Ahuja, L. R., Naney, J. W., Green, R. E., and Nielsen, D. R.: Macroporosity to characterize spatial variability of hydraulic conductivity and effects of land management, Soil Sci. Soc. Am. J., 48, 699–702, 1984. Bouma, J.: Comments on micro- meso- and macroporosity of soil, Soil Sci. Soc. Am. J., 45, 1244–1245, 1981. Buckingham, E.: Contributions to our knowledge of the aerations of soils. Bur. Soil Bull. 25. US Gov. Print. Office, Washington, DC, 1904. Chamindu Deepagoda, T. K. K., Moldrup, P., de Jonge, L. W., Kawamoto, K., and Komatsu, T.: Density-corrected models for gas diffusivity and air permeability in unsaturated soil, Vadose Zone J., 10, 226–238, 2011. Chen, C. W., Luo, J., and Parker, K. J.: Image segmentation via adaptive K-mean clustering and knowledge-based morphological operations with biomedical applications. IEEE T. Image Process., 7, 1673–1683, 1998. Cosby, B. J., Hornberger, G. M., Clapp, R. B., and Ginn, T. R.: A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils, Water Resour. Res., 20, 682–690, 1984. de Jonge, L. W., Moldrup, P., Rubaek, G. H., Schelde, K., and Djurhuus, J.: Particle leaching and particle-facilitated transport of phosphorus at field scale, Vadose Zone J., 3, 462–470, 2004. Dougherty, R. and Kunzelmann, K.: Computing local thickness of 3D structures with Image J, Microsc. Microanal., 13, 1678–1679, 2007. Elliot, T. R., Reynolds, W. D., and Heck, R. J.: Use of existing pore models and X-ray computed tomography to predict saturated soil hydraulic conductivity, Geoderma, 156, 133–142, 2010. Feldkamp, L. A., Davis, L. C., and Kress, J. W.: Practical conebeam algorithm, J. Opt. Soc. Am., 1, 612–619, 1984. Fox, G. A., Malone, R., Sabbagh, G. J., and Rojas, K.: Interrelationship of macropores and subsurface drainage for conservative tracer and pesticide transport, J. Environ. Qual., 33, 2281–2289, 2004. Geological Survey of Denmark and Greenland: Digitalt kort over Danmarks jordarter 1 : 200000; GEUS rapport 1999/47, Geological Survey of Denmark and Greenland, Copenhagen, Denmark, 1999 (in Danish). Gonzalez-Sosa, E., Braud, I., Dehotin, J., Lassabatere, L., AnguloJaramillo, R., Lagouy, M., Branger, F., Jacqueminet, C., Kermadi, S., and Michel, K.: Impact of land use on the hydraulic properties of the topsoil in a small French catchment, Hydrol. Process., 24, 2382–2399, 2010. Hu, W., Shao, M. A., and Si, B. C.: Seasonal changes in surface bulk density and saturated hydraulic conductivity of natural landscapes, Eur. J. Soil Sci., 63, 820–830, 2012. Hu, Y., Feng, J., Yang, T., and Wang, C.: A new method to characterize the spatial structure of soil macropore networks in effects of cultivation using computed tomography, Hydrol. Process., 28, 3419–3431, 2014. Iassonov, P. and Tuller, M.: Application of segmentation for correction of intensity bias in X-ray computed tomography images, Vadose Zone J., 9, 187–191, 2010. Iassonov, P., Gebrenegus, T., and Tuller, M.: Segmentation of X-ray computed tomography images of porous materials: A crucial step for characterization and quantitative analysis of pore structures, Water Resour. Res., 45, W09415, doi:10.1029/2009WR008087, 2009. Iqbal, J., Thomasson, J. A., Jenkins, J. N., Owens, P. R., and Whisler, F. D.: Spatial variability analysis of soil physical properties of alluvial soils, Soil Sci. Soc. Am. J., 69, 1338–1350, 2005. Iversen, B. V., Schjønning, P., Poulsen, T. G., and Moldrup, P.: In situ, on-site and laboratory measurements of soil air permeability: Boundary conditions and measurement scale, Soil Sci., 166, 97–106, 2001. Iversen, B. V., Børgesen, C. D., Lægdsmand, M., Greve, M. H., Heckrath, G., and Kjærgaard, C.: Risk predicting of macropore flow using pedotransfer functions, textural maps, and modeling, Vadose Zone J., 10, 1185–1195, 2011. Jarvis, N., Koestel, J., Messing, I., Moeys, J., and Lindahl, A.: In- fluence of soil, land use and climatic factors on the