Andersen, A.G., D.F. Boesen, K. Holmen, N. Jacobsen, J. Lewinsky, G.
Mogensen, et al. 1976. Den danske mosflora: I. Bladmosser. Gyldendalske
Boghandel, Copenhagen.
ASTM. 2010. D4404-10: Standard test method for determination of pore
volume and pore volume distribution of soil and rock by mercury
intrusion porosimetry. ASTM Int., West Conshohocken, PA.
doi:10.1520/D4404-10
Bates, S.T., D. Berg-Lyons, J.G. Caporaso, W.A. Walters, R. Knight, and N. Fierer.
2011. Examining the global distribution of dominant archael populations
in soil. ISME J. 5:908–917. doi:10.1038/ismej.2010.171
Berg, J., K.K. Brandt, W.A. Al-Soud, P.E. Holm, L.H. Hansen, S.J. Sørensen,
and O. Nybroe. 2012. Selection of Cu-tolerant bacterial communities with
altered composition, but unaltered richness, via long-term copper exposure.
Appl. Environ. Microbiol. 78:7438–7446. doi:10.1128/AEM.01071-12
Blouin, M., M.E. Hodson, E.A. Delgado, G. Baker, L. Brussard, K.R. Butt, et
al. 2013. A review of earthworm impact on soil function and ecosystem
services. Eur. J. Soil Sci. 64:161–182. doi:10.1111/ejss.12025
Brown, G. 1994. Soil factors affecting patchiness in community composition of
heavy metal-contaminated areas of Western Europe. Vegetatio 115:77–90.
Campbell, G.S. 1974. Simple method for determining unsaturated
conductivity from moisture retention data. Soil Sci. 117:311–314.
doi:10.1097/00010694-197406000-00001
Chu, G., S.A. Wakelin, L. Condron, and A. Stewart. 2010. Effect of soil copper
on the response of soil fungal communities to the addition of plant
residues. Pedobiologia 53:353–359. doi:10.1016/j.pedobi.2010.04.002
de Boer, T.E., N. Tas, M. Braster, E.J. Temminghoff, W.F. Roling, and D. Roelofs.
2012. The influence of long-term copper contaminated agricultural soil at
different pH levels on microbial communities and springtail transcriptional
regulation. Environ. Sci. Technol. 46:60–68. doi:10.1021/es2013598
Degens, B.P. 1997. Macro-aggregation of soils by biological bonding and
binding mechanisms and factors affecting these: A review. Aust. J. Soil Res.
35:431–459. doi:10.1071/S96016
de Jonge, L.W., P. Moldrup, and P. Schjønning. 2009. Soil infrastructure,
interfaces & translocation processes in inner space (“Soil-it-is”): Towards
a road map for the constraints and cross-roads of soil architecture
and biophysical processes. Hydrol. Earth Syst. Sci. 13:1485–1502.
doi:10.5194/hess-13-1485-2009
Devitt, D.A., and S.D. Smith. 2002. Root channel macropores enhance
downward movement of water in a Mojave Desert ecosystem. J. Arid
Environ. 50:99–108. doi:10.1006/jare.2001.0853
de Vries, F.T., E. Thébault, M. Liirie, K. Birkhofer, M.A. Tsiafouli, L. Bjørnlund,
et al. 2013. Soil food web properties explain ecosystem services across
European land use systems. Proc. Natl. Acad. Sci. 110:14296–14301.
doi:10.1073/pnas.1305198110
Dominati, E., M. Patterson, and A. Mackay. 2010. A framework for classifying
and quantifying the natural capital and ecosystem services of soils. Ecol.
Econ. 69:1858–1868. doi:10.1016/j.ecolecon.2010.05.002
Effmert, U., J. Kalderas, R. Warnke, and B. Piechulla. 2012. Volatile mediated
interactions between bacteria and fungi in the soil. J. Chem. Ecol. 38:665–
703. doi:10.1007/s10886-012-0135-5
Ekschmitt, K., and G.W. Korthals. 2006. Nematodes as sentinels of heavy metals
and organic toxicants in the soil. J. Nematol. 38:13–19.
Feldkamp, L.A., L.C.Davis, and J.W.Krees. 1984. Practical cone-beam algorithm.
