[1] P. Niemz and D. Mannesm, ”Non-destructive testing of wood and woodbased materials,” J. Cult. Heritage, vol. 13, pp. S26-S34, 2012.
[2] V. Bucur. Nondestructive Characterization and Imaging of Wood. Berlin, Germany: Springer, 2003.
[3] H. Lorenzo, V. Prez-Gracia, A. Novo and J. Armesto, ”Forestry applications of ground-penetrating radar,” Forest Systems, vol. 19, pp. 5–17, 2010.
[4] J. Jezova, L. Mertens and S. Lambot, ”Ground-penetrating radar for observing tree trunks and other cylindrical objects,” Construction and Building Materials, vol. 123, pp. 214-225, 2016.
[5] R. Pellerin and R. Ross, Non destructive Evaluation of Wood, Forest Prod.Society, Madison, Wisconsin, USA, 2002.
[6] F. Rinn and F. H. Schweingruber, ”RESISTOGRAPH and X-ray density charts of wood comparative evaluation of drill resistance profiles and Xray density charts of different wood species,” Holzforschung, vol. 50, pp.
303311, 1996.
[7] L. Costello and S. Quarles, ”Detection of wood decay in blue gum and elm: An evaluation of the Resistograph and the portable drill,” Journal of Arboriculture, vol. 25, pp. 311–317, 1999.
[8] S. A., Hagrey, ”Electrical resistivity imaging of tree trunks,” Near Surface Geophysics, vol. 4, pp. 179–187, 2006.
[9] G. Deflorio, S. Fink, and F. W. Schwarze, ”Detection of incipient decay in tree stems with sonic tomography after wounding and fungal inoculation,” Wood Science and Technology, vol. 42, pp. 117–132, 2008.
[10] A. Catena, ”Thermography shows damaged tissue and cavities present in trees,” Nondestructive Characterization of Materials, vol. 11, pp. 515– 522.
[11] A. Catena, ”Thermography reveals hidden tree decay,” Arboricultural Journal vol. 27, pp. 27–42, 2003.
[12] A. Catena, and A. G. Catena, ”Overview of thermal imaging for tree assessment,” Arboricultural Journal, vol. 30, pp. 259–270, 2008.
[13] Q. Wei, B. Leblon, and L. A. Rocque, ”On the use of X-ray computed tomography for determining wood properties: a review,” Can. J. For. Res. vol. 41. pp. 2120-2140, 2001.
[14] D. Mannes, P. Cherubini, E. Lehmann and P. Niemz, ”Neutron imaging versus standard X-ray densitometry as method to measure tree-ring wood density,” Trees Struct. Funct. vol. 21, pp. 605–612, 2007.
[15] D. Mannes, Non-destructive testing of wood by means of neutron imaging in comparison with similar methods, PhD thesis submitted at ETH Zurich, Switzerland, 2009.
[16] K. Takahashi and K. Aoike, ”GPR Measurements for Diagnosing Tree Trunk,” in Proc. of 17th International Conference on Ground Penetrating Radar (GPR), Rapperswil, 2018, pp. 1-4.
[17] M. Pastorino, Microwave Imaging, Hoboken N.J. John Wiley, 2010.
[18] L. Fu, S. Liu and L. Liu, ”Internal structure characterization of living tree trunk cross-section using GPR: Numerical examples and field data analysis,” in Proc. of the 15th International Conference on Ground
Penetrating Radar, Brussels, 2014, pp. 155-160.
[19] F. Boero, A. Fedeli, M. Lanini, M. Maffongelli, R. Monleone, M. Pastorino, A. Randazzo, A. Slvade and A. Sansalone, ”Microwave Tomography for the Inspection of Wood Materials: Imaging System and Experimental Results,” IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 7, pp. 3497-3510, July 2018.
[20] Z. Miao and P. Kosmas, ”Multiple-frequency DBIM-TwIST algorithm for microwave breast imaging,” IEEE Trans. Antennas Propag., vol. 65, no. 5, pp. 2507-2516, May 2017.
