1. Clark MR, Gillespie R, Kemp T, McCann DM, Forde MC. Electromagnetic properties of railway ballast. NDTE Int 2001;34:305–11.
2. Roberts R, Al-Qadi I, Tutumluer E, Boyle J, Sussmann TR. Advances in railroad ballast evaluation using 2 GHz horn antennas. Proceedings of the 11th International Conference on Ground Penetrating Radar, Columbus, OH., USA, 2006.
3. Selig ET, Collingwood BI, Field SW. Causes of fouling in track. AREA Bulletin 1998;71.
4. Shao W, Bouzerdoum A, Phung SL, Su L, Indratatna B, Rujikiatkamjorn C. Automatic classification of ground-penetrating-radar signals for railway-ballast assessment. IEEE T Geosci Remote 2010;49(10):3961–72.
5. Cho GC, Dodds J, Santamaria JC. Particle shape effects on packing density, stiffness and strength of natural and crushed sands. J Geotech Geoenviron 2006;132(5):591-602.
6. Sun Y, Indraratna B, Nimbalkar S. Three-dimensional characterisation of particle size and shape for ballast. Géotechnique Letters 2014;4(3):197-202.
7. Tosti F, Pajewski L. Applications of radar systems in planetary sciences: an overview. Chapt. 15 - Civil Engineering Applications of GPR, Springer Trans. in Civ. and Environm. Eng. Book Series. 2015;361–371.
8. Benedetto A, Pajewski L. Civil Engineering Applications of Ground Penetrating Radar. Springer Transactions in Civil and Environmental Engineering Book Series, 2015.
9. Benson AK. Applications of ground penetrating radar in assessing some geological hazards: examples of groundwater contamination, faults, cavities. J Appl Geophys 2001:33(1-3);177–93.
10. Goodman D. Ground-penetrating radar simulation in engineering and archaeology. Geophysics 1994:59(2);224-32.
11. Schultz JJ, Collins ME, Falsetti AB. Sequential monitoring of burials containing large pig cadavers using ground-penetrating radar. J Foren Sci 2006:51(3);607-16.
12. Saarenketo T, Scullion T. Road Evaluation with Ground Penetrating Radar. J Appl Geophys 2000:43;119–38.
13. Al-Qadi IL, Lahouar S. Use of GPR for thickness measurement and quality control of flexible pavements. J Ass Asph Paving Technologists 2004:73;501–528.
14. Fauchard C, Dérobert X, Cariou J, and Côte P. GPR performances for thickness calibration on road test sites. NDTE Int 2003:36(2);67-75.
15. Loizos A, Plati C. Accuracy of pavement thicknesses estimation using different ground penetrating radar analysis approaches. NDTE Int 2007:40(2);147-157.
16. Tosti F, Adabi S, Pajewski L, Schettini G, Benedetto A. Large-scale analysis of dielectric and mechanical properties of pavement using GPR and LFWD. in Proceedings of the 15th International Conference of Ground Penetrating Radar (GPR 2014), Brussels, Belgium, Jun. – Jul. 2014, Paper no. 6970551, pp. 868-873.
17. Benedetto A, Tosti F. Inferring bearing ratio of unbound materials from dielectric properties using GPR: the case of Runaway Safety Areas. In Proceedings of the Airfield and Highway Pavement 2013: Sustainable and Efficient Pavements, Los Angeles, USA, June 2013, pp. 1336–1347.
18. Patriarca C, Tosti F, Velds C, Benedetto A, Lambot S, Slob EC. Frequency dependent electric properties of homogeneous multi-phase lossy media in the ground-penetrating radar frequency range. J Appl Geophys 2013: 1(97); 81–88.
19. Tosti F, Benedetto A, Bianchini Ciampoli L, Lambot S, Patriarca C, Slob EC. GPR analysis of clayey soil behaviour in unsaturated conditions for pavement engineering and geoscience applications. Near Surf Geophys 2016:14(2);127-144.
20. Al-Qadi IL, Lahouar S. Measuring rebar cover depth in rigid pavements with ground-penetrating radar. Transp Res Rec 2005: 1907; 81-85.
21. Benedetto A, Tosti F, Ortuani B, Giudici M, Mele M. Mapping the spatial variation of soil moisture at the large scale using GPR for pavement applications. Near Surf Geophys 2015:13(3);269-278.
