American Diabetes Association, 2020. Classification and diagnosis of diabetes: standards of medical care in diabetes—2020. Diabetes Care 43, S14–S31. https://doi.org/ 10.2337/dc20-S002.
Bajaj, S., Rekwal, L., Misra, S., Misra, V., Yadav, R.K., Srivastava, A., 2014. Association of Helicobacter pylori infection with type 2 diabetes. Indian Journal of Endocrinology and Metabolism 18 (5), 694–699. https://doi.org/10.4103/2230-8210.139235.
Behrends, V., Tredwell, G.D., Bundy, J.G., 2011. A software complement to AMDIS for processing GC-MS metabolomic data. Anal. Biochem. 415 (2), 206–208. https://doi. org/10.1016/j.ab.2011.04.009.
Beresford-Jones, B.S., Forster, S.C., Stares, M.D., Notley, G., Viciani, E., Browne, H.P., Boehmler, D.J., Soderholm, A.T., Kumar, N., Vervier, K., 2022. The mouse gastrointestinal bacteria catalogue enables translation between the mouse and human gut microbiotas via functional mapping. Cell Host Microbe 30 (1), 124–138e128. https://doi.org/10.1016/j.chom.2021.12.003.
Burokas, A., Martín-García, E., Espinosa-Carrasco, J., Erb, I., McDonald, J., Notredame, C., Dierssen, M., Maldonado, R., 2018. Extinction and reinstatement of an operant responding maintained by food in different models of obesity. Addict. Biol. 23 (2), 544–555. https://doi.org/10.1111/adb.12597.
Chamata, Y., Watson, K.A., Jauregi, P., 2020. Whey-derived peptides interactions with ACE by molecular docking as a potential predictive tool of natural ACE inhibitors. Intrnational Journal of Molecular Sciences 21 (3), 864. https://doi.org/10.3390/ ijms21030864.
Chen, L.W., Chien, C.Y., Yang, K.J., Kuo, S.F., Chen, C.H., Chien, R.N., 2015. Helicobacter pylori infection increases insulin resistance and metabolic syndrome in residents younger than 50 years old: a community-based study. PLoS One 10 (5), e0128671. https://doi.org/10.1371/journal.pone.0128671.
Daliri, E.B.-M., Balnionyt˙ e, T., Stankeviˇci¯ut˙ e, J., Lastauskien˙ e, E., Meˇskys, R., Burokas, A., 2023a. High temperature lacto-fermentation improves antioxidant and antidiabetic potentials of Lithuanian red beetroot. LWT-Food Sci. Technol. 185, 115122. https://doi.org/10.1016/j.lwt.2023.115122.
Daliri, E.B.-M., Baltriukien˙ e, D., Burokas, A., 2023b. Beetroot for managing diabetes and its associated gut dysbiosis: current findings and challenges. Trends Food Sci. Technol. 142, 104216. https://doi.org/10.1016/j.tifs.2023.104216.
Demaria, T.M., Crepaldi, L.D., Costa-Bartuli, E., Branco, J.R., Zancan, P., Sola-Penna, M., 2023. Once a week consumption of Western diet over twelve weeks promotes sustained insulin resistance and non-alcoholic fat liver disease in C57BL/6 J mice. Sci. Rep. 13 (1), 3058. https://doi.org/10.1038/s41598-023-30254-2.
Diener, C., Reyes-Escogido, M.d.L., Jimenez-Ceja, L.M., Matus, M., Gomez-Navarro, C. M., Chu, N.D., Zhong, V., Tejero, M.E., Alm, E., Resendis-Antonio, O., 2021. Progressive shifts in the gut microbiome reflect prediabetes and diabetes development in a treatment-naive Mexican cohort. Front. Endocrinol. 11, 602326. https://doi.org/10.3389/fendo.2020.602326.
Draz, U., Rathore, R., Butt, N.F., Randhawa, F.A., Malik, U., Waseem, T., 2018. Presence of pre-diabetes in Helicobacter pylori positive versus Helicobacter pylori negative patients having dyspepsia. JPMA (J. Pak. Med. Assoc.) 68 (6), 939–941.
Echouffo-Tcheugui, J.B., Selvin, E., 2021. Prediabetes and what it means: the epidemiological evidence. Annu. Rev. Publ. Health 42, 59–77. https://doi.org/ 10.1146/annurev-publhealth-090419-102644.
