[1] A. Yeboah-Ofori and C. Boachie, "Malware Attack Predictive Analytics in a Cyber Supply Chain Context Using Machine Learning," 2019 International Conference on Cyber Security and Internet of Things (ICSIoT), 2019, pp. 66-73, doi: 10.1109/ICSIoT47925.2019.00019.
[2] A. Yeboah-Ofori. “Classification of Malware Attacks Using Machine Learning in Decision Tree.” International Journal of Security. (IJS). Vol. 11 (Issue-2), Pages 10-25. 2020.
[3] B. Biggio, F, Roli, "Wild patterns: Ten years after the rise of adversarial machine learning". Pattern Recognition. 84: 317–331. 2018. arXiv:1712.03141. doi:10.1016/j.patcog.2018.07.023.
[4] B. Biggio, G. Fumera, F. Roli,. "Multiple classifier systems for robust classifier design in adversarial environments". International Journal of Machine Learning and Cybernetics. 1 (1–4): 27–41. 2010. doi:10.1007/s13042-010-0007-7. ISSN 1868-8071.
[5] A. Kurakin, Samy; I. J. Goodfellow, S. Bengio,; (2017). "Adversarial Machine Learning at Scale". 2018.AI. arXiv:1611.01236.2016arXiv161101236K.
[6] V. Duddu. “A Survey of Adversarial Machine Learning in Cyber Warfare.” Defence Science Journal, 68(4), 2018356-366. https://doi.org/10.14429/dsj.68.12371
[7] G. Appruzzese, L. Ferretti, M. Marchetti, M. Colajanni, A. and Guido, "On the Effectiveness of Machine Learning for Cyber Security. International Conference on Cyber Conflict." 2018. IEEE. doi: 10.23919/CYCON.2018.8405026
[8] M. N. Asim, M. Wasim, M . U. G. Khan, W. Mahmood, H. M, Abbasi, “A survey of ontology learning techniques” and applications, Database, Vol 2018 1-24, 2018, bay101, https://doi.org/10.1093/database/bay101
[9] J. Gao, B. Zhang, X. Chen and Z. Luo. "Ontology-based model of network and computer attacks for security assessment". Journal. Shanghai Jiaotong Univ. 18(5):554–562, 2013. DOI: 10.1007/s12204-013-1439-5
[10] A. Gyrard, C. Bonnet and K. Boudaoud. "The STAC (Security Toolbox: Attacks & Countermeasures) Ontology". In Proceedings of the 22nd international conference on World Wide Web companion, pages 165–166, Brazil, 2013.
[11] A. Herzog. N. Shahmehri and C. Duma. “An ontology of information security”, International Journal Information Security. Priv. 1(4):1–23, 2007.
[12] H. Hu, M. Yang, Y. Ge, H. Xiang, and L. Fu, "An Ontological Approach to Information Security Education". In Proceedings of the 2nd International Conference on Future Computers in Education pages 160–165. China, 2012.
[13] B. A. Mozzaquatro, C. Agostinho, D. Goncalves, J. Martins, R. Jardim-Goncalves. ”An Ontology-Based Cybersecurity Framework for the Internet of Things.” MDPI. Sensors. 18(9):3053. 2018; https://doi.org/10.3390/s18093053.
[14] A. Ekelhart S. Fenz , A. M. Tjoa, E. R. Weippl . “Security Issues for the Use of Semantic Web in E-Commerce. In: Abramowicz W. (eds) Business Information Systems. Lecture Notes in Computer Science, vol 4439. Springer, Berlin, Heidelberg. 2007. https://doi.org/10.1007/978-3-540-72035-5_1.
[15] Y. Jia, Y. Qi, H. Shang, R. Jiang, A. Li, "A Practical Approach to Constructing a Knowledge Graph for Cybersecurity, Engineering." Volume 4, Issue 1, pp 53-60, 2018, https://doi.org/10.1016/j.eng.2018.01.004.
[16] W. Kang and Y. Liang. "A Security Ontology with MDA for Software Development". In Proceedings of the 2013 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery. pp 67–74, 2013.
[17] B. Biggio, B. Nelson, P. Laskov. “Poisoning Attacks Against Support Vector Machine.” ICML'12: Proceedings of the 29th International Conference on International Conference on Machine Learning. ACL. Pages 1467–1474. 2012.
[18] M. Kravchik, B. Biggio, A. Shabtai. “Poisoning Attacks on Cyber Attack Detectors for Industrial Control Systems” Cornell University. 2013. arXiv:1206.6389v3.
[19] F. Zhang, P. P. K. Chan, B. Biggio, D. S. Yeung and F. Roli, "Adversarial Feature Selection Against Evasion Attacks," in IEEE Transactions on Cybernetics, vol. 46, no. 3, pp. 766-777, March 2016, doi: 10.1109/TCYB.2015.2415032.
[20] B. Biggio, B. Nelson, P. Laskov. “Support Vector Machines Under Adversarial Label Noise” JMLR: Workshop and Conference Proceedings. Asian Conference on Machine Learning 20. 97–112. 2011.
[21] Y. Chen, W. Wang, X. Zhang X. “Randomizing SVM Against Adversarial Attacks Under Uncertainty.” Advances in Knowledge Discovery and Data Mining. PAKDD. vol 10939. Springer, 2018. https://doi.org/10.1007/978-3-319-93040-4_44.
[22] L. Muñoz-González, B. Biggio, A. Demontis, A. Paudice, V. Wongrassamee, E. C. Lupu, F. Roli. “Towards Poisoning of Deep Learning Algorithms with Back-gradient Optimization.” Cornell University. 2017. arXiv:1708.08689v1.
[23] Microsoft Malware Prediction, Research Prediction. 2019. Available: https://www.kaggle.com/c/microsoft-malware-prediction/data.
[24] M. Jagielski, A. Oprea, B. Biggio, C. Liu, C. Nita-Rotaru and B. Li, "Manipulating Machine Learning: Poisoning Attacks and Countermeasures for Regression Learning," 2018 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 2018, pp. 19-35, doi: 10.1109/SP.2018.00057.
[25] A. Chakraborty “Introduction to Adversarial Machine Learning”. FloydHub. 2029. Online. Available: https://blog.floydhub.com/introduction-to-adversarial-machine-learning/.
[26] A. Yeboah-Ofori, U. Ismai, S. Islam, H. Mouratidis, and S. Papastergiou. “Cyber Supply Chain Threat Analysis and Prediction using Machine Learning and Ontology”. In: Maglogiannis I., Macintyre J., Iliadis L. (eds) Artificial Intelligence Applications and Innovations. AIAI 2021. IFIP Advances in Information and Communication Technology, vol 627. Springer, Cham. https://doi.org/10.1007/978-3-030-79150-6_41
[27] A. Yeboah-Ofori et al., "Cyber Threat Predictive Analytics for Improving Cyber Supply Chain Security," in IEEE Access, doi: 10.1109/ACCESS.2021.3087109.