[1]. Frangopol, D. M., Kong, J. S., & Gharaibeh, E. S.. Reliability-Based Life-Cycle Management of Highway Bridges. Journal of Computing in Civil Engineering, 2001; 15(1), 27–34. doi:10.1061/(asce)0887-3801(2001)15:1(27)
[2]. Kerr, A. D., & Moroney, B. E. Track transition problems and remedies. Paper presented at the American Railway Engineering Association, Washington, USA., 1993
[3]. Hölscher, P., & Meijers, P. Literature study of knowledgr and experience of transition zones: Deltares. 2007.
[4]. Li, D., & Davis, D. Transition of Railroad Bridge Approaches. Journal of Geotechnical and Geoenvironmental Engineering, 2005; 131(11): 1392–1398.
[5]. Nicks, J. E. The bump at the end of the railway bridge (Doctor of Philosophy), Texas A&M University; 2009.
[6]. Plotkin, D., & Davis, D. Bridge Approaches and track stiffness (W. Office of Railroad Development, DC 20590, Trans.): Office of Railroad Development, Washington, DC 20590; 2008.
[7]. Kerr, A. D., & Bathurst, L. A. Next Generation high-speed rail program A method for upgrading the performance at track transitions for high-speed service: Office of Railway development, Washington, DC 20590; 2001.
[8]. Li, D., Otter, D., & Carr, G. Railway bridge approaches under heavy axle load traffic: problems, causes, and remedies. Paper presented at the the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit; 2010.
[9]. Selig, E. T., & Li, D. Track modulus: Its meaning and factors influencing it. In T. R. Record (Ed.), Railroad research issues (pp. 47-54). Washington, USA: Transportation Research Board; 1994.
[10]. Burrow, M. P. N., Bowness, D., & Ghataora, G. S. A comparison of railway track foundation design methods. Paper presented at the the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit; 2007.
[11]. Bishop, A. W. The principle of effective stress. Teknisk Ukeblad, 1959; 106(39): 895-863.
[12]. Rajeev, P., Chan, D., & Kodikara, J. Ground–atmosphere interaction modelling for long-term prediction of soil moisture and temperature. Canadian Geotechnical Journal. 2012; 49(9), 1059- 1073
[13]. Gräbe, P. J., & Clayton, C. R. I. Effects of Principal Stress rotation on permanent deformation in rail track foundations. Journal of Geotechnical and Geoenvironmental Engineering; 2009; 135(4), 555-565
[14]. Symes, M. J. P. R., Gens, A., & Hight, D. W. Undrained anisotropy and principal stress rotation in saturated sand. Géotechnique. 1984; 34: 11-27.
[15]. Read, D., & Li, D. Research results digest 79 Transit cooperative research program D-7/Task 15 (pp. 38). Pueblo, Colorado: Transportation technology center, Inc. (TTCI). 2006.
[16]. Sasaoka, C. D., & Davis, D. Implementing track transition solutions for heavy axle load service. Paper presented at the the AREMA 2005 Annual Conference, AREMA. 2005.
[17]. Artagan, S.S., Bianchini Ciampoli, L., D’Amico, F., Calvi, A., Tosti, F., Non-destructive assessment and health monitoring of railway infrastructures, Surveys in Geophysics; 2019; 1-37
[18]. Bianchini Ciampoli, L., Gagliardi, V., Clementini, C., Latini, D., Del Frate, F., Benedetto, A., Transport Infrastructure Monitoring by InSAR and GPR Data Fusion, Surveys in Geophysics, 2019;1-24, https://doi.org/10.1007/s10712-019-09563-7
[19]. Solla M., Lorenzo, H., Riveiro, B., Rial, F.I. Non-destructive methodologies in the assessment of the masonry arch bridge of Traba, Spain. Eng Fail Anal 2011; 18(3):828–835. https://doi.org/10.1016/j.engfailanal.2010.12.009
[20]. Grasmueck M, Viggiano D.A. Integration of ground-penetrating radar and laser position sensors for real-time 3-D data fusion. IEEE Trans Geosci Remote Sens 2007; 45(1):130–137. https ://doi.org/10.1109/TGRS.2006.88225 3
[21]. Berkovic G, Shafir E, Optical methods for distance and displacement measurements. Adv Opt. Photonics, 4, 441, 2012
[22]. Tsunashima H, Naganuma Y, Matsumoto A et al., Condition monitoring of railway track using inservice vehicle. Reliability and Safety in Railway.2012. doi:10.5772/35205
[23]. Malar R, Jayalakshmy S, Detection of cracks and missing fasteners in railway lines using structure topic model. IJISET - Int J Innov Sci Eng Technol. 2015; 2(10): 369–375
[24]. Santa-aho S, Nurmikolu A, Vippola M., Automated ultrasound-based inspection of rails: review. Int J. Railw 2017; 10: 21–29,
[25]. De Bold RP, Non-destructive evaluation of railway trackbed ballast. PhD Thesis, The University of Edinburgh, 2011.