Forslund, K., Hildebrand, F., Nielsen, T., Falony, G., Le Chatelier, E., Sunagawa, S., Prifti, E., Vieira-Silva, S., Gudmundsdottir, V., Krogh Pedersen, H., et al., 2015.
Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528 (7581), 262–266. https://doi.org/10.1038/nature15766.
Gerritsen, J., Dekker, J., TenVoorde, B., Bertelsmann, F., Kostense, P., Stehouwer, C., Heine, R., Nijpels, G., Heethaar, R., Bouter, L., 2000. Glucose tolerance and other determinants of cardiovascular autonomic function: the Hoorn Study. Diabetologia 43, 561–570. https://doi.org/10.1007/s001250051344.
Gerstein, H.C., Santaguida, P., Raina, P., Morrison, K.M., Balion, C., Hunt, D., Yazdi, H., Booker, L., 2007. Annual incidence and relative risk of diabetes in people with various categories of dysglycemia: a systematic overview and meta-analysis of prospective studies. Diabetes Clinical Research 78 (3), 305–312. https://doi.org/ 10.1016/j.diabres.2007.05.004.
Guzior, D.V., Okros, M., Shivel, M., et al., 2024. Bile salt hydrolase acyltransferase activity expands bile acid diversity. Nature 626, 852–858. https://doi.org/10.1038/ s41586-024-07017-8.
Hsu, W.C., Lau, K.H.K., Matsumoto, M., Moghazy, D., Keenan, H., King, G.L., 2014. Improvement of insulin sensitivity by isoenergy high carbohydrate traditional Asian diet: a randomized controlled pilot feasibility study. PLoS One 9 (9), e106851. https://doi.org/10.1371/journal.pone.0106851.
Ingrosso, D.M.F., Primavera, M., Samvelyan, S., Tagi, V.M., Chiarelli, F., 2023. Stress and diabetes mellitus: pathogenetic mechanisms and clinical outcome. Horm. Res. Paediatr. 96 (1), 34–43. https://doi.org/10.1159/000522431.
Karlsson, F.H., Tremaroli, V., Nookaew, I., Bergstr¨om, G., Behre, C.J., Fagerberg, B., Nielsen, J., B¨ackhed, F.J.N., 2013. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498 (7452), 99–103. https:// doi.org/10.1038/nature12198.
Kimura, I., Ozawa, K., Inoue, D., Imamura, T., Kimura, K., Maeda, T., Terasawa, K., Kashihara, D., Hirano, K., Tani, T., 2013. The gut microbiota suppresses insulin- mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat. Commun. 4 (1), 1829. https://doi.org/10.1038/ncomms2852.
Liu, B., Popp, D., Müller, N., Str¨auber, H., Harms, H., Kleinsteuber, S.J.M., 2020. Three novel Clostridia isolates produce n-caproate and iso-butyrate from lactate: comparative genomics of chain-elongating bacteria. Microorganisms 8 (12), 1970. https://doi.org/10.3390/microorganisms8121970.
Lu, Y., Zhou, G., Ewald, J., Pang, Z., Shiri, T., Xia, J., 2023. MicrobiomeAnalyst 2.0: comprehensive statistical, functional and integrative analysis of microbiome data. Nucleic Acids Res. 51 (W1), W310–W318. https://doi.org/10.1093/nar/gkad407.
Lv, C., Pang, X., Sun, J., Li, X., Lu, Y., 2024. Screening of bile salt hydrolase-producing lactic acid bacteria and evaluation of cholesterol-lowering activity in vitro. Food Biosci. 62, 105338. https://doi.org/10.1016/j.fbio.2024.105338.
Matsuzawa-Nagata, N., Takamura, T., Ando, H., Nakamura, S., Kurita, S., Misu, H., Ota, T., Yokoyama, M., Honda, M., Miyamoto, K., 2008. Increased oxidative stress precedes the onset of high-fat diet–induced insulin resistance and obesity. Metabolism 57 (8), 1071–1077. https://doi.org/10.1016/j.metabol.2008.03.010.
Megur, A., Daliri, E.B.-M., Baltriukien˙e, D., Burokas, A.J., 2022. Prebiotics as a tool for the prevention and treatment of obesity and diabetes: classification and ability to modulate the gut microbiota. Int. J. Mol. Sci. 23 (11), 6097. https://doi.org/ 10.3390/ijms23116097.
