Abriouel, H., Knapp, C.W., G´alvez, A., Benomar, N., Universidad, d’J., 2017. Antibiotic resistance profile of microbes from traditional fermented foods, Section 4 hazardous compounds and their implications. Ferment. Foods Health Dis. Prev. 675–704.
Agboola, T.D., Bisi-Johnson, M.A., 2023. Occurrence of Listeria monocytogenes in irrigation water and irrigated vegetables in selected areas of Osun State, Nigeria. Sci. Afr. 19, e01503. https://doi.org/10.1016/j.sciaf.2022.e01503.
Ajayeoba, T.A., Atanda, O.O., Obadina, A.O., Bankole, M.O., Adelowo, O.O., 2015. The incidence and distribution of Listeria monocytogenes in ready-to-eat vegetables in South Western Nigeria. Food Sci. Nutr. 4 (1), 59–66. https://doi.org/10.1002/ fsn3.263.
Akinde, S.B., Sunday, A.A., Adeyemi, F.M., Fakayode, I.B., Odunola, O., Oluwajide, O.O., Adebunmi, A.A., Oloke, J.K., Adebooye, C.O., 2016. Microbes in irrigation water and fresh vegetables: potential pathogenic bacteria assessment and implicationsfor food safety. J. Appl. Biosaf. Int. 21 (2), 89–97. https://doi.org/10.1177/ 1535676016652231apb.sagepub.com.
Alegbeleye, O., Odeyemi, O.A., Strateva, M., Stratev, D., 2022. Microbial spoilage of vegetables, fruits and cereals. Appl. Food Res. 2 (1), 100122. https://doi.org/ 10.1016/j.afres.2022.100122.
Ali, S.A., Asmaa, A.H., 2017. Isolation and identification of Escherichia coli producing cytosine deaminase from Iraqi patients. Int. J. Adv. Res. Biol. Sci. 4 (11), 1–6. https://doi.org/10.22192/ijarbs.2017.04.11.00.
Applied Biosystems, BigDye® Terminator v3.1 Cycle Sequencing Kit Protocol, Part Number 4337035 Rev. B 06/2010. 〈https://assets.www.thermofisher.com/TFS-Ass ets.LSG/manual/cms_081527.pdf〉, 2010 (accessed 14 February 2025).
Arias, A., Feijoo, G., Moreira, M.T., 2022. Exploring the potential of antioxidants from fruits and vegetables and strategies for their recovery. Innov. Food Sci. Emerg. Technol. v77, 102974. https://doi.org/10.1016/j.ifset.2022.102974 (https://www. sciencedirect.com/science/article/pii/S1466856422000595).
Bamidele, T.A., Adeniyi, B.A., Fowora, M.J., 2017. Antibiotic resistance patterns of lactic acid bacteria isolated from Nigerian grown salad vegetables, 11 (11), 433–439. https://doi.org/10.5897/AJMR16-8324.
Bioneer Corporation, AccuPrep Genomic DNA Extraction Kit. 〈https://us.bioneer.co m/Protocol/AccuPrep%20Genomic%20DNA%20.extraction%20Kit.pdf〉, 2004 (accessed 14 February 2025).
Bougnom, B.P., McNally, A., Etoa, F.X., Piddock, L.J., 2019. Antibiotic resistance genes are abundant and diverse in raw sewage used for urban agriculture in Africa and associated with urban population density. Environ. Pollut. 251, 146–154. https:// doi.org/10.1016/j.envpol.2019.04.056.
Brun, A., Kadri-Alabi, Z., Moodley, A., Guardabassi, L., Taylor, P., Mateus, A., Waage, J., 2022. Characteristics and global occurrence of human pathogens harboring antimicrobial resistance in food crops: a scoping review. Front. Sustain. Food Syst. 6, 824714. https://doi.org/10.3389/fsufs.2022.824714.
Center of Disease Control and Prevention (CDC), Listeria outbreaks, 〈https//www.cdc. gov/listeria/outbreak/index.html〉, 2024 (accessed 14 February 2025).
Chigor, V., Ibangha, I.-A., Chigor, C., Titilawo, Y., 2020. Treated wastewater used in fresh produce irrigation in Nsukka, Southeast Nigeria is a reservoir of enterotoxigenic and multidrug-resistant Escherichia coli. Heliyon 6 (4), e03780.
Clinical and Laboratory Standards Institute, (CLSI). Performance standards for antimicrobial susceptibility testing, M100, 31st ed. Clinical and Laboratory Standards Institute, Wayne, PA, 2021.
Dijkxhoorn, Y., Talabi, J. Eunice L. Scoping study on fruits and vegetables; Results from Nigeria. Wageningen, Wageningen Economic Research, Report 2021-110 (2021) 68.
Dubey, R.C. A textbook of biotechnology. S Chand and Company P Ltd, New Delhi-110 055 (India), (2014) 623-624.
