1. World Health Organisation. Global Status Report on Road Safety 2015;World Health Organisation: Geneve,
Switzerland, 2015.
2. European Commission. Towards a European Road Safety Area: Policy Orientations on Road Safety 2011–2020;
COM(2010) 389, 2010; The European Automotive Manufacturers Association: Brussels, Belgium, 2010.
3. Tighe, S.; Li, N.; Falls, L.C.; Haas, R. Incorporating road safety into pavement management. Transport. Res. Rec.
2000, 1699, 1–10. [CrossRef]
4. Beskou, N.D.; Theodorakopoulos, D.D. Dynamic effects of moving loads on road pavements: A review.
S. Dyn. Earthq. Eng. 2011, 31, 547–567. [CrossRef]
5. D’Amico, F.; Calvi, A.; Bianchini Ciampoli, L.; Tosti, F.; Brancadoro, M.G. Evaluation of the impact of
pavement degradation on driving comfort and safety using a dynamic simulation model. Adv. Transport. Stud.
2018, 1, 109–120. [CrossRef]
6. Benedetto, A.; Tosti, F.; Bianchini Ciampoli, L.; D’Amico, F. An overview of ground-penetrating radar signal
processing techniques for road inspections. Signal Process. 2017, 132, 201–209. [CrossRef]
7. Marecos, V.; Fontul, S.; Antunes, M.L.; Solla, M. Evaluation of a highway pavement using non-destructive
tests: FallingWeight Deflectometer and Ground Penetrating Radar. Constr. Build. Mater. 2017, 151, 1164–1172.
[CrossRef]
8. Frangopol, D.M.; Liu, M. Maintenance and management of civil infrastructure based on condition, safety,
optimization, and life-cycle cost. Struct. Infrastruct. Eng. 2007, 1, 29–41. [CrossRef]
9. Sheils, E.; O’Connor, A.; Breysse, D.; Schoefs, F.; Yotte, S. Development of a two-stage inspection process for
the assessment of deteriorating infrastructure. Reliab. Eng. Syst. Saf. 2010, 1, 29–41. [CrossRef]
10. Capozzoli, L.; Rizzo, E. Combined NDT techniques in civil engineering applications: Laboratory and real
test. Constr. Build. Mater. 2017, 154, 1139–1150. [CrossRef]
11. Sebaaly, B.E.; Mamlouk, M.S.; Davies, T.G. Dynamic analysis of falling weight deflectometer data.
Transport. Res. Rec. 1986, 1070, 63–68.
12. Rohde, G.T. Determining pavement structural number from FWD testing. Transport. Res. Rec. 1994, 1448,
61–68.
13. Mehta, Y.; Roque, R. Evaluation of FWD data for determination of layer moduli of pavements. J. Mater.
Civ. Eng. 2003, 15, 25–31. [CrossRef]
14. Cosenza, P.; Marmet, E.; Rejiba, F.; Jun, C.Y.; Tabbagh, A.; Charlery, Y. Correlations between geotechnical and
electrical data: A case study at Garchy in France. J. Appl. Geophys. 2006, 60, 165–178. [CrossRef]
15. Ma´slakowski, M.; Kowalczyk, S.; Mieszkowski, R.; Józefiak, K. Using electrical resistivity tomography (ERT)
as a tool in geotechnical investigation of the substrate of a highway. Stud. Quat. 2014, 31, 83–89. [CrossRef]
16. Saarenketo, T.; Scullion, T. Road evaluation with ground penetrating radar. In Proceedings of the 7th
International Conference on Ground-Penetrating Radar (GPR98), Lawrence, KS, USA, 27–30 May 1998.