J. Opt. Soc. Am. 1:612–619. doi:10.1364/JOSAA.1.000612
Fisker, K.V., M.Holmstrup, and J.G. Sørensen. 2013. Variation in metallothionein
gene expression is associated with adaptation to copper in the earthworm
Dendrobaena octaedra. Comp. Biochem. Physiol., Part C 157:220–226.
Gabet, E.J., O.J. Reichman, and E.W. Seabloom. 2003. The effects of bioturbation
on soil processes and sediment transport. Annu. Rev. Earth Planet. Sci.
31:249–273. doi:10.1146/annurev.earth.31.100901.141314
Galbraith, H., K. LeJeune, and J. Lipton. 1995. Metal and arsenic impacts to
soils, vegetation communities and wildlife habitat in southwest Montana
uplands contaminated by smelter emissions: I. Field evaluation. Environ.
Toxicol. Chem. 14:1895–1903. doi:10.1002/etc.5620141111
García, C., T. Hernández, F. Costa, B. Ceccanti, and G. Masciandaro. 1993.
The dehydrogenase activity of soil as an ecological marker in processes of
perturbed system regeneration. In: J. Gallardo-Lancho, editor, Proceedings
of the XI International Symposium on Environmental Biochemistry,
Salamanca, Spain. CSIC, Salamanca. p. 89–100.
Gardes, M., and T.D. Bruns. 1993. ITS primers with enhanced specificity for
basidiomycetes: Application to the identification of mycorrhizae and rusts.
Mol. Ecol. 2:113–118. doi:10.1111/j.1365-294X.1993.tb00005.x
Gardi, C., S. Jeffery, and A. Saltelli. 2013. An estimate of potential threats
levels to soil biodiversity in EU. Global Change Biol. 19:1538–1548.
doi:10.1111/gcb.12159
Gee, G.W., and D. Or. 2002. Particle size analysis. In: J.H. Dane and G.C. Topp,
editors, Methods of soil analysis. Part 4. Physical methods. SSSA Book Ser.
5. SSSA, Madison, WI. p. 255–293.
Hansen, K. 1991. Dansk feltflora. Gyldendalske Boghandel, Copenhagen.
Hartman, W.H., J.R. Curtis, V. Rytas, and L.B. Gregory. 2008. Environmental
and anthropogenic controls over bacterial communities in wetland soils.
Proc. Natl. Acad. Sci. 105:17842–17847. doi:10.1073/pnas.0808254105
Holmstrup, M., and H.D. Hornum. 2012. Earthworm colonisation of
abandoned arable soil polluted by copper. Pedobiologia 55:63–65.
doi:10.1016/j.pedobi.2011.08.005
Irshad, U., C. Villenave, A. Brauman, and C. Plassard. 2011. Grazing by
nematodes on rhizosphere bacteria enhances nitrate and phosphorous
availability to Pinus pinaster seedlings. Soil Biol. Biochem. 43:2121–2126.
ISO. 1998. Method 13878: Soil quality: Determination of total nitrogen content
by dry combustion (“elemental analysis”). ISO, Geneva, Switzerland.
http://www.iso.org/iso/.
Iversen, B.V., P. Schjønning, T.G. Poulsen, and P. Moldrup. 2001. In
site, on-site, and laboratory measurements of soil air permeability:
Boundary conditions and measurement scale. Soil Sci. 166:97–106.
doi:10.1097/00010694-200102000-00003
Janvier, C., F. Villeneuve, C. Alabouvette, E. Hermann, M. Thierry, and C.
Steinberg. 2007. Soil health through soil disease suppression: Which
strategy from descriptors to indicators? Soil Biol. Biochem. 9:957–961.
Jeffery, S., C. Gardi, A.Jones, L.Montanarella, L.Marmo, L.Miko, et al. 2010 The
European atlas of soil biodiversity. Publ. Office Eur. Union, Luxembourg.
Lavelle, P., and A.V. Spain. 2001. Soil ecology. Kluwer Acad. Publ., Dordrecht,
the Netherlands.
Lee, T.C., R.L. Kashyap, and C.N. Chu. 1994. Building skeleton models via 3-D
medial surface axis thinning algorithms. CVGIP: Graph. Models Image
Process. 56:462–478. doi:10.1006/cgip.1994.1042
Li, Q., Y. Jiang, and W.J. Liang. 2006. Effect of heavy metals on soil nematode
communities in the vicinity of a metallurgical factory. J. Environ. Sci.
18:323–328.