[21] C. Gilmore, A. Abubakar, W. Hu, T. M. Habashy, and P. M. V. D. Berg, ”Microwave biomedical data inversion using the finite-difference contrast source inversion method,” IEEE Trans. Antennas Propag., vol. 57, no. 5,
pp. 1528-1538, May 2009.
[22] A. Klotzsche, J. Van der Kruk, G. A. Meles, and H. Vereecken, ”Crosshole GPR full-waveform inversion of waveguides acting as preferential flow paths within aquifer systems,” Geophysics, vol. 77, no. 4, pp.
H57H62, 2012.
[23] F. A. Belina, J. Irving, J. R. Ernst, and K. Holliger, ”Waveform inversion of crosshole georadar data: Influence of source wavelet variability and the
suitability of a single wavelet assumption,” IEEE Trans. Geosci. Remote Sens., vol. 50, no. 11, pp. 4610-4625, 2012.
[24] S. Busch, J. van der Kruk, and H. Vereecken, ”Improved characterization of fine-texture soils using on-ground GPR full-waveform inversion,” IEEE Trans. Geosci. Remote Sens., vol. 52, no. 7, pp. 3947-3958, Jul. 2014.
[25] I. Giannakis, A. Giannopoulos and C. Warren, ”Realistic FDTD GPR Antenna Models Optimized Using a Novel Linear/Nonlinear Full-Waveform Inversion,” IEEE Trans. on Geoscience and Remote Sensing,
Early Access, 2018.
[26] D. J. Daniels, Ground Penetrating Radar, 2nd ed. London, U.K.: Institution of Engineering and Technology, 2004.
[27] S. J. Ahn, W. Rauh, H. J. Warnecke, ”Least-squares orthogonal distances fitting of circle, sphere, ellipse, hyperbola, and parabola,” Pattern Recognition, vol. 34, pp. 2283–2303, 2001.
[28] L. Mertens, R. Persico, L. Matera and S. Lambot, ”Automated Detection of Reflection Hyperbolas in Complex GPR Images With No A Priori Knowledge on the Medium,” IEEE Transactions on Geoscience and Remote Sensing, vol. 54, no. 1, pp. 580–596, Jan. 2016.
[29] Q. Dou, L. Wei, D. R. Magee and A. G. Cohn, ”Real-Time Hyperbola Recognition and Fitting in GPR Data,” IEEE Transactions on Geoscience and Remote Sensing, vol. 55, no. 1, pp. 51–62, Jan. 2017.
[30] L. Capineri, P. Grande, and J. A. G. Temple, ”Advanced imageprocessing technique for real-time interpretation of ground-penetrating radar images,” Int. J. Imaging Syst. Technol., vol. 9, no. 1, pp. 5159,
1998.
[31] C. G. Windsor, L. Capineri, and P. Falorni, ”A data pair-labeled generalized Hough transform for radar location of buried objects,” IEEE Geosci. Remote Sens. Lett., vol. 11, no. 1, pp. 124-127, Jan. 2014.
[32] W. Alnuaimy, Y. Huang, M. Nakhkash, M. Fang, V. Nguyen, and A. Erisken, ”Automatic detection of buried utilities and solid objects with GPR using neural networks and pattern recognition,” J. Appl. Geogr., vol. 43, pp. 157-165, 2000.
[33] C. Maas and J. Schmalzl, ”Using pattern recognition to automatically localize reflection hyperbolas in data from ground penetrating radar,” Computers & Geosciences, vo. 58, pp. 116–125, 2013.
[34] P. Viola and M. J. Jones, ”Robust real-time face detection, Int. J. Comput. Vis., vol. 57, no. 2, pp. 137-154, 2004.
[35] T. Russel and C. Cutler, Trees, an illustrated identifier and encyclopedia, Hermes House, Leicestershire, 2012
[36] H. Kim, S. J. Cho, and M. J. Yi, ”Removal of ringing noise in GPR data by signal processing,” Geosci. J. , vol. 11, pp. 75-81, Mar. 2007.
[37] I. Giannakis, S. Xu, P. Aubry, A. Yarovoy and J. Sala, ”Signal processing for landmine detection using ground penetrating radar,” IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2016, pp. 7442–7445.
