Le, Van Lam, Komisarczuk, Peter and Gao, Xiaoying Sharon (2009) Applying AI to improve the performance of client honeypots. In: Passive and Active Measurements Conference (PAM 2009), 01-03 April 2009, Seoul, South Korea.
Preview |
PDF
Le-etal-2009-Applying-AI-to-improve-the-performance-of-client-honeypots.pdf - Accepted Version Download (39kB) | Preview |
Abstract
Victoria University has developed a capability around the detection of drive by download attacks using client honeypot technology [1-3]. Two types of client honeypot, low-interaction and high-interaction honeypots, have been developed to inspect malicious web pages. A new client honeypot model, called a hybrid system, has also been proposed to improve the performance of client honeypots [2]. These client honeypots have made significant contributions to Internet security through detection of malicious servers. However, their performance has shown there are areas where artificial intelligence (AI) technology can add value to create more adaptable client honeypots. In this workshop, we briefly present client honeypots which have been developed by Victoria University and how we can apply AI to improve their performances.
Item Type: | Conference or Workshop Item (Paper) |
---|---|
Subjects: | Computing |
Depositing User: | Vani Aul |
Date Deposited: | 21 Mar 2014 14:49 |
Last Modified: | 04 Nov 2024 12:45 |
URI: | https://repository.uwl.ac.uk/id/eprint/793 |
Downloads
Downloads per month over past year
Actions (login required)
View Item |