Megur, A., Daliri, E.B.-M., Balnionyt˙e, T., Stankeviˇci¯ut˙e, J., Lastauskien˙e, E., Burokas, A., 2023. In vitro screening and characterization of lactic acid bacteria from Lithuanian fermented food with potential probiotic properties. Front. Microbiol. 14, 1213370. https://doi.org/10.3389/fmicb.2023.1213370.
Mei, Z., Wang, F., Bhosle, A., Dong, D., Mehta, R., Ghazi, A., Zhang, Y., Liu, Y., Rinott, E., Ma, S., Rimm, E.B., Daviglus, M., Willett, W.C., 2024. Strain-specific gut microbial signatures in type 2 diabetes identified in a cross-cohort analysis of 8,117 metagenomes. Nat. Med. 30, 2265–2276. https://doi.org/10.1038/s41591-024- 03067-7, 2024.
Obayiuwana, O.A., Behrends, V., Calle-Patino, Y., Barone, M., Turroni, S., Brigidi, P., Costabile, A., Corona, G.J., 2023. Cooking, Digestion, and in vitro colonic fermentation of Nigerian wholegrains affect phenolic acid metabolism and gut microbiota composition. Int. J. Mol. Sci. 24 (18), 14111. https://doi.org/10.3390/ ijms241814111.
Ofosu, F.K., Elahi, F., Daliri, E.B.-M., Aloo, S.O., Chelliah, R., Han, S.-I., Oh, D.-H., 2023. Fermented sorghum improves type 2 diabetes remission by modulating gut microbiota and their related metabolites in high fat diet-streptozotocin induced diabetic mice. J. Funct.Foods 107, 105666. https://doi.org/10.1016/j. jff.2023.105666.
Parks, D.H., Tyson, G.W., Hugenholtz, P., Beiko, R.G., 2014. STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics 30 (21), 3123–3124. https:// doi.org/10.1093/bioinformatics/btu494.
Pedersen, H.K., Gudmundsdottir, V., Nielsen, H.B., Hyotylainen, T., Nielsen, T., Jensen, B.A.H., Forslund, K., Hildebrand, F., Prifti, E., Falony, G.O., 2016. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature 535 (7612), 376–381. https://doi.org/10.1038/nature18646.
Pingitore, A., Chambers, E.S., Hill, T., Maldonado, I.R., Liu, B., Bewick, G., Morrison, D. J., Preston, T., Wallis, G.A., Tedford, C., Casta˜nera Gonz´alez, R., Huang, G.C., Choudhary, P., Frost, G., Persaud, S.J., 2017. The diet-derived short chain fatty acid propionate improves beta-cell function in humans and stimulates insulin secretion from human islets in vitro. Diabetes Obes. Metabol. 19 (2), 257–265. https://doi. org/10.1111/dom.12811.
Raffaele, P., Adam, G.T., Kamlesh, K., Jonathan, V., Azeem, M., Christopher, M., Eszter, P.V., 2020. Association between pre-diabetes and microvascular and macrovascular disease in newly diagnosed type 2 diabetes. BMJ Open Diabetes Research & Care 8 (1), e001061. https://doi.org/10.1136/bmjdrc-2019-001061.
Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W.S., Huttenhower, C., 2011. Metagenomic biomarker discovery and explanation. Genome Biol. 12 (6), R60. https://doi.org/10.1186/gb-2011-12-6-r60.
Sune, M.P., Sune, M., Sune, P., Dhok, A., Sune, M.P., 2023. Prevalence of retinopathy in prediabetic populations: a systematic review and meta-analysis. Cureus 15 (11). https://doi.org/10.7759/cureus.49602.
Tab´ak, A.G., Herder, C., Rathmann, W., Brunner, E.J., Kivim¨aki, M., 2012. Prediabetes: a high-risk state for diabetes development. Lancet 379 (9833), 2279–2290. https:// doi.org/10.1016/S0140-6736(12)60283-9.
Takeuchi, T., Kubota, T., Nakanishi, Y., Tsugawa, H., Suda, W., Kwon, A.T.-J., Yazaki, J., Ikeda, K., Nemoto, S., Mochizuki, Y., Kitami, T., Yugi, K., Mizuno, Y., 2023. Gut microbial carbohydrate metabolism contributes to insulin resistance. Nature 621 (7978), 389–395. https://doi.org/10.1038/s41586-023-06466-x.
