacement Material for Developing Sustainable
Concrete: An Overview. J. Mater. Civ. Eng. 2021, 33, 03121001.
76. Chi, L.; Du, T.; Lu, S.; Li, W.; Wang, M. Electrochemical Impedance Spectroscopy Monitoring of Hydration Behaviors of Cement
with Na2CO3 Accelerator. Constr. Build. Mater. 2022, 357, 129374.
77. Gupta, S.; Krishnan, P.; Kashani, A.; Kua, H.W. Application of Biochar from Coconut and Wood Waste to Reduce Shrinkage and
Improve Physical Properties of Silica Fume-Cement Mortar. Constr. Build. Mater. 2020, 262, 120688.
78. Akinyemi, B.A.; Adesina, A. Recent Advancements in the Use of Biochar for Cementitious Applications: A Review. J. Build. Eng.
2020, 32, 101705.
79. Wang, L.; Chen, L.; Tsang, D.C.W.; Kua, H.W.; Yang, J.; Ok, Y.S.; Ding, S.; Hou, D.; Poon, C.S. The Roles of Biochar as Green
Admixture for Sediment-Based Construction Products. Cem. Concr. Compos. 2019, 104, 103348.