[CrossRef]
17. Benedetto, A.; Pensa, S. Indirect diagnosis of pavement structural damages using surface GPR reflection
techniques. J. Appl. Geophys. 2007, 62, 107–123. [CrossRef]
18. Loizos, A.; Plati, C. Accuracy of ground penetrating radar horn-antenna technique for sensing pavement
subsurface. IEEE Sens. J. 2007, 7, 842–850. [CrossRef]
19. Lahouar, S.; Al-Qadi, I.L. Automatic detection of multiple pavement layers from GPR data. Non-Destr.
Test. Eval. Int. 2008, 41, 69–81. [CrossRef]
20. Fernandes, F.M.; Fernandes, A.; Pais, J. Assessment of the density and moisture content of asphalt mixtures
of road pavements. Constr. Build. Mater. 2017, 154, 1216–1225. [CrossRef]
21. Liu, H.; Sato, M. In situ measurement of pavement thickness and dielectric permittivity by GPR using an
antenna array. Non-Destr. Test. Eval. Int. 2014, 64, 65–71. [CrossRef]
22. Tosti, F.; Bianchini, C.L.; D’Amico, F.; Alani, A.M.; Benedetto, A. An experimental-based model
for the assessment of the mechanical properties of road pavements using ground-penetrating radar.
Constr. Build. Mater. 2018, 165, 966–974. [CrossRef]
23. Maser, K.R.; Roddis,W.M.K. Principles of thermography and radar for bridge deck assessment. J. Transp. Eng.
1990, 116, 583–601. [CrossRef]
24. Mothé, M.G.; Leite, L.F.M.; Mothé, C.G. Thermal characterization of asphalt mixtures by TG/DTG, DTA and
FTIR. J. Therm. Anal. Calorim. 2008, 93, 105–109. [CrossRef]
25. Solla, M.; Lagüela, S.; González-Jorge, H.; Arias, P. Approach to identify cracking in asphalt pavement using
GPR and infrared thermographic methods: Preliminary findings. Non-Destr. Test. Eval. Int. 2014, 62, 55–65.
[CrossRef]
26. Chang, K.T.; Chang, J.R.; Liu, J.K. Detection of pavement distresses using 3D laser scanning technology.
In Proceedings of the 2005 ASCE International Conference on Computing in Civil Engineering, Cancun,
Mexico, 12–15 July 2005; pp. 1085–1095.
27. Guan, H.; Li, J.; Cao, S.; Yu, Y. Use of mobile LiDAR in road information inventory: A review. Int. J. Image
Data Fusion 2016, 7, 219–242. [CrossRef]
28. Daniel, D.J. Ground Penetrating Radar, 2nd ed.; The Institution of Electrical Engineers: London, UK, 2004.
29. Slob, E.C.; Sato, M.; Olhoeft, G. Surface and borehole ground-penetrating-radar developments. Geophysics
2010, 75, 75A103–75A120. [CrossRef]
30. Benedetto, F.; Tosti, F.; Alani, A.M. An entropy-based analysis of GPR data for the assessment of railway
ballast conditions. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3900–3908. [CrossRef]
31. Al-Qadi, I.L.; Lahouar, S. Measuring layer thicknesses with GPR - Theory to practice. Constr. Build. Mater.
2005, 19, 763–772. [CrossRef]
32. Bastard, C.L.; Baltazart, V.; Wang, Y.; Saillard, J. Thin-pavement thickness estimation using GPR with
high-resolution and superresolution methods. IEEE Trans. Geosci. Remote Sens. 2007, 45, 2511–2519.
[CrossRef]
33. Loizos, A.; Plati, C. Accuracy of pavement thicknesses estimation using different ground penetrating radar
analysis approaches. Non-Destr. Test. Eval. Int. 2014, 62, 55–65. [CrossRef]
34. Maser, K.R. Condition assessment of transportation infrastructure using ground-penetrating radar.
J. Infr. Syst. 1996, 43, 119–138. [CrossRef]
35. Al-Qadi, I.L.; Lahouar, S.; Loulizi, A. In situ measurements of hot-mix asphalt dielectric properties.
Non-Destr. Test. Eval. Int. 2001, 34, 427–434. [CrossRef]
36. Chen, D.H.; Scullion, T. Forensic investigations of roadway pavement failures. J. Perform. Constr. Facil. 2008,
22, 35–44. [CrossRef]
37. Saarenketo, T. Electrical properties of water in clay and silty soils. J. Appl. Geophys. 1998, 40, 73–88. [CrossRef]
38. Benedetto, A. Water content evaluation in unsaturated soil using GPR signal analysis in the frequency
domain. J. Appl. Geophys. 2010, 71, 26–35. [CrossRef]
39. Tosti, F.; Benedetto, A.; Bianchini Ciampoli, L.; Lambot, S.; Patriarca, C.; Slob, E.C. GPR analysis of
clayey soil behaviour in unsaturated conditions for pavement engineering and geoscience applications.
