Nayfeh, Mahir Ali(1990) Nonlinear dynamics in power systems.
Nayfeh, M.A., Hamdan, A.M.A., Nayfeh, A.H. Chaos and instability in a power system - Primary resonant case (1990) Nonlinear Dynamics, 1 (4), pp. 313-339. DOI: 10.1007/BF01865278
Sofroniou, A., Premnath, B., Munisami, K.J. An Insight into the Dynamical Behaviour of the Swing Equation (2023) WSEAS Transactions on Mathematics, 22, pp. 70-78. DOI: 10.37394/23206.2023.22.9
Frisch, U., Morf, R. Intermittency in nonlinear dynamics and singularities at complex times (1981) Physical Review A, 23 (5), pp. 2673-2705. DOI: 10.1103/PhysRevA.23.2673
Nguyen, E., Olivier, P., Pera, M.-C., Pahon, E., Roche, R. Impacts of intermittency on low-temperature electrolysis technologies: A comprehensive review (2024) International Journal of Hydrogen Energy, 70, pp. 474-492. DOI: 10.1016/j.ijhydene.2024.05.217
Guan, Y., Gupta, V., Li, L.K.B. Intermittency route to self-excited chaotic thermoacoustic oscillations (2020) Journal of Fluid Mechanics, 894, art. no. R3. DOI: 10.1017/jfm.2020.297
Del Rio, E., Elaskar, S. Type III intermittency without characteristic relation(2021) Chaos, 31 (4), art. no. 043127. DOI: 10.1063/5.0040599
Lozano-Durán, A., Arranz, G. Information-theoretic formulation of dynamical systems: Causality, modeling, and control (2022) Physical Review Research, 4 (2), art. no. 023195. DOI: 10.1103/PhysRevResearch.4.023195
Zambrano, S., Mariño, I.P., Salvadori, F., Meucci, R., Sanjuán, M.A.F., Arecchi, F.T. Phase control of intermittency in dynamical systems (2006) Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 74 (1), art. no. 016202, DOI: 10.1103/PhysRevE.74.016202
Ma, Z., Wang, G., Cui, T., Zheng, Y. Interpretation of Intermittent Combustion Oscillations by a New Linearization Procedure (2022) Journal of Propulsion and Power, 38 (2), pp. 190-199. DOI: 10.2514/1.B38410
Sofroniou, A., Premnath, B. An Investigation into the Primary and Subharmonic Resonances of the Swing Equation (2023) WSEAS Transactions on Systems and Control, 18, pp. 218-230.DOI: 10.37394/23203.2022.18.22
Sofroniou, A., Premnath, B. Addressing the Primary and Subharmonic Resonances of the Swing Equation (2023) WSEAS Transactions on Applied and Theoretical Mechanics, 18, art. no. 19, pp. 199-215.DOI: 10.37394/232011.2023.18.19
Parker, Thomas S., Chua, Leon O., Parker, Thomas S., Chua, Leon O. Integration of trajectories (1989) Practical numerical algorithms for chaotic systems, pp. 83-114. Cited 2 times.
Huang, H., Li, F. Sensitivity analysis of load-damping characteristic in power system frequency regulation (2013) IEEE Transactions on Power Systems, 28 (2), pp. 1324-1335.DOI: 10.1109/TPWRS.2012.2209901
Di Bernardo, M., Budd, C.J., Champneys, A.R., Kowalczyk, P., Nordmark, A.B., Tost, G.O., Piiroinen, P.T. Bifurcations in nonsmooth dynamical systems (2008) SIAM Review, 50 (4), pp. 629-701. DOI: 10.1137/050625060
Liang, X., Chai, H., Ravishankar, J. Analytical Methods of Voltage Stability in Renewable Dominated Power Systems: A Review (2022) Electricity, 3 (1), pp. 75-107. DOI: 10.3390/electricity3010006
Sofroniou, A., Premnath, B. A Comprehensive Analysis into the Effects of Quasiperiodicity on the Swing Equation (2023) WSEAS Transactions on Applied and Theoretical Mechanics, 18, pp. 299-309. DOI: 10.37394/232011.2023.18.28
Cheng, Y., Azizipanah-Abarghooee, R., Azizi, S., Ding, L., Terzija, V. Smart frequency control in low inertia energy systems based on frequency response techniques: A review (2020) Applied Energy, 279, art. no. 115798. DOI: 10.1016/j.apenergy.2020.115798
Hartmann, B., Vokony, I., Táczi, I. Effects of decreasing synchronous inertia on power system dynamics—Overview of recent experiences and marketisation of services (2019) International Transactions on Electrical Energy Systems, 29 (12), art. no. e12128, DOI: 10.1002/2050-7038.12128
Sofroniou, A., Premnath, B. Analysing the Swing Equation using MATLAB Simulink for Primary Resonance, Subharmonic Resonance and for the case of Quasiperiodicity. (2024) WSEAS Transactions on Circuits and Systems, 23, pp. 202-211. DOI: 10.37394/23201.2024.23.21
Qiu, Q., Ma, R., Kurths, J., Zhan, M. Swing equation in power systems: Approximate analytical solution and bifurcation curve estimate (2020) Chaos, 30 (1), art. no. 013110. DOI: 10.1063/1.5115527
Ma, R., Li, J., Kurths, J., Cheng, S., Zhan, M. Generalized Swing Equation and Transient Synchronous Stability With PLL-Based VSC (2022) IEEE Transactions on Energy Conversion, 37 (2), pp. 1428-1441. DOI: 10.1109/TEC.2021.3137806
Padhi, S., Mishra, B.P. Solution of swing equation for transient stability analysis in dual-machine system (2015) IOSR Journal of Engineering, 5, pp. 34-39.
Crawford, J.D. Introduction to bifurcation theory (1991) Reviews of Modern Physics, 63 (4), pp. 991-1037. DOI: 10.1103/RevModPhys.63.991
Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A. Determining Lyapunov exponents from a time series (1985) Physica D: Nonlinear Phenomena, 16 (3), pp. 285-317. DOI: 10.1016/0167-2789(85)90011-9
Sofroniou, A., Bishop, S. Dynamics of a parametrically excited system with two forcing terms (2014) Mathematics, 2 (3), pp. 172-195. DOI: 10.3390/math2030172
Laugesen, J.L., Mosekilde, E. Emergence of oscillatory dynamics (2014) Biosimulation in Biomedical Research, Health Care and Drug Development, 9783709104187, pp. 69-95. DOI: 10.1007/978-3-7091-0418-7_4
Zhusubaliyev, Z.T., Mosekilde, E. (2003) Bifurcations and Chaos in Piecewise-Smooth Dynamical Systems.
Suresha, S., Sujith, R.I., Emerson, B., Lieuwen, T. Nonlinear dynamics and intermittency in a turbulent reacting wake with density ratio as bifurcation parameter (2016) Physical Review E, 94 (4), art. no. 042206. DOI: 10.1103/PhysRevE.94.042206
Chinni, K., Poggi, P.M., Deutsch, I.H. Effect of chaos on the simulation of quantum critical phenomena in analog quantum simulators (2021) Physical Review Research, 3 (3), art. no. 033145. DOI: 10.1103/PhysRevResearch.3.033145
Liu, Z., Gao, J., Rao, X., Ding, S., Liu, D. Complex dynamics of the passive biped robot with flat feet: Gait bifurcation, intermittency and crisis (2024) Mechanism and Machine Theory, 191, art. no. 105500, DOI: 10.1016/j.mechmachtheory.2023.105500