1. Digest of UK Energy Statistics (DUKES), UK Energy in Brief 2018. https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/631146/UK_Energy_in_Brief_2017.pdf. (Accessed 24th July 2019).
2. European Commission (EC), Eurostat: Key European statistics. http://epp.eurostat.ec.europa.eu/. (Accessed 25th July 2019).
3. Attia S. Zero Energy Retrofit Case Study of a chalet in Ain-Sukhna, Egypt. American Solar Energy Society Conference, 217-222, May 2010, Phoenix, Arizona, USA.
4. Garde F, Ayoub J, Aelenei D, Aelenei L, Scognamiglio A. Solution Sets for Net Zero Energy Buildings. Berlin, Germany: Wilhelm Ernst & Sohn. 2017; 46-86.
5. Salem R, Bahadori-Jahromi A, Mylona A, Godfrey P, Cook D. Life Cycle Cost analysis of energy efficient retrofit scenarios for a UK residential dwelling. Eng Sustain; 2020; 173(2): 57-72. https://doi.org/10.1680/jensu.18.00055
6. Asdrubali F, Ballarini I, Corrado V, Evangelisti L, Grazieschi G, Guattari C. Energy and environmental payback times for an NZEB retrofit. Build Environ 2019; 147:461-472. https://doi.org/10.1016/j.buildenv.2018.10.047
7. Epbd recast, Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the Energy Performance of Buildings (Recast), Off. J. Eur.Union, 2010.
8. Epbd revised, Directive (EU) 2018/844 of the European Parliament and of the Council of 30 May 2018 Amending Directive 2010/31/EU on the Energy Performance of Buildings and directive 2012/27/EU on Energy Efficiency, Off. J.
9. Boermans T, Bettgenhäuser K, Hermelink A, and Schimschar S. (2011) Cost Optimal Building Performance Requirements. Calculation Methodology for Reporting on National Energy Performance Requirements on the basis of cost optimality within the Framework of the EPBD. European Council for an Energy Efficient Economy, Sweden. https://www.eurima.org/uploads/ModuleXtender/Publications/57/cost_optimality-eceee_report.pdf
10. Heljo Juhani; Vihola Jaakko. 2012. Energiansäästömahdollisuudet rakennuskannan korjaustoiminnassa. Tampereen teknillinen yliopisto. Rakennustekniikan laitos. Rakennustuotanto- ja talous. Raportti 8. http://www.tut.fi/ee/Materiaali/Epat/EPAT_loppuraportti.pdf.
11. Visscher H, Meijer F, Majcen D, Itard L. Improved governance for energy efficiency in housing. Build. Res. Inf. 2016; 44 (5): 552-561. https://doi.org/10.1080/09613218.2016.1180808
12. Delzendeh E, Wu S, Lee A, Zhou Y. The impact of occupnats’ behaviours on building energy analysis: A research review. Renew. Sustain. Energy Rev, 2017; 80: 1061-1071. https://doi.org/10.1016/j.rser.2017.05.264
13. Environmental Design Solutions Limited (EDSL). http://www.edsl.net/. (accessed 19th June 2019).
14. Hotel Energy Solutions (HES). Analysis on energy use by European hotels. http://hes.unwto.org/sites/all/files/docpdf/analysisonenergyusebyeuropeanhotelsonlinesurveyanddeskresearch2382011-1.pdf. (accessed 26th July 2019].
15. neZEH - Nearly zero energy Hotels. http://www.nezeh.eu/home/index.html. (accessed 15th July 2019].
16. Bohdanowicz P. Environmental awareness and initiatives in the Swedish and Polish hotel industries - Survey results. Int. J. of Hos. Manage., 2005; 21: 57–66. https://doi.org/10.1016/j.ijhm.2005.06.006
17. Le Y, Hollenhorst S, Harris C, McLaughlin W, and Shook S. Environmental management: A study of Vietnamese hotels. Ann. Tour. Res., 2006; 33(2): 545–567. https://doi.org/10.1016/j.annals.2006.01.002
18. Lu S, Wei S, Zhang K, Kong X, and Wu W. Investigation and analysis on the energy consumption of starred hotel buildings in Hainan Province, the tropical region of China. Energ. Convers. Manage., 2012; 75: 570–580. https://doi.org/10.1016/j.enconman.2013.07.008
19. Radwan H, Jones E, and Minoli D. Solid waste management in small hotels: A comparison of green and non-green small hotels in Wales. J. of Sustain. Tour., 2011; 20(4): 533-550. https://doi.org/10.1080/09669582.2011.621539
20. Pirani S A and Arafat H A. Solid waste management in the hospitality industry: A review. J. Environ. Manage. 2014; 146: 320–336. doi: 10.1016/j.jenvman.2014.07.03
21. Paoletti G, Pascuas P R, Pernetti R, Lollini R. Nearly Zero Energy Buildings: An Overview of the Main Construction Features across Europe. Build., 2017; 7(4): 43. http://dx.doi.org/10.3390/buildings7020043.