Lindquist, W.B. 2010. 3DMA-Rock, a software package for automated analysis
of rock pore structure in 3D computed microtomography images. http://
www.ams.sunysb.edu/~lindquis/3dma/3dma_rock/3dma_rock.html
(accessed 31 Jan. 2010).
Lindquist, W.B., and A.B. Venkatarangan. 1999. Investigating 3D geometry of
porous media from high resolution images. Phys. Chem. Earth 24:593–
599. doi:10.1016/S1464-1895(99)00085-X
Lubbers, I.M., K.J. van Groenigen, S.J. Fonte, J. Six, L. Brussaard, and J.W. van
Groenigen. 2013. Greenhouse-gas emissions from soils increased by
earthworms. Nat. Clim. Change 3:187–194. doi:10.1038/nclimate1692
Maestre, F.T., J.L. Quero, N.J. Gotelli, A. Escudero, V. Ochoa, M.
Delgado-Baquerizo, et al. 2012. Biodiversity enhances ecosystem
multifunctionality in the world’s drylands. Science 335:214–217.
doi:10.1126/science.1215442
Martin, K.J., and P.T. Rygiewicz. 2005. Fungal-specific PCR primers developed
for analysis of the ITS region of environmental DNA extracts. BMC
Microbiol. 5:28. doi:10.1186/1471-2180-5-28
Mertens, J., S.A. Wakelin, K. Broos, M.J. McLaughlin, and E. Smolders. 2010.
Extent of copper tolerance and consequences for functional stability of the
ammonia-oxidizing community in long-term copper contaminated soils.
Environ. Toxicol. Chem. 29:27–37. doi:10.1002/etc.16
Midgley, G.F. 2012. Biodiversity and ecosystem function. Science 335:174–175.
doi:10.1126/science.1217245
Miltner, A., P. Bombach, B. Schmidt-Brucken, and M. Kästner. 2012. SOM
genesis: Microbial biomass as a significant source. Biogeochemistry
111:41–51. doi:10.1007/s10533-011-9658-z
Neher, D.A., K.N. Easterling, D. Fiscus, and C.L. Campbell. 1998.
Comparison of nematode communities in agricultural soils
of North Carolina and Nebraska. Ecol. Appl. 8:213–223.
doi:10.1890/1051-0761(1998)008[0213:CONCIA]2.0.CO;2
Nelson, D.W., and I.E. Sommers. 1996. Total carbon, organic carbon, and organic
matter. In: D.L. Sparks, editor, Methods of soil analysis. Part 3. Chemical
methods. SSSA Book Ser. 5. SSSA and ASA, Madison, WI. p. 961–1010.
Nielsen, U.N., E. Ayres, D.H. Wall, and R.D. Bardgett. 2011. Soil biodiversity
and carbon cycling: A review and synthesis of studies examining
diversity–function relationships. Eur. J. Soil Sci. 62:105–116.
doi:10.1111/j.1365-2389.2010.01314.x
Pennell, K.D. 2002. Specific surface area. In: J.H. Dane and G.C. Topp, editors,
Methods of soil analysis. Part 4. SSSA Book Ser. 5. SSSA and ASA,
Madison, WI. p. 308–313.
Philippot, L., A. Spor, C. Henault, D. Bru, F. Bizouard, C.M. Jones, et al. 2013.
Loss in microbial diversity affects nitrogen cycling in soil. ISME J. 7:1609–
1619. doi:10.1038/ismej.2013.34
Porazinska, D.L., R.M. Giblin-Davis, L. Faller, W. Farmerie, N. Kanzaki, K.
Morris, et al. 2009. Evaluating high throughput sequencing as a method for
metagenomic analysis of nematode diversity. Mol. Ecol. Resour. 9:1439–
1450. doi:10.1111/j.1755-0998.2009.02611.x
Rajapaksha, R.M.C.P., M.A. Tobor-Kaplon, and E. Baath. 2004. Metal toxicity
affects fungal and bacterial activities in soil differently. Appl. Environ.
Microbiol. 70:2966–2973. doi:10.1128/AEM.70.5.2966-2973.2004
Rhoades, J.D. 1982. Cation exchange capacity. In: A.L. Page et al., editors,
Methods of soil analysis. Part 2. Chemical and microbiological properties.
2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI. p. 149–157.