Near Surf. Geophys. 2016, 14, 127–144. [CrossRef]
40. Dérobert, X.; Iaquinta, J.; Klysz, G.; Balayssac, J.-P. Use of capacitive and GPR techniques for the
non-destructive evaluation of cover concrete. Non-Destr. Test. Eval. Int. 2008, 62, 55–65. [CrossRef]
41. Alani, A.M.; Aboutalebi, M.; Kilic, G. Applications of ground penetrating radar (GPR) in bridge deck
monitoring and assessment. J. App. Geophys. 2013, 97, 45–54. [CrossRef]
42. Diamanti, N.; Annan, A.P.; Redman, J.D. Concrete Bridge Deck Deterioration Assessment Using Ground
Penetrating Radar (GPR). J. Environ. Eng. Geophys. 2017, 22, 121–132. [CrossRef]
43. Benedetto, F.; Tosti, F. A signal processing methodology for assessing the performance of ASTM standard
test methods for GPR systems. Signal Process. 2017, 132, 327–337. [CrossRef]
44. ASTM International. ASTM D6087-08(2015)e1, Standard Test Method for Evaluating Asphalt-Covered
Concrete Bridge Decks Using Ground Penetrating Radar. Available online: https://www.astm.org/
Standards/D6087.htm (accessed on 10 December 2018).
45. Saarenketo, T. NDT Transportation. In Ground Penetrating Radar; Elsevier: Amsterdam, The Netherlands,
2009; pp. 393–444.
46. Golgowski, G. Arbeitsanleitung fur den Einsatz des Georadarszur Gewinnung von Bestandsdaten des
Fahrbahnaufbaues; AbteilungStraßenbautechnik: Berlin, Germany, 2003.
47. Sebesta, S.; Scullion, T. Using Infrared Imaging and Ground-Penetrating Radar to Detect Segregation in Hot-Mix
Asphalt Overlays; Research Report 4126-1; Texas Department of Transportation, Texas A&M University:
College Station, TX, USA, 2002.
48. Clark, M.R.; Gillespie, R.; Kemp, T.; McCann, D.M.; Forde, M.C. Electromagnetic properties of railway ballast.
Non-Destr. Test. Eval. Int. 2004, 34, 305–311. [CrossRef]
49. Puente, I.; Solla, M.; González-Jorge, H.; Arias, P. NDT documentation and evaluation of the roman bridge
of lugo using GPR and mobile and static LiDAR. J. Perform. Constr. Facil. 2015, 29. [CrossRef]
50. Annan, A.P. Practical processing of GPR data. In Proceedings of the EAGE 2001 Conference, Delft,
The Netherlands, 11–15 June 2001.
51. Persico, R. Introduction to Ground Penetrating Radar: Inverse Scattering and Data Processing;Wiley Blackwell:
Hoboken, NJ, USA, 2014.
52. Olhoeft, G.R. Maximizing the information return from ground penetrating radar. J. Appl. Geophys. 2000, 43,
175–187. [CrossRef]
53. Nobes, D.C. Geophysical surveys of burial sites: A case study of the Oarourupa. Geophysics 1999, 64, 357–367.
[CrossRef]
54. Yelf, R. Where is true time zero? In Proceedings of the Tenth International Conference on Grounds Penetrating
Radar GPR 2004, Delft, The Netherlands, 21–24 June 2004.
55. Davis, J.L.; Annan, A.P. Ground penetrating radar to measure soil water content. In Methods of Soil Analysis,
Part 4; Dane, J.H., Topp, G.C., Eds.; Soil Science Society of America (SSSA): Washington, DC, USA, 2002;
pp. 446–463.
56. Dougherty, E.R. Optimal mean-absolute-error filtering of gray-scale signals by the morphological hit-or-miss
transform. J. Math. Imaging Vis. 1994, 4, 255–271. [CrossRef]
57. Gerlitz, K.; Knoll, M.D.; Cross, G.M.; Luzitano, R.D.; Knight, R. Processing ground penetrating radar data
to improve resolution of near-surface targets. In Proceedings of the Symposium on the Application of
Geophysics to Engineering and Environmental Problems, San Diego, CA, USA, 18–22April 1993.