[26]. Woodward, P.K., Kennedy, J., Laghrouche, O., Connolly, D.P., Medero, G., Study of railway track stiffness modification by polyurethane reinforcement of the ballast. Transp Geotech 2014;1:214–224.
[27]. Chang L, Dollevoet RPBJ, Hanssen RF, Nationwide railway monitoring using satellite SAR interferometry. IEEE J Sel Top Appl Earth Obs Remote Sens 2017; 10:596–604.
[28]. Zheng, X. Yang, Z., Ma, H., Ren, G., Zhang, K. Yang, F., Li. G, Integrated Ground-Based SAR Interferometry, Terrestrial Laser Scanner, and Corner Reflector Deformation Experiments, Sensors, 2018; 18(8): 4401.
[29]. Annan A.P. Ground Penetrating Radar Workshop Notes Sensors and Softwares Inc., Ontario, Canada, 2001.
[30]. Daniels, D.J. Ground Penetrating Radar, 2nd ed.; The Institution of Electrical Engineers: London, UK, 2004.
[31]. Lahouar, S.; Al-Qadi, I.L. Automatic detection of multiple pavement layers from GPR data. Non-Destr. Test. Eval. Int., 2008; 41, 69–81.
[32]. Loizos, A.; Plati, C. Accuracy of pavement thicknesses estimation using different ground penetrating radar analysis approaches. Non-Destr. Test. Eval. Int., 2014; 62, 55–65.
[33]. Bianchini Ciampoli, L., Tosti, F., Economou, N., Benedetto, F., Signal processing of GPR Data for Road Surveys, Geosciences, 2019; 9(96)
[34]. Roberts R, Al-Qadi I, Tutumluer E, Boyle J, Sussmann TR. Advances in railroad ballast evaluation using 2 GHz horn antennas. In: Proceedings of the 11th international conference on ground penetrating radar; 2006. Columbus, OH., USA.
[35]. Fontul, S.; Fortunato, E.; De Chiara, F.; Burrinha, R.; Baldeiras, M. Railways Track Characterization Using Ground Penetrating Radar. Procedia Eng. 2016; 143: 1193–1200.
[36]. Bianchini Ciampoli, L., Artagan, S., Tosti, F., Gagliardi, V., Alani, A. M., Benedetto, A., A comparative investigation of the effects of concrete sleepers on the GPR signal for the assessment of railway ballast. 17th International Conference on Ground Penetrating Radar (GPR).2018. doi:10.1109/icgpr.2018.8441588
[37]. Benedetto, A., Bianchini Ciampoli, L., Brancadoro, M.G., Alani, A.M., Tosti, F. A Computer-Aided Model for the Simulation of Railway Ballast by Random Sequential Adsorption Process. Computer-Aided Civil and Infrastructure Engineering, 33 (3), pp. 243-257, 2018.
[38]. Bianchini Ciampoli, L., Calvi, A., D’Amico, F., Railway Ballast Monitoring by GPR: A Test-Site Investigation, Remote Sensing, 2019; 11(20): 2381,
[39]. Tosti, F., Benedetto, A., Calvi, A., Bianchini Ciampoli, L. Laboratory investigations for the electromagnetic characterization of railway ballast through GPR (2016) Proceedings of 2016 16th International Conference of Ground Penetrating Radar, GPR 2016, art. no. 7572605.
[40]. Tosti, F. and Ferrante, C., Using Ground Penetrating Radar methods to investigate reinforced concrete structures, Surveys in Geophysics, 2019; 1-46,
[41]. Kashif Ur Rehman S et al, Nondestructive test methods for concrete bridges: a review. Construction and Building Materials, 107:58–86, 2016.
[42]. Alani, A.M. Aboutalebi, M., Kilic, G., Applications of ground penetrating radar (GPR) in bridge deck monitoring and assessment, J. Appl. Geophys., 2013; 97:45–54.
[43]. Benedetto, A., A three dimensional approach for tracking cracks in bridges using GPR, J. Appl. Geophys., vol. 97, pp. 37–44, 2013.
[44]. Benedetto, A., Manacorda, G., Simi, A., Tosti, F. Novel perspectives in bridges inspection using GPR. Nondestructive Testing and Evaluation. 2012; 27 (3): 239-251.
[45]. Ferretti A, Prati C, Rocca F., Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Trans Geosci Remote Sens , 2000; 38(5):2202–2212.