[38] I. Giannakis, A. Giannopoulos, C. Warren and N. Davidson, ”Numerical modelling and neural networks for landmine detection using ground penetrating radar,” in Proc. of 8th International Workshop on Advanced
Ground Penetrating Radar (IWAGPR) , pp. 1–4, 2015.
[39] J. Kennedy and R. C. Eberhart, ”Particle swarm optimization, in Proc. IEEE Int. Conf. Neural Netw., Dec. 1995, vol. 4, pp. 19421948.
[40] R. J. Sharpe, R. W. Thorpe, ”Numerical Method for Extracting an Arc Length Parameterization from Parametric Curves”, Computer Aided Design, vol. 12, no. 2, pp. 79-81, March 1982.
[41] B., Guenter and R. Parent, ”Computing the arc length of parametric curves,— IEEE Comp. Graph. Appl. , vol. 10, no. 3, pp. 72-78, 1990.
[42] E. Kreyszig, Advanced Engineering Mathematics, 8th ed. New York, NY, USA: Wiley, 1999.
[43] J. Jezova, J. Harou and S. Lambot, ”Reflection waveforms occurring in bistatic radar testing of columns and tree trunks,” Construction and Building Materials, vol. 174, pp. 388–400, 2018.
[44] N. Bonomo, D. Bullo, A. Villela and A. Osella, ”Ground-penetrating radar investigation of the cylindrical pedestal of a monument,” J. Appl. Geophys., vol. 113, pp 1-13, 2015.
[45] H. Brunzell, ”Detection of shallowly buried objects using impulse radar, IEEE Trans. Geosci. Remote Sens., vol. 37, no. 2, pp. 875-886, Mar. 1999.
[46] R. Wu, A. Clement, J. Li, E. G. Larsson, M. Bradley, J. Habersat, and G. Maksymonko, ”Adaptive ground bounce removal,” Electron. Lett., vol. 37, no. 20, pp. 1250–1252, Sep. 2001.
[47] I. Giannakis, Realistic numerical modelling of ground penetrating radar for landmine detection Ph.D. thesis submitted at The University of Edinburgh. 2016.
[48] J. Robinson and Y. Rahmat-Samii, ”Particle swarm optimization in electromagnetics,” IEEE Transactions on Antennas and Propagation, vol. 52, no. 2, pp. 397–407, Feb. 2004.
[49] D. F. Kelley, T. J. Destan, and R. J. Luebbers, ”Debye function expansions of complex permittivity using a hybrid particle swarm-least squares optimisation approach,” IEEE Trans. Antennas Propag. , vol. 55, no. 7, pp. 1999-2005, Jul. 2007.
[50] J. L. Fernandez Martinez, E. G. Gonzalo, J. P. Fernandez Alvarez, H. A. Kuzmaa and C. O. Menndez Perez, ”PSO: A powerful algorithm to solve geophysical inverse problems: Application to a 1D-DC resistivity case,” Journal of Applied Geophysics, vol. 71, no. 1, pp. 13–25, 2010.
[51] A. Taflove and S. C. Hagness, Computational Electrodynamics, the Finite-Difference Time-Domain Method, 2nd ed. Norwood, MA, USA: Artech House, 2000.
[52] C. Warren, A. Giannopoulos, A. Gray, I. Giannakis, A. Patterson, L. Wetter, A. Hamrah, ”A CUDA-based GPU engine for gprMax: Open source FDTD electromagnetic simulation software,” Computer Physics Communications, Early Access, 2018,
[53] C. Warren, A. Giannopoulos, and I. Giannakis, ”gprMax: Open source software to simulate electromagnetic wave propagation forGround Penetrating Radar,” Comput. Phys. Commun. , vol. 209, pp. 163170, Dec. 2016.
[54] T. Douglas, Effective Dielectric Constants of Foliage Media, Rome Air Development Center Air Force Systems Command Grifflss Air Force Base, Rome, 1990.