58. Battista, B.M.; Addison, A.D.; Knapp, C.C. Empirical Mode Decomposition Operator for Dewowing GPR
Data. J. Environ. Eng. Geophys. 2009, 14, 163–169. [CrossRef]
59. Lambot, S.; Slob, E.C.; Van Bosch, I.D.; Stockbroeckx, B.; Vanclooster, M. Modeling of ground-penetrating
radar for accurate characterization of subsurface electric properties. IEEE Trans. Geosci. Remote Sens. 2004, 42,
2555–2568. [CrossRef]
60. Soldovieri, F.; Lopera, O.; Lambot, S. Combination of advanced inversion techniques for an accurate target
localization via GPR for demining applications. IEEE Trans. Geosci. Remote Sens. 2011, 49, 451–461. [CrossRef]
61. De Coster, A.; Lambot, S. Full-Wave Removal of Internal Antenna Effects and Antenna-Medium Interactions
for Improved Ground-Penetrating Radar Imaging. IEEE Trans. Geosci. Remote Sens. 2019, 57, 93–103.
[CrossRef]
62. Jol, H. Ground Penetrating Radar: Theory and Applications; Elsevier: Amsterdam, The Netherlands, 2009.
63. Horstmeyer, H.; Gurtner, M.; Buker, F.; Green, A. Processing 2-D and 3-D georadar data: Some special
requirements. In Proceedings of the Second Meeting of the Environmental and Engineering Geophysical
Society, European section, Nantes, France, 2–5 September 1996.
64. Economou, N.; Vafidis, A. Spectral balancing GPR data using time-variant bandwidth in the t-f domain.
Geophysics 2010, 75, J19–J27. [CrossRef]
65. Sun, J.; Young, R.A. Recognizing surface scattering in ground-penetrating radar data. Geophysics 1995, 60,
1378–1385. [CrossRef]
66. Bano, M.; Pivot, F.; Methelot, J.M. Modelling and Filtering of Surface Scattering in Ground-penetrating Radar
Waves. First Break 1999, 17, 215–222. [CrossRef]
67. Nuzzo, L. Coherent noise attenuation in GPR data linear and parabolic radon transform techniques.
Ann. Geophys. 2003, 46, 533–547. [CrossRef]
68. Spagnolini, U. Permittivity measurements of multi layered media with monostatic pulse radar. IEEE Trans.
Geosci. Remote Sens. 1997, 35, 454–463. [CrossRef]
69. Chahine, K.; Vincent, B.;Wang, Y.; Dérobert, X. Blind deconvolution via sparsity maximization applied to
GPR data. Eur. J. Environ. Civil Eng. 2011, 15, 575–586. [CrossRef]
70. Economou, N.; Vafidis, A. Deterministic deconvolution for GPR data in t-f domain. Near Surf. Geophys. 2011,
9, 427–433. [CrossRef]
71. Fisher, E.; McMechan, G.A.; Annan, A.P.; Cosway, S.W. Examples of reverse-time migration of single-channel,
ground-penetrating radar profiles. Geophysics 1992, 57, 577–586. [CrossRef]
72. Tillard, S.; Dubois, J.C. Influence and lithology on radar echoes: Analysis with respect to electromagnetic
parameters and rock anisotropy. Spec. Paper—Geol. Surv. Finl. 1992, 16, 95–102.
73. Zhao, S.; Al-Qadi, I.L. Super-Resolution of 3-D GPR Signals to Estimate Thin Asphalt Overlay Thickness
Using the XCMP Method. IEEE Trans. Geosci. Remote Sens. 2018. in Press. [CrossRef]
74. Economou, N. Time varying band pass filtering GPR data by self- inverse filtering. Near Surf. Geophys. 2016,
14, 207–217.
75. Lavoué, F.; Brossier, R.;Métivier, L.; Garambois, S.; Virieux, J. Two-dimensional permittivity and conductivity
imaging by full waveform inversion of multioffset GPR data: A frequency-domain quasi-Newton approach.
Geophys. J. Int. 2014, 197, 248–268. [CrossRef]