1. Antagonist of Human D 1 Dopamine Receptor: qHTS. PubChem. National Institutes of Health. 2011. https://pubchem.ncbi.nlm.nih.gov/bioassay/504652 (accessed 2025-01-14) (PubChem AID: 504652)
2. PubChem. National Institutes of Health. https://pubchem.ncbi.nlm.nih.gov/docs/statistics (accessed 2025-01-14)
3. Aqueous Solubility from MLSMR Stock Solutions. PubChem. National Institutes of Health. 2010. https://pubchem.ncbi.nlm.nih.gov/bioassay/1996 (accessed 2025-01-14) (PubChem AID 1996)
4. Felli, I.C.; Pierattelli, R. 13C Direct Detected NMR for Challenging Systems. Chem. Rev. 2022, 122 (10), 9468-9496. DOI: 10.1021/acs.chemrev.1c00871
5. Bai, H.; Han, L.; Ma, H. Unraveling the Influence of the Carbon Skeleton Structure and Substituent Electronic Effects on the Nontraditional Intrinsic Luminescence Properties of Nonconjugated Polyolefins. Macromolecules. 2024, 57 (4), 1819-1828. DOI: 10.1021/acs.macromol.3c02131
6. NMRDB Tools for NMR spectroscopists; Predict 13C NMR. https://nmrdb.org/13c/index.shtml?v=v2.138.0 (accessed 2025-10-14)
7. Džeroski, S.; Schulze-Kremer, S.; Heidtke, K.R.; Siems, K.; Wettschereck, D. Diterpene Structure Elucidation from 13C NMR-Spectra with Machine Learning. In Intelligent Data Analysis in Medicine and Pharmacology Lavrač, N., Keravnou, E.T., Zupan, B. Eds.; The Springer International Series in Engineering and Computer Science Vol. 414; Springer, Boston, MA. US, 1997; pp. 207–225. DOI :10.1007/978-1-4615-6059-3_12
8. Xu, H.; Zhou, Z.; Hong, P. Enhancing Peak Assignment in 13C NMR Spectroscopy: A Novel Approach Using Multimodal Alignment. ArXiv. 2024. DOI:10.48550/arXiv.2311.13817
9. Williamson, D.; Ponte, S.; Iglesias, I.; Tonge, N.; Cobas, C.; Kemsley. E.K. (2024) Chemical Shift Prediction in 13C NMR Spectroscopy Using Ensembles of Message Passing Neural Networks (MPNNs). J. Magn. Reason. 2024, 368, 107795. DOI: 10.1016/j.jmr.2024.107795.
10. Duprat, F.; Ploix, J.L.; Dreyfus, G. Can Graph Machines Accurately Estimate 13C NMR Chemical Shifts of Benzenic Compounds? Molecules. 2024, 29(