[55] N. R. Peplinski, F. T. Ulaby, and M. C. Dobson, ”Dielectric properties of soils in the 0.31.3-GHz range,” IEEE Trans. Geosci. Remote Sens., vol. 33, no. 3, pp. 803-807, May 1995.
[56] M. G. Broadhurst, ”Complex Dielectric Constants and Dissipation Factor of Foliage,” NBS Report no. 9592, NBS project 3110107, US Naval Ordnance Laboratory, October 1970.
[57] G. S. Brown, and W. J. Curry, ”A Theory and Model for Wave Propagation Through Foliage”, Radio Science, vol. 17, pp. 1027–1036, 1982.
[58] W. L. James, ”Dielectric Properties of Wood and Hardboard: Varaition With Temperature, Frequency, Moisture Content and Grain Orientation,” USDA Forest Service Res. Paper FPL 245, USDA Forest Products Lab., Madison, MI, 1975.
[59] R. J. Birchak, C. G. Gardner, E. J. Hipp, and M. J. Victor, ”High dielectric constant microwave probes for sensing soil moisture,” in Proc. of the IEEE, vl. 62, no. 1, pp 93–98, 1974.
[60] I. Giannakis and A. Giannopoulos, ”A novel piecewise linear recursive convolution approach for dispersive media using the finite-difference time-domain method,” IEEE Trans. Antennas Propag., vol. 62, no. 5, pp. 2669-2678, May 2014.
[61] N. Brazee, R. Marra, L. Goecke and P. Van Wassenaer, ”Non-destructive assessment of internal decay in three hardwood species of northeastern North America using sonic and electrical impedance tomography,” Forestry 84:3339.
[62] A. Guyot, K. T. Ostergaard, M. Lenkopane, J. Fan and D. A. Lockington,Using electrical resistivity tomography to differentiate sapwood from heartwood: application to conifers,” Tree Physiology, vol. 33, no. 2, pp. 187-194, 2013.
[63] W. C. Shortle, K. R. Dudzik, Wood Decay in Living and Dead Trees: A Pictorial Overview, U.S. FOREST SERVICE, 2012.
[64] B. Larsson, B. A. Bengtsson and M. Gustafsson, Non Destructive Detection of Decay in Living Trees, Technical Report LUTEDX/(TEAT- 7111)/1-15/(2002); vol. TEAT-7111, 2002.
[65] C. Warren and A. Giannopoulos, “Creating finite-difference time-domain models of commercial ground-penetrating radar antennas using Taguchis optimisation method,” Geophysics, vol. 76, no. 2, pp. G37-G47, Apr. 2011.
[66] C. Humphries, B. Press and D. Sutton, Guide to Trees of Britain and Europe, Philip’s, London, 2006.
[67] M. Spohn and R. Spohn, Trees of Britain and Europe, A % C Black Publishers Ltd, London, 2008.
[68] N. Brown, Epidemiology of acute oak decline in Great Britain, PhD thesis submitted at Imperial College London, 2014.
[69] N. Brown, D. J.G. Inward, M. Jeger and S. Denman, ”A review of Agrilus biguttatus in UK forests and its relationship with acute oak decline,” Forestry: An International Journal of Forest Research, vol. 88, no. 1, pp. 53-63, 2015.
[70] S. Denman, N. Brown, S. Kirk, M. Jeger and J. Webber, ”A description of the symptoms of Acute Oak Decline in Britain and a comparative review on causes of similar disorders on oak in Europe,” Forestry: An International Journal of Forest Research, vol. 87, no. 4, pp. 535-551, 2014.
[71] N. Ahmad, M. Wistuba and H. Lorenzl, ”GPR as a crack detection tool for asphalt pavements: Possibilities and limitations,” in Proc. of the 14th International Conference on Ground Penetrating Radar (GPR), Shanghai, 2012, pp. 551–555.
[72] S. Lameri, F. Lombardi, P. Bestagini, M. Lualdi and S. Tubaro, ”Landmine detection from GPR data using convolutional neural networks,” in Proc. of the 25th European Signal Processing Conference (EUSIPCO), Kos, 2017, pp. 508–512.