Tong, A., Li, Z., Liu, X., Ge, X., Zhao, R., Liu, B., Zhao, L., Zhao, C., 2024. Laminaria japonica polysaccharide alleviates type 2 diabetes by regulating the microbiota-gut- liver axis: a multi-omics mechanistic analysis. Int. J. Biol. Macromol. 258, 128853. https://doi.org/10.1016/j.ijbiomac.2023.128853.
Tucker, J., Salas, J., Secrest, S., Scherrer, J.F., 2023. Erectile dysfunction associated with undiagnosed prediabetes and type 2 diabetes in young adult males: a retrospective cohort study. Prev. Med. 174, 107646. https://doi.org/10.1016/j. ypmed.2023.107646.
Valdivia-Garcia, M.A., Chappell, K.E., Camuzeaux, S., Olmo-García, L., van der Sluis, V. H., Radhakrishnan, S.T., Stephens, H., Bouri, S., de Campos Braz, L.M., Williams, H. T., 2022. Improved quantitation of short-chain carboxylic acids in human biofluids using 3-nitrophenylhydrazine derivatization and liquid chromatography with tandem mass spectrometry (LC-MS/MS). J. Pharmaceut. Biomed. Anal. 221, 115060. https://doi.org/10.1016/j.jpba.2022.115060.
Wang, C., Liu, Y., Chen, X., Zhu, J., Wu, Q., Chen, H., Liao, H., Lin, J., Wang, Z., Zheng, Z. J.S., Breathing, 2023. Meta-analysis of correlation between sleep duration and gender difference in adults with type 2 diabetes. Sleep Breath. 27 (6), 1–8. https:// doi.org/10.1007/s11325-023-02841-0.
Wang, K., Zhang, Z., Hang, J., Liu, J., Guo, F., Ding, Y., Li, M., Nie, Q., Lin, J., Zhuo, Y., Sun, L., Luo, X., Zhong, Q., Ye, C., Yun, C., Zhang, Y., Wang, J., Bao, R., Pang, Y., Wang, G., 2023. Microbial-host-isozyme analyses reveal microbial DPP4 as a potential antidiabetic target. Science 381 (6657), eadd5787. https://doi.org/ 10.1126/science.add5787.
World Health Organization, 2006. Definition and diagnosis of diabetes mellitus and intermediate hyperglycaemia: report of a WHO/IDF consultation. https://www.who. int/publications/i/item/definition-and-diagnosis-of-diabetes-mellit us-and-intermediate-hyperglycaemia. (Accessed 16 July 2024).
Wu, J.-S., Yang, Y.-C., Lin, T.-S., Huang, Y.-H., Chen, J.-J., Lu, F.-H., Wu, C.-H., Chang, C.-J., 2007. Epidemiological evidence of altered cardiac autonomic function in subjects with impaired glucose tolerance but not isolated impaired fasting glucose. J. Clin. Endocrinol. Metabol. 92 (10), 3885–3889. https://doi.org/10.1210/jc.2006- 2175.
Wu, H., Tremaroli, V., Schmidt, C., Lundqvist, A., Olsson, L.M., Kr¨amer, M., Gummesson, A., Perkins, R., Bergstr¨om, G., B¨ackhed, F., 2020. The gut microbiota in prediabetes and diabetes: a population-based cross-sectional study. Cell Metab. 32 (3), 379–390e373. https://doi.org/10.1016/j.cmet.2020.06.011.
Zeng, Y., Zhang, Z., Liang, S., Chang, X., Qin, R., Chen, H., Guo, L., 2023. Paternal sleep deprivation induces metabolic perturbations in male offspring via altered LRP5 DNA methylation of pancreatic islets. J. Pineal Res. 74 (4), e12863. https://doi.org/ 10.1111/jpi.12863.
Zhong, H., Ren, H., Lu, Y., Fang, C., Hou, G., Yang, Z., Chen, B., Yang, F., Zhao, Y., Shi, Z. J.E., 2019. Distinct gut metagenomics and metaproteomics signatures in prediabetics and treatment-naïve type 2 diabetics. EBioMedicine 47, 373–383 h ttps://doi.org/ 0.1016/j.ebiom.2019.08.048.
Zhou, W., Sailani, M.R., Contrepois, K., Zhou, Y., Ahadi, S., Leopold, S.R., Zhang, M.J., Rao, V., Avina, M., Mishra, T., Johnson, J., 2019. Longitudinal multi-omics of host–microbe dynamics in prediabetes. Nature 569 (7758), 663–671. https://doi. org/10.1038/s41586-019-1236-x.