[1] T. Saarenketo, T. Scullion, Road evaluation with ground penetrating radar, J. Appl. Geophys. 43 (2–4) (2000) 119-138. https://doi.org/10.1016/S0926-9851(99)00052-X.
[2] C. Fauchard, X. Dérobert, et al., GPR performances for thickness calibration on road test sites, NDT&E Int. 36 (2003) 67-75. https://doi.org/10.1016/S0963-8695(02)00090-7.
[3] I.L. Al-Qadi, S. Lahouar, Measuring layer thicknesses with GPR – Theory to practice, Constr. Build. Mater. 19 (10) (2005) 763-772. https://doi.org/10.1016/j.conbuildmat.2005.06.005.
[4] A. Loizos, C. Plati, Accuracy of pavement thicknesses estimation using different ground penetrating radar analysis approaches, NDT&E Int. 40 (2) (2007) 147-157. https://doi.org/10.1016/j.ndteint.2006.09.001.
[5] W.B. Muller, A network-level road investigation trial using Australian-made traffic-speed 3D ground penetrating radar (GPR) technology, in: 25th ARRB Conference, Perth, 2012.
[6] M. Graczyk, L. Krysiński, et al., The use of three-dimensional analysis of GPR data in evaluation of operational safety of airfield pavements, in 6th Transport Research Conference TRA2016 14, 2016, pp. 3704-3712. https://doi.org/10.1016/j.trpro.2016.05.490.
[7] S. Zhao, I.L. Al-Qadi., Development of an analytic approach utilizing the extended common midpoint method to estimate asphalt pavement thickness with 3-D ground-penetrating radar, NDT&E Int. 78 (2016) 29-36. https://doi.org/10.1016/j.ndteint.2015.11.005.
[8] A.K. Khamzin, A.V. Varnavina, et al., Utilization of air-launched ground penetrating radar (GPR) for pavement condition assessment, Constr. Build. Mater. 141 (2017) 130-139. https://doi.org/10.1016/j.conbuildmat.2017.02.105.
[9] J. Stryk, R. Matula, K. Pospisil, Possibilities of ground penetrating radar usage within acceptance tests of rigid pavements, J. Appl. Geophys. 97 (2013) 11-26. https://doi.org/10.1016/j.jappgeo.2013.06.013.
[10] C. Amer-Yahia, T. Majidzadeh, Approach to identify misaligned dowel and tie bars in concrete pavements using ground penetrating radar, Stud. Nondestr. Test. Eval. 2 (2014) 14-26. https://doi.org/10.1016/j.csndt.2014.06.001.
[11] J. Hugenschmidt, R. Mastrangelo, GPR inspection of concrete bridges, Cem. Concr. Compo. 28 (4) (2006) 384-392. https://doi.org/10.1016/j.cemconcomp.2006.02.016.
[12] A.M. Alani, M. Aboutalebi, et al., Integrated health assessment strategy using NDT for reinforced concrete bridges, NDT&E Int. 61 (2014) 80-94. https://doi.org/10.1016/j.ndteint.2013.10.001.
[13] A. Benedetto, G. Manacorda, et al., Novel perspectives in bridges inspection using GPR, Nondestr. Test. Eval. 27 (3) (2012) 239-251. https://doi.org/10.1080/10589759.2012.694883.
[14] X. Dérobert, B. Berenger, Case study: Expertise and reinforcement of a particular ribbed slab post-tensioned structure, Non-destr. Eval. Reinf Concr. Struct. 2 (2010) 574-584.
[15] P.J.S. Cruz, L. Topczewski, et al., Application of radar techniques to the verification of design plans and the detection of defects in concrete bridges, Struct. Infrastruct. Eng. 6 (4) (2010) 395-407. https://doi.org/10.1080/15732470701778506.
[16] A. Tarussov, M. Vandry, et al., Condition assessment of concrete structures using a new analysis method: Ground-penetrating radar computer-assisted visual interpretation, Constr. Build. Mater. 38 (2013) 1246-1254. https://doi.org/10.1016/j.conbuildmat.2012.05.026.
[17] F.I. Rial, H. Lorenzo, et al., Checking the signal stability in GPR systems and antennas, IEEE JSTARS 4 (4) (2011) 785-790. https://doi.org/10.1109/JSTARS.2011.2159779.
[18] W.L. Lai, T. Kind, et al., Frequency-dependent dispersion of high-frequency ground penetrating radar wave in concrete, NDT&E Int. 44 (3) (2011) 267-273. https://doi.org/10.1016/j.ndteint.2010.12.004.
[19] F. Benedetto, F. Tosti, A signal processing methodology for assessing the performance of ASTM standard test methods for GPR systems, Signal Process. 132 (2017) 327-337. https://doi.org/10.1016/j.sigpro.2016.06.030.
[20] A. Benedetto, F. Tosti, et al., An overview of ground-penetrating radar signal processing techniques for road inspections, Signal Process. 132 (2017) 201-209. https://doi.org/10.1016/j.sigpro.2016.05.016.
[21] L. Edwards, H.P. Bell, Comparative evaluation of nondestructive devices for measuring pavement thickness in the field, Int. J. Pavement Res. Technol. 9 (2) (2016) 102-111. https://doi.org/10.1016/j.ijprt.2016.03.001.
ASTM D6432-11: Standard Guide for Using the Surface Ground Penetrating Radar Method for Subsurface Investigation, 2011.
ASTM D4748-10 (2015): Standard Test Method for Determining the Thickness of Bound Pavement Layers Using Short-Pulse Radar, 2015.
ASTM D6087-08 (2015): Standard Test Method for Evaluating Asphalt-Covered Concrete Bridge Decks Using Ground Penetrating Radar, 2015.
B 10: Merkblatt über das Radarverfahren zur Zerstörungsfreien Prüfung im Bauwesen, Deutsche Gesellschaft für Zerstörungsfreie Prüfung e.V., DGZfP, 2008.
DMRB 7.3.2: Design Manual for Roads and Bridges - Data for Pavement Assessment - chapter 6: GPR, UK, Highway Agency, 2008.
DMRB 3.1.7: Design Manual for Roads and Bridges - Advice Notes on the Non-Destructive Testing of Highway Structures - chapter 3.5: GPR, UK, Highway Agency, 2006.
GS1601: Guidelines for pavement structural surveys, European GPR Association, 2016.
ME91/16: Methodologies for the use of ground-penetrating radar in pavement condition surveys, Belgian Road Research Centre, 2016.
TP 207: Accuracy trial - devices for measurements of road pavement characteristics, Czech technical specification of Ministry of Transport, 2017.
TP 233: GPR diagnostics of roads, Czech technical specification of Ministry of Transport, 2011.