hydraulic conductivity of soil, Hydrol. Earth Syst. Sci., 17, 5185–5195, doi:10.5194/hess-17-5185-2013, 2013. Jarvis, N. J.: A review of non-equilibrium water flow and solute transport in soil macropores: Principles, controlling factors and consequences for water quality, Eur. J. Soil Sci., 58, 523–546, 2007. Jarvis, N. J., Moeys, J., Hollis, J. M., Reichenberger, S., Lindahl, A. M. L., and Dubus, I. G.: A conceptual model of soil susceptibility to macropore flow, Vadose Zone J., 8, 902–910, 2009. Jassogne, L., McNeill, A., and Chittleborough, D.: 3D visualization and analysis of macro- and meso-porosity of the upper horizons of sodic, texture-contrast soil, Eur. J. Soil Sci., 58, 589–598, 2007. Katuwal, S., Nørgaard, T., Moldrup, P., Lamandé, M., Wildenschild, D., and de Jonge, L. W.: Linking air and water transport in intact soils to macropore characteristics inferred from X-ray computed tomography, Geoderma, 237–238, 9–20, 2015. Kawamoto, K., Moldrup, P., Schjønning, P., Iversen, B. V., Komatsu, T., and Rolston, D. E.: Gas transport parameters in the vadose zone: Development and test of power-law models for air permeability, Vadose Zone J., 5, 1205–1215, 2006. Klute, A. and Dirksen, C.: Hydraulic conductivity and diffusivity: Laboratory methods. In Methods of Soil Analysis, Part 1, 2nd Edn. Physical and Mineralogical Methods, edited by: Klute, A., ASA-SSSA, Madison, WI, 687–734, 1986. Kulkarni, R., Tuller, M., Fink, W., and Wildenschild, D.: Threedimensional multiphase segmentation of X-ray CT data of porous materials using a Bayesian Markov random field framework, Vadose Zone J., 11, doi:10.2136/vzj2011.0082, 2012. Larsbo, M., Koestel, J., and Jarvis, N.: Relations between macropore network characteristics and the degree of preferential solute transport, Hydrol. Earth Syst. Sci., 18, 5255–5269, doi:10.5194/hess-18-5255-2014, 2014. Lilly, A., Nemes, A., Rawls, W. J., and Pachepsky, Y. A.: Probabilistic approach to the identification of input variables to estimate hydraulic conductivity, Soil Sci. Soc. Am. J., 72, 16–24, 2008. Luo, L., Lin, H., and Schmidt, J.: Quantitative relationships between soil macropore characteristics and preferential flow and transport, Soil Sci. Soc. Am. J., 74, 1929–1937, 2010. Moldrup, P., Poulsen, T. G., Schjønning, P., Olsen, T., and Yamaguchi, T.: Gas permeability in undisturbed soils: Measurements and predictive models, Soil Sci., 163, 180–189, 1998. Moldrup, P., Olesen, T., Gamst, J., Schjønning, P., Yamaguchi, T., and Rolston, D. E.: Predicting the gas diffusion coefficient in repacked soil: Water induced linear reduction model, Soil Sci. Soc. Am. J., 64, 1588–1594, 2000. Moustafa, M. M.: A geostatistical approach to optimize the determination of saturated hydraulic conductivity for large-scale subsurface drainage design in Egypt, Agr. Water Manage., 42, 291–312, 2000. Naveed, M.: Revealing soil architecture and quality: Linking stateof-the-art soil biophysicochemical measurements, visualizations, and simulations, PhD thesis, Aarhus University, Aarhus, 2014. Naveed, M., Moldrup, P., Arthur, E., Wildenschild, D., Eden, M., Lamandé, M., Vogel, H.-J., and de Jonge, L. W.: Revealing soil structure and functional macroporosity along a clay gradient using X-ray computed tomography, Soil Sci. Soc. Am. J., 77, 403– 411, 2013. Naveed, M., Moldrup, P., Arthur, E., Holmstrup, M., Nicolaisen, M., Tuller, M., Herath, L., Hamamoto, S., Kawamoto, K., Komatsu, T., Vogel, H.-J., and de Jonge, L. W.: Simultaneous Loss of Soil Biodiversity and Functions Along a Copper Contamination Gradient: When Soil Goes to Sleep, Soil Sci. Soc. Am. J., 78, 1239–1250, 2014a. Naveed, M., Moldrup, P., Vogel, H.