22. Benedetto F, Tosti F. GPR spectral analysis for clay content evaluation by the frequency shift method. J Appl Geophys 2013:1(97);89–96.
23. Jørgensen AS, Andreasen F. Mapping of permafrost surface using ground-penetrating radar at Kangerlussuaq Airport, western Greenland. Cold Reg Sci Technol 2007:48(1);64–72.
24. Benedetto A, Manacorda G, Simi A, Tosti F. Novel perspectives in bridge inspections using GPR. Nondestruct Test Eva 2012:27(3);239–251.
25. Alani AM, Aboutalebi M, Kilic G. Applications of ground penetrating radar (GPR) in bridge deck monitoring and assessment. J Appl Geophys 2013:97;45-54.
26. Alani AM, Banks K. Applications of ground penetrating radar in the Medway Tunnel - Inspection of structural joints. In Proceedings of the 15th International Conference of Ground Penetrating Radar (GPR 2014), Brussels, Belgium, Jun. – Jul. 2014, art. no. 6970466, pp. 461–464.
27. Roberts R, Schutz A, Al-Qadi IL, Tutumluer E. Characterizing railroad ballast using GPR: recent experiences in the United States. In Proceedings of the 2007 4th International Workshop on Advanced Ground Penetrating Radar (IWAGPR 2007), Naples, Italy, 2007, pp. 295–299.
28. Railway Track and Structures Magazine, June 1985.
29. Hugenschmidt J. Railway track inspection using GPR. J Appl Geophys 2000:43(2-4);147–55.
30. Olhoeft GR, Selig ET. Ground penetrating radar evaluation of railroad track substructure conditions. In Proceedings of the 9th International Conference on Ground Penetrating Radar (GPR 2002), Santa Barbara, USA, Apr. – May 2002.
31. Leng Z, Al-Qadi IL. Railroad ballast evaluation using ground-penetrating radar. Transp Res Rec 2010:2159;1110–17.
32. Sussmann TR, O’Hara KR, Selig ET. Development of material properties for railway application of ground penetrating radar. In Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE), vol. 4758, 2002.
33. De Chiara F. Improvement of railway track diagnosis using ground penetrating radar. PhD Thesis, 2014.
34. Tosti F, Patriarca C, Slob E, Benedetto A, Lambot S. Clay content evaluation in soils through GPR signal processing. J Appl Geophys 2013:97;69-80.
35. Redman J, Davis J, Galagedara L, Parkin G. Field studies of GPR air launched surface reflectivity measurements of soil water content. In Proceedings of the 9th International Conference on Ground Penetrating Radar (GPR 2002), Santa Barbara, California, USA, 2002, art. no. 4758, pp. 156-161.
36. ASTM D6087-08. Standard Test Method for Evaluating Asphalt-Covered Concrete Bridge Decks Using Ground Penetrating Radar. ASTM International, West Conshohocken, PA, 2008.
37. F. Benedetto, F. Tosti, A signal processing methodology for assessing the performance of ASTM standard test methods for GPR systems, Signal Process. 132 (2017) 327–337.
38. Pramudita.A.A, Kurniaawal.A,Suksmono.A.B, Lestari.A.A, “Effect of antenna dimensions on the antenna footprint in ground penetrating radar applications,” Microwaves, IET Antennas & Propagation, IET.Volume:3 , Issue: 8, pp.1271 - 1278 ,2009
39. Birchak JR, Gardner CG, Hipp JE, Victor JM. High dielectric constant microwave probes for sensing soil moisture. In Proceedings of the IEEE 62, (1974) 93–102.
40. West, L. J., K. Handley, Y. Huang, and M. Pokar, “Radar frequency dispersion in sandstone: Implication for determination of moisture and clay content,” Water Resources Research, Vol. 39, 1026, 2003.
41. Roth, K., R. Schulin, H. Fluher, and W. Attinger, “Calibration of time-domain reflectometry for water content measurement using a composite dielectric approach,” Water Resources Research, Vol. 26, No. 10, 2267–2273, 1990.
42. Lichtenecker, K., Rother, K., 1931. Die herleitung des logarithmischen mischungsgesetzes aus allgemeinen prinzipien der stätionaren strömung. Physik Z. 32, 255–260.
43. Zakri, T., J. P. Laurent, and M. Vauclin, “Theoritical evidence for ‘Lichtenecker’s mixture formulae,’ based on effective medium theory,” Journal of Physics D: Applied Physics, Vol. 31, 1589– 1594, 1998.