22. Tsoutsos T, Tournaki S, Frangou M, Tsitoura M. Creating paradigms for nearly zero energy hotels in south Europe. AIMS-Energy, 2018; 6(1): 1-18. doi: 10.3934/energy.2018.1.1.
23. Buso T, Becchio C, Corgnati S P. NZEB, cost- and comfort-optimal retrofit solutions for an Italian Reference Hotel. Energy Procedia, 2017; 140 (11): 217-230.
24. Marszal A, Heiselberg P, Bourrelle J, Musall E, Voss K, Sartori I, Napolitano A. Zero energy building – a review of definitions and calculation methodologies. Energ. and Build., 2011; 43: 971-979. https://doi.org/10.1016/j.enbuild.2010.12.022
25. D’Agostino D, Zangheri P, Cuniberti B, Paci D, Bertoldi P. Synthesis Report on the National Plans for Nearly Zero Energy Buildings (NZEBs). http://publications.jrc.ec.europa.eu/repository/ bitstream/JRC97408/reqno_jrc97408_online%20nzeb%20report.pdf (accessed 23rd July 2019).
26. Salem R, Bahadori-Jahromi A, Mylona A, Godfrey P, Cook D. Investigating the potential impact of energy efficient measures for retrofitting existing UK hotels to reach the Nearly-Zero Energy Building (nZEB) standard. Energ. Eff., 2019; 12(6): 1577-1594. https://doi.org/10.1007/s12053-019-09801-2
27. Tournaki S, Frangou M, Tsoutsos T, Morell R, Guerrero H, Derjanecz A. Nearly Zero Energy Hotels - from European Policy to Real Life Examples: the neZEH Pilot Hotels, 2014.
28. Cunha F. O, Oliveira A. C. Benchmarking for realistic nZEB hotel buildings. J. Build. Energ., 2020; 30: 101298. https://doi.org/10.1016/j.jobe.2020.101298
29. Corradoa V, Muranoa G, Paduosa S, Rivab G. On the refurbishment of the public building stock toward the nearly, zero-energy target: two Italian case studies. Energ. Procedia, 2016; 101: 105-112. https://doi.org/10.1016/j.egypro.2016.11.014
30. Martinopoulos G. Life Cycle Assessment of solar energy conversion systems in energetic retrofitted buildings. J. Build. Eng, 2018; 20:256-263. https://doi.org/10.1016/j.jobe.2018.07.027.
31. Simons A, Firth S.K. Life-cycle assessment of a 100% solar fraction thermal supply to a European apartment building using water-based sensible heat storage. Energ. Build, 2011; 43:1231-1240. https://doi.org/10.1016/j.enbuild.2010.12.029.
32. Zangehri P, Armani R, Pietrobon M, Pagliano L. Identification of cost-optimal and NZEB refurbishment levels for representative climates and building typologies across Europe. Energ. Eff., 2017; 11(2): 337-369. https://doi.org/10.1007/s12053-017-9566-8
33. Zebra 2020. Nearly Zero Energy Building Strategy 2020—Strategies for a Nearly Zero-Energy Building Market Transition in the European Union. http://zebra2020.eu/website/ wp-content/uploads/2014/08/ZEBRA2020_Strategies-for-nZEB_07_LQ_single-pages-1.pdf (accessed 23rd July 2019).