-J., Lamandé, M., Wildenschild, D., Tuller, M., and de Jonge, L.W.: Impact of long-term fertilization practice on soil structure evolution, Geoderma, 217–218, 181–189, 2014b. Norgaard, T., Moldrup, P., Olesen, P., Vendelboe, A. L., Iversen, B. V., Greve, M. H., Kjaer, J., and de Jonge, L. W.: Comparative mapping of soil physical-chemical and structural parameters at field scale to identify zones of enhanced leaching risk, J. Environ. Qual., 42, 271–283, 2013. Paradelo, M., Moldrup, P., Arthur, E., Naveed, M., Holmstrup, M., López-Periago, J. E., and de Jonge, L. W.: Effects of Past Copper Contamination and Soil Structure on Copper Leaching from Soil, J. Environ. Qual., 42, 1852–1862, 2013. Pérèsa, G., Bellidoa, A., Curmib, P., Marmonierc, P., and Cluzeaua, D.: Relationships between earthworm communities and burrow numbers under different land use systems, Pedobiologia, 54, 37– 44, 2012. Quinton, W. L., Hayashi, M., and Carey, S. K.: Peat hydraulic conductivity in cold regions and its relation to pore size and geometry, Hydrol. Process., 22, 2829–2837, 2008. Raczkowski, C. W., Mueller, J. P., Busscher, W. J., Bell, M. C., and McGraw, M. L.: Soil physical properties of agricultural systems in a large-scale study, Soil Till. Res., 119, 50–59, 2012. Rasband, W. S.: ImageJ, U.S. National Institutes of Health, Bethesda, Maryland, USA, http://imagej.nih.gov/ij/ (last access: 4 October 2016), 1997–2016. Rawls, W. J., Gimenez, D., and Grossman, R.: Use of soil texture, bulk density and slope of the water retention curve to predict saturated hydraulic conductivity, T. ASAE, 41, 983–988, 1998. Revil, A. and Cathles, L. M.: Permeability of shaly sands, Water Resour. Res., 35, 651–662, 1999. Schaap, M. G., Leij, F. L., and van Genuchten, M. T.: Rosetta: A computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions, J. Hydrol., 251, 163–176, 2001. Schjønning, P., Eden, M., Moldrup, P., and de Jonge, L. W.: Twochamber, two-gas and one-chamber, one-gas methods for measuring the soil-gas diffusion coefficient: Validation and intercalibration, Soil Sci. Soc. Am. J., 77, 729–744, 2013. Sharma, P., Shukla, M. K., and Mexal, J. G.: Spatial variability of soil properties in agricultural fields of Southern New Mexico, Soil Sci., 176, 288–302, 2011. Tuller, M., Kulkarni, R., and Fink, W.: Segmentation of X-ray CT data of porous materials: A review of global and locally adaptive algorithms, edited by: Anderson, S. H. and Hopmans, J. W., Soil–water–root processes: Advances in tomography and imaging, SSSA Spec. Publ. 61. SSSA, Madison, WI, 157–182, 2013. USDA-NRCS Web Soil Survey 3.2: available at: http: //websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx (last access: 29 September 2016), 2010. Vereecken, H., Maes, J., Feyen, J., and Darius, P.: Estimating the soil moisture retention characteristic from texture, bulk density, and carbon content, Soil Sci, 148, 389–403, 1989. Vereecken, H., Weynants, M., Javaux, M., Pachepsky, Y., Schaap, M. G., and van Genuchten, M. T.: Using pedotransfer functions to estimate the van Genuchten-Mualem soil hydraulic properties: a review, Vadose Zone J., 9, 795–820, 2010. Vogel, H.-J.: A numerical experiment on pore size, pore connectivity, water retention, permeability, and solute transport using network models, Eur. J. Soil Sci., 51, 99–105, 2000. Vogel, H.-J., Weller, U., and Schlüter, S.: Quantification of soil structure based on Minkowski functions, Comput. Geosci., 36, 1236–1245, 2010. Wang, Y., Shao, M., Liu, Z., and Horton, R.: Regional-scale variation and distribution patterns of soil saturated hydraulic conductivities in surface and subsurface layers in the loessial soils of China, J. Hydrol., 487, 13–23, 2013. Weynants, M., Vereecken, H., and Javaux, M.: Revisiting Vereecken pedotransfer functions: Introducing a closed-form hydraulic model, Vadose Zone J., 8, 86–95, 2009. Wösten, J. H. M., Lilly, A., Nemes, A., and Bas, C. L.: Development and use of a database of hydraulic properties of European soils, Geoderma, 90, 169–185, 1999. Wildenschild, D. and Sheppard, A.: X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems, Adv. Water Resour., 51, 217–246, 2013.