[46]. Berardino P., Fornaro G., Lanari R., E. Sansosti. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Transactions on Geoscience and Remote Sensing, 40 (11) (2002), pp. 2375-2383
[47]. Crosetto M., Crippa B., Biescas E. Early detection and in-depth analysis of deformation phenomena by radar interferometry Engineering Geology, 2005: 79 (1–2) pp. 81-91
[48]. Hooper A., Zebker H., Segall P., Kampes B. A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers Geophysical Research Letters, 2004; 31 p. L23611., 10.1029/2004GL021737
[49]. Luo R.C., Yih C-C, Su K.L. Multisensor fusion and integration: approaches, applications, and future research directions. IEEE Sens J 2002;.2(2):107–119,
[50]. Pepe, A.; Calò, F. A Review of Interferometric Synthetic Aperture RADAR (InSAR) Multi-Track Approaches for the Retrieval of Earth’s Surface Displacements. Appl. Sci. 2017, 7, 1264.
[51]. Moreira A., Prats-Iraola P., Younis M., Krieger G., Hajnsek I. and Papathanassiou K. P., "A tutorial on synthetic aperture radar," in IEEE Geoscience and Remote Sensing Magazine, 2013; 1( 1): 6-43.
[52]. Ferretti A, Prati C, Rocca F. Permanent Scatterers in SAR interferometry. IEEE Trans Geosci Remote Sens 39(1):8–20, 2001
[53]. Koudogbo F., Urdiroz A., Robles J.G., Chapron G., Lebon G., Fluteaux V., Priol G. Radar interferometry as an innovative solution for monitoring the construction of the Grand Paris Express metro network—first results. In: World tunnel conference, 2–25 April, Dubai, 2018
[54]. Barla, G., Tamburini, A., Del Conte, S., Giannico, C., InSAR monitoring of tunnel induced ground movements. Geomechanik und Tunnelbau 9(1):15–22, 2016.
[55]. Yang Z., Schmid F., Roberts C. Assessment of railway performance by monitoring land subsidence.In: 6th IET conference on railway condition monitoring (RCM 2014), pp 1–6, 2014
[56]. Tosti F., Gagliardi V., D'Amico F., Morteza (Amir) A., (2019). Transport infrastructure monitoring by data fusion of GPR and SAR imagery information. In: Conference: AIIT 2nd International Congress on Transport Infrastructure and Systems in a Changing World, TIS2019 At: Rome, Italy
[57]. Bianchini Ciampoli, L., Gagliardi, V., Calvi, A., D’Amico, F., Tosti, F. Automatic network-level bridge monitoring by integration of InSAR and GIS catalogues. Proceedings of SPIE - The International Society for Optical Engineering, 2019; 11059. doi: 10.1117/12.2527299
[58]. Colla, C., Krause, M., Maierhofer, C., Höhberger, H.-J., Sommer, H., Combination of NDT techniques for site investigation of non-ballasted railway tracks. NDT and E Int 2002; 35(2):95–105.
[59]. Heggy, E., Wada, K., Khan, S. D., Staudacher, T., Kaminski, E. Gabsi, T. Mapping buried and exposed lava flows in arid volcanic terrains using polarimetric and multiple frequencies SAR and GPR, IEEE International Geoscience & Remote Sensing Symposium, 2008.
[60]. Gutiérrez F, Galve JP, Lucha P, Castañeda C, Bonachea J, Guerrero J. Integrating geomorphological mapping, trenching, InSAR and GPR for the identification and characterization of sinkholes: A review and application in the mantled evaporite karst of the Ebro Valley (NE Spain). Geomorphology, 2011: 134:144 -56,
[61]. Martel R, Castellazzi P, Gloaguen E, Trépanier L, Garfias J. ERT, GPR, InSAR, and tracer tests to characterize karst aquifer systems under urban areas: The case of Quebec City. Geomorphology;310:45 -56, 2018
[62]. Bianchini Ciampoli, L., Artagan S.S., Tosti F., Calvi A., Alani A.M., Benedetto, A., A GPR spectral-based filtering for minimization of concrete sleepers effects in railway ballast investigations, , 41st International Conference on Telecommunications and Signal Processing July, Athens, Greece, 2018. doi: 10.1109/tsp.2018.8441461
[63]. Benedetto, F., Tosti, F. A signal processing methodology for assessing the performance of ASTM standard test methods for GPR systems, Signal Processing, 2017; 132: 327-33.
[64]. Sarmap. SARscape technical description. http://www.sarmap.ch/pdf/SARscapeTechnical.pdf/; 2012 [accessed 11 February 2020]
[65]. Sarmap. SAR-Guidebook. http://www.sarmap.ch/pdf/SAR-Guidebook.pdf; 2009 [ accessed 11 February 2020]
[66]. Jiang, Y., Liao, M., Wang, H., Zhang, L., Balz, T., Deformation Monitoring and Analysis of the Geological Environment of Pudong International Airport with Persistent Scatterer SAR Interferometry, Remote Sensing, 2016; 8(12): 1021.