Robinson, D.A., N. Hockley, E. Dominati, I. Lebron, K.M. Scow, B. Reynolds,
et al. 2012. Natural capital, ecosystem services, and soil change: Why soil
science must embrace an ecosystems approach. Vadose Zone J. 11(1).
doi:10.2136/vzj2011.0051
Rosin, P., and E. Rammler. 1933. Laws governing the fineness of powdered coal.
J. Inst. Fuel 7:29–36.
Rutgers, M., A.J. Schouten, J. Bloem, N.V. Eekeren, R.G.M. de Goede, G.A.J.M.
Jagers op Akkerhuis, and A. van der Wal. 2009. Biological measurements
in a nationwide soil monitoring network. Eur. J. Soil Sci. 60:820–832.
doi:10.1111/j.1365-2389.2009.01163.x
Salamun, P., M. Renco, E. Kucanova, T. Brazova, I. Papajova, D. Miklisova,
and V. Hanzelova. 2012. Nematodes as bioindicators of soil
degradation due to heavy metals. Ecotoxicology 21:2319–2330.
doi:10.1007/s10646-012-0988-y
Sauvé, S. 2006. Copper inhibition of soil organic matter decomposition in
a seventy-year field exposure. Environ. Toxicol. Chem. 25:854–857.
doi:10.1897/04-575R.1
Schjønning, P., M. Eden, P. Moldrup, and L.W. de Jonge. 2013. Two-chamber,
two-gas and one-chamber, one-gas methods for measuring the soil-gas
diffusion coefficient: Validation and inter-calibration. Soil Sci. Soc. Am. J.
77:729–744. doi:10.2136/sssaj2012.0379
Schnürer, J., and T. Rosswall. 1982. Fluorescein diacetate (FDA) hydrolysis
as a measure of total microbial activity in soil and litter. Appl. Environ.
Microbiol. 43:1256–1261.
Schutter, M.E., J.M. Sandero, and R.P. Dick. 2001. Seasonal, soil type,
and alternative management influences on microbial communities
of vegetable cropping systems. Biol. Fertil. Soils 34:397–410.
doi:10.1007/s00374-001-0423-7
Sims, R., and B.Gerard. 1985. Synopses of the British fauna.Vol. 31. Earthworms.
Field Studies Council, Shrewsbury, UK.
Stobrawa, K., and G. Lorenc-Plucinska. 2008. Thresholds of heavy-metal toxicity
in cuttings of European black poplar (Populus nigra L.) determined
according to antioxidant status of fine roots and morphometrical disorders.
Sci. Total Environ. 390:86–96. doi:10.1016/j.scitotenv.2007.09.024
Strandberg, B.J., M. Axelsen, J.J. Pedersen, and M. Attrill. 2006. Effect of a
copper gradient on plant community structure. Environ. Toxicol. Chem.
25:743–753. doi:10.1897/04-582R.1
Tilman, D., P.B. Reich, and F. Isbell. 2012. Biodiversity impacts ecosystem
productivity as much as resources, disturbance, or herbivory. Proc. Natl.
Acad. Sci. 109:10394–10397. doi:10.1073/pnas.1208240109
Tuller, M., and D. Or. 2005. Water films and scaling of soil characteristic
curves at low water contents. Water Resour. Res. 41:W09403.
doi:10.1029/2005WR004142
Wakelin, S.A., G. Chu, R. Lardner, Y. Liang, and M. McLaughlin. 2010. A
single application of Cu to field soil has long-term effects on bacterial
community structure, diversity, and soil processes. Pedobiologia 53:149–
158. doi:10.1016/j.pedobi.2009.09.002
Wardle, D.A., R.D. Bardgett, J.N. Klironomos, H. Setälä, W.H. van
der Putten, and D.H. Hall. 2004. Ecological linkages between
aboveground and belowground biota. Science 304:1629–1633.
doi:10.1126/science.1094875
Yang, X.-E, X.X. Long, W.-Z. Ni, Z.-Q. Ye, Z.-L. He, P.J. Stoffella, and D.V.
Calvert. 2002. Assessing copper thresholds for phytotoxicity and potential
dietary toxicity in selected vegetable crops. J. Environ. Sci. Health, Part B
37:625–635. doi:10.1081/PFC-120015443
Young, I.M., and J.W. Crawford. 2004. Interactions and self-organization
in the soil–microbe complex. Science 304:1634–1637.
doi:10.1126/science.1097394