34. Ali Y, Mustafa M, Al-Mashaqbah S, Mashal K, and Mohsen M. Potential of energy savings in the hotel sector in Jordan. Energ. Convers. Manage., 2008; 49 (9): 3391-33972. https://doi.org/10.1016/j.enconman.2007.09.036
35. Nocera F, Giuffrida S, Trovato MR, Gagliano A. Energy and new economic approach for Nearly Zero Energy Hotels. Entropy, 2019; 21 (7): 639-654. https://doi.org/10.3390/e21070639
36. Butler J. The Compelling “Hard Case” for “Green” Hotel Development. Cornell Hosp. Q., 2008; 49(3): 234-244. https://doi.org/10.1177/1938965508322174
37. Dolnicar SI, Crouch G.I, and Long P. Environment friendly tourists: What do we really know about them? J. Sustain. Tour, 2008; 16(2): 197-210. DOI:10.2167/jost738.0
38. Kostakis I, and Sardianou E. Which factors affect the willingness of tourists to pay for renewable energy? Renew. Energ., 2012; 38 (1): 169-172. https://doi.org/10.1016/j.renene.2011.07.022
39. Chen M and Tung P.J. Developing an extended Theory of Planned Behavior model to predict consumers’ intention to visit green hotels. Int. J. Hosp. Manage. 2014; 36(6): 221–230. https://doi.org/10.1016/j.ijhm.2013.09.006
40. Cingoski V and Petrevska B. Making hotels more energy efficient: the managerial perception. Econom. Res., 2018; 31(1): 87-101. https://doi.org/10.1080/1331677X.2017.1421994
41. BS EN 16798-1:2019, Energy performance of buildings. Ventilation for buildings. Indoor environmental input parameters for design and assessment of energy performance of buildings addressing indoor air quality, thermal environment, lighting and acoustics. BSI, ISBN: 978 0 580 85868 0
42. Amoako-Attah J, and B-Jahromi A. Impact of standard construction specification on thermal comfort in UK dwellings. Adv. Environ. Res., 2014; 3(3): 253-281. DOI: 10.12989/aer.2014.3.3.253
43. Wetter M, and Wright J. A comparison of deterministic and probabilistic optimization algorithms for non-smooth simulation-based optimization. Build. Environ., 2004; 39: 989–999. https://doi.org/10.1016/j.buildenv.2004.01.022
44. Hasan A, Mika V, and Siren K. Minimization of life cycle cost of a detached house using combined simulation and optimization. Energ. Build., 2008; 48: 2022–2034. https://doi.org/10.1016/j.buildenv.2007.12.003
45. Alanne K, Salo A, Saari A and Gustafsson SI (2007) Multi-criteria evaluation of residential energy supply systems. Energ. Build., 2007; 39(12): 1218-1226. https://doi.org/10.1016/j.enbuild.2007.01.009
46. Karaguzel OT, Zhang R and Lam KP. Coupling of whole-building energy simulation and multi-dimensional numerical optimization for minimizing the life cycle costs of office buildings. Build. Simul., 2014; 14(7): 111–121. https://doi.org/10.1007/s12273-013-0128-5
47. Chartered Institute of Building Services Engineers, CIBSE Weather Data Sets. Cibse, London, UK. http://www.cibse.org.uk/knowledge/cibse-weather-data-sets (accessed 19th July 2019).
48. Eames M.E, Ramallo-Gonzalez A.P, and Wood M.J. An update of the UK’s test reference year: The implications of a revised climate on building design. Build. Serv. Eng. Res. Tech., 2016; 37: 316–3333. https://doi.org/10.1177/0143624415605626
49. Mylona, A. Revision of Design Summer Years and Test Reference Years. Cibse, London, UK, 2017. http://www.cibse.org/getmedia/cc7072d9-8e58-42cb-83ce-2316546f0aa0/Introduction-to-CIBSE-Weather-Data-Files.pdf.aspx. (accessed 10th July 2019).
50. Dixon T. An analysis of emergent retrofit practices in the UK commercial property sector. Project Report. EPSRC Retrofit 2050, 2014, Cardiff. ISSN 2052-1618.
51. BS EN 15459-1:2017. (2017). Energy performance of buildings. Economic evaluation procedure for energy systems in buildings. Calculation procedures, Module M1-14. BSI, ISBN: 978 0 580 87452 9
52. Knight I, Stravoravdis S, Lasvaux S. Predicting operational energy consumption profiles – findings from detailed surveys and modelling in a UK educational building compared to measured consumption. Int. J. Vent., 2008; 97: 355-364. https://doi.org/10.1080/14733315.2008.11683798
53. Collins L. Predicting annual energy consumption with thermal simulation. Build. Simul., 2012; 5(1): 117-125. https://doi.org/10.1007/s12273-012-0074-7
54. Gucyeter B, and Gunaydin HM. Optimisation of an envelope retrofit strategy for an existing office building. Energ. Build., 2012; 55: 647-659. https://doi.org/10.1016/j.enbuild.2012.09.031
55. BBC News, 'Mini Beast from the East' brings snow and ice to parts of UK. https://www.bbc.co.uk/news/uk-43439807. (accessed 25th July 2019).
56. Telegraph, April mini heatwave 2018 - how long we can expect warm British weather to last. https://www.telegraph.co.uk/news/2018/04/19/april-mini-heatwave-2018-long-can-expect-warm-british-weather/. (accessed 16th July 2019).
57. Department for Business, Energy and Industrial Strategy (BEIS), Retrofit for the Future: analysis of cost data. A https://www.gov.uk/government/publications/retrofit-for-the-future-analysis-of-cost-data. (accessed 20th July 2019).
58. GOV.UK. https://www.gov.uk/guidance/2050-pathways-analysis. (accessed 26th June 2019).