44. Brovelli, A. and G. Cassiani, “Effective permittivity of porous media: A critical analysis of the complex refractive index model,” Geophysical Prospecting, Vol. 56, 715–727, 2008.
45. Fensler WE, Knott EF, Olte A, Siegel KM. The electromagnetic parameters of selected terrestrial and extraterrestrial rocks and glasses. The moon, (Kopal, Z., and Mikhailov, Z.K., Ed) IAU Symposium 14, 545-565.
46. Annan AP. Practical processing of GPR data, Sensors and Software Inc., 1999.
47. Jol H. Ground Penetrating Radar, Ed. Elsevier, 2009.
48. Yelf R, Yelf D. Where is true time zero? Electromagn Phenom 2006:71(18);159–63.
49. Benedetto A, Tosti F, Bianchini Ciampoli L, D’Amico F. An overview of ground-penetrating radar signal processing techniques for road inspections. Signal Process 2017:132;201-209.
50. Pajewski L, Tosti F, Kusayanagi W. Antennas for GPR Systems. Chapter 2 - Civil Engineering Applications of Ground Penetrating Radar, Springer Transactions in Civil and Environmental Engineering Book Series, 41–67, 2015.
51. Benedetto A, Tosti F, Bianchini Ciampoli L, Calvi A, Brancadoro MG, Alani AM. Railway ballast condition assessment using ground-penetrating radar – an experimental, numerical simulation and modelling development. Constr Build Mater 2016;140:508–20.
52. Bianchini Ciampoli L, Tosti F, Brancadoro MG, D’Amico F, Alani AM, Benedetto A. A spectral analysis of ground-penetrating radar data for the assessment of the railway ballast geometric properties. NDTE Int 2017:90; 39-47.
53. D.J. Daniels, Ground Penetrating Radar, The Institution of Electrical Engineers, London, 2004.
54. Federal Communications Commission Office of Engineering & Technology. 1997. Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields, OET Bulletin 65, Edition 97-01.
55. Bianchini Ciampoli, L., D’Amico, F., Calvi, A., Benedetto, F. and Tosti, F. (2017). Signal processing for optimisation of low-powered GPR data with application in transportation engineering (roads and railways). In: Proc. of the Tenth International Conference on the Bearing Capacity of Roads, Railways and Airfields (BCRRA 2017), June 28-30, Athens, Greece. https://doi.org/10.1201/9781315100333-223
56. EN 13450:2002/AC:2004. Aggregates for railway ballast. Europ. Comm. for Standardization, 2004.
57. EN 1097-3:1998. Tests for mechanical and physical properties of aggregates - Part 3: Determination of loose bulk density and voids. Europ. Comm. for Standardization, 1998.
58. CEN ISO/TS 17892-1:2014. Geotechnical investigation and testing - Laboratory testing of soil - Part 1: Determination of water content (ISO 17892-1:2014). Europ. Comm. for Standardization, 2014.
59. EN 933-1:2012. Tests for geometrical properties of aggregates - Part 1: Determination of particle size distribution -Sieving method. Europ. Comm. for Standardization, 2012.
60. EN 933-4:2008. Tests for geometrical properties of aggregates - Part 4: Determination of particle shape - Shape index. European Committee for Standardization, 2008.
61. EN 1097-2:2010. Tests for mechanical and physical properties of aggregates - Part 2: Methods for the determination of resistance to fragmentation. Europ. Comm. for Standardization, 2010.
62. EN1097-6:2013. Tests for mechanical and physical properties of aggregates-Part 6:Determination of particle density and water absorption. Europ Comm for Stand, 2013.
63. Narayanan RM, Kumke CJ, Li D. Railroad track monitoring using ground penetrating radar: simulation study and field measurements. In: SPIE conference on subsurface sensors and applications, 1999, p. 3752.
64. Al-Qadi IL, Xie W, Roberts R. Scattering analysis of ground-penetrating radar data to quantify railroad ballast contamination. NDT&E Int 2008:41;441-47.
65. Lambot S, Antoine M, Vanclooster M, Slob EC. Effect of soil roughness on the inversion of off-ground monostatic GPR signal for noninvasive quantification of soil properties. Water Resour Res 2006:42(3).
66. Reynolds, J.M., 1997, An lntroduction to Applied and Environmental Geophysics, John Wiley and Sons, Chichester.