Ewah, S.O.E., 2013. Marketing research as a proactive strategy for the performance of business: The nigerian experience. Int. J. Bus. Econ. Dev. 1 (3), 108–122.
Fatunla, O.K., Adegoke, A.A., Ofon, U.A., Aiyegoro, O.A., 2025. Systematic review and meta-analysis of the occurrence of Listeria monocytogenes in fresh produce in selected developing countries [version 1; peer review: awaiting peer review] F1000. Research 14, 63. https://doi.org/10.12688/f1000research.157911.1.
Food Agriculture Organisation and World Health Organization (FAO & WHO) Risk assessment of Listeria monocytogenes in foods: Part 1: Formal models – Meeting report. Microbiological Risk Assessment Series, No. 47. Rome. https://doi.org/ 10.4060/cd3383en, 2024 (accessed 14 February 2025).
Food Agriculture Organisation (FAO). Fruit and Vegetables – Your Dietary Essentials. The International Year of Fruits and Vegetables, 2021, Background Paper. Rome. https://doi.org/10.4060/cb2395en, 2022 (accessed 14 February 2025).
Gatica, S., Fuentes, B., Rivera-Asín, E., Ramírez-C´espedes, P., Sepúlveda-Alfaro, J., Catal´an, E.A., Bueno, S.M., Kalergis, A.M., Simon, F., Riedel, C.A., Melo-Gonzalez, F., 2023. Novel evidence on sepsis-inducing pathogens: from laboratory to bedside. Front. Microbiol. 23 (14), 1198200. https://doi.org/10.3389/fmicb.2023.1198200.
Geteneh, A., Biset, S., Tadesse, S., Admas, A., Seid, A., Belay, D.M., 2022. A vigilant observation to pregnancy associated listeriosis in Africa: Systematic Review and Meta-Analysis. PLOS Glob. Public Health 14 (2(10)), e0001023. https://doi.org/ 10.1371/journal.pgph.0001023.
Golly, M.K., Salifu, P.S., Mills-Robertson, F.C., 2016. Resistance of bacteria isolates from cabbage (Brassica oleracea), carrots (Daucus carota) and lettuce (Lactuca sativa) in the Kumasi Metropolis of Ghana. Int. J. Nutr. Food Sci. 5 (4), 297–303. https://doi.org/ 10.11648/j.ijnfs.20160504.20.
Hasani, E., Labidi, S., Acsi-Farkas, C.M., Kisk, G., 2020. Comparison of biofilm formation between non-pathogenic Listeria strains under different stress Conditions. Prog. Agric. Eng. Sci. 16 (S2), 73–80. https://doi.org/10.1556/446.2020.20009.
Holvoet, K., Sampers, I., Callens, B., Dewulf, J., Uyttendaele, M., 2013. Moderate prevalence of antimicrobial resistance in Escherichia coli isolates from lettuce, irrigation water, and soil. Appl. Environ. Microbiol. 79 (21), 6677–6683. https://doi. org/10.1128/AEM.01995-13.
Ibrahim, R.A., Almazini, M.A., Al-Amara, S.S.M., Almazini, A.B., 2021. Detection of Extended-Spectrum ß-Lactamases (ESBLs), TEM, SHV and CTX-M genes amoung Staphylococcus haemolyticus isolates from cesarean section infections, 1 (59) (2021) 009-013.
Ieren, I.I., Bello, M., Kwaga, J.K., 2013. Occurrence and antibiotic resistance profile of Listeria monocytogenes in salad vegetables and vegetable salads. Afr. J. Food Sci. 7 (9), 334–338. https://doi.org/10.5897/AJFS2013, 1036.
Iwu, C.D., Okoh, A.I., 2019. Pre-harvest transmission routes of fresh produce associated bacterial pathogens with outbreak potentials: A review. International Journal of Environmental Research, Public Health, 16, 4407. https://doi.org/10.3390/ ijerph16224407.
Kanganwiro, M. In vitro assessment of the probiotic properties of lactic acid bacteria isolated from sorghum mahewu. A thesis submitted to Department of Biochemistry, Faculty of Science, University of Zimbabwe. (2015) 32-34,
Khalila, A., Samarad, A., O’Brieng, P., Ladhanic, S., 2023. Listeria outbreaks cause maternal and perinatal mortality and morbidity: We must do better. Lancet Microbe 4 (4), e206–e207.
Moreira, J., Mera, E., Singh, C.V., King, J.M., Gentimis, T., Adhikari, A., 2023. Effect of storage temperature and produce type on the survival or growth of Listeria monocytogenes on peeled rinds and fresh-cut produce. Front. Microbiol. 14. https:// doi.org/10.3389/fmicb.2023.1151819 https://www.frontiersin.org/journals/ microbiology/articles/10.3389/fmicb.2023.1151819.
Mouss´e, W., Sina, H., Baba-Moussa, F., Noumavo, P.A., Agbodjato, N.A., Adjanohoun, A., Baba-Moussa, L., 2015. Identification of Extended-Spectrum β -Lactamases Escherichia coli strains isolated from market garden products and irrigation water in Benin. BioMed. Res. Int. https://doi.org/10.1155/2015/286473.
Mthembu, T.P., Zishiri, O.T., El Zowalaty, M.E., 2019. Detection and molecular identification of Salmonella virulence genes in livestock production systems in South Africa. Pathogens 8, 124.
Olanbiwoninu, A., Awotundun, T., Olayiwola, J., Somorin, Y., 2024a. Antimicrobial-resistant pathogens in fruits and vegetables from retail and home gardens. Sustain. Microbiol. 1, 1–7. https://doi.org/10.1093/sumbio/qvad002.
Olanbiwoninu, A.A., Awotundun, T., Olayiwola1, J., SomoriN, Y., 2024b. Antimicrobial Resistant Pathogens in Fruits and Vegetables from Retail and Home Gardens. Sustain. Microbiol. 1, 1–7. https://doi.org/10.1093/sumbio/qvad002.
Oyeyipo, F., Adesetan, T.O., Yomi-Bada, Y.W., Lateefat, O., 2022. Screening of fruit and vegetable salads retailed in Ago-Iwoye, Ogun State for extended spectrum beta-lactamase producing gram-negative bacteria. Equity J. Sci. Technol. 8 (1), 109–115. https://doi.org/10.4314/equijost.v8i1.19.
Panwar, B., Meena, S., Shekhawat, P., 2024. Food spoilage and major factors, 4, 2582–8223.
Public Health England (PHE), Detection and enumeration of Listeria monocytogenes and other Listeria species. National Infection Service, Food, Water and Environmental Microbiology Standard Method FNES22 (F19); Version 4, 2018.
Qadri, O., Yousuf, B., Srivastava, A., Yildiz, F., 2015. Fresh-cut fruits and vegetables: Critical factors influencing microbiology and novel approaches to prevent microbial risks—a review. Cogent Food Agric. 1, 1121606. https://doi.org/10.1080/ 23311932.2015.1121606.
Sapkota, S., Adhikari, S., Pandey, A., Khadka, S., Adhikari, M., Kandel, H., Pathak, S., Pandey, A., 2019. Multi drug resistant extended spectrum beta lactamase producing E. coli and Salmonella on raw vegetable salads served at hotels and restaurants in Bharatpur, Nepal. BMC Res. Notes, 12, 516. https://doi.org/10.1186/s13104-019- 4557-9.
Tassoult, M., Kati, D.E., Fern´andez-Prior, M.´A., Bermúdez-Oria, A., Fernandez- Bolanos, J., Rodríguez-Guti´errez, G., 2021. Antioxidant Capacity and Phenolic and Sugar Profiles of Date Fruits Extracts from Six Different Algerian Cultivars as Influenced by Ripening Stages and Extraction Systems. Foods 10, 503. https://doi. org/10.3390/foods10030503.
World Health Organisation (WHO), Fruit and vegetable intake, Report of the formal meeting of member states to conclude the work on the comprehensive global monitoring framework, including indicators, and a set of voluntary global targets for the prevention and control of communicable diseases. 〈http://apps.who.
World Health Organization (WHO), Listeriosis 〈https://www.who.int/news-room/fact -sheets/detail/listeriosis〉, 2018 (accessed 14 February 2025).
World Health Organization (WHO), All interventions: Increasing fruit and vegetable consumption to reduce the risk of noncommunicable diseases. 〈https://www.who. int/tools/elena/intervention/fruits-vegetables-ncds〉2023 (accessed 14 February 2025).
Wu, S., Huang, J., Zhang, F., Wu, Q., Zhang, J., Pang, R., Zeng, H., Yang, X., Chen, M., Wang, J., Dai, J., Xue, L., Lei, T., Wei, X., 2019. Prevalence and characterization of food-related methicillin-resistant Staphylococcus aureus (MRSA) in China. Front. Microbiol. 10, 304. https://doi.org/10.3389/fmicb.2019.00304.
Wurtzel, O., Sesto, N., Mellin, J.R., Karunker, I., Edelheit, S., Be´cavin, C., Archambaud, C., Cossart, P., Sorek, R., 2012. Comparative transcriptomics of pathogenic and non-pathogenic Listeria species. Mol. Syst. Biol. 8, 583. https://doi. org/10.1038/msb.2012.11.
Yunjie, M., Oluseyi, V., 2013. Comparison of different DNA extraction methods for forensic samples. J. Nat. Sci. Res. 3 (11), 32–39.
Zakrzewski, A.J., Ecka-Wierzchowska, W.C., Zadernowska, A., Podlasz, P., 2020. Virulence characterization of Listeria monocytogenes, Listeria innocua, and Listeria welshimeri isolated from fish and shrimp using in vivo early zebra fish larvae models and molecular study. Pathogens 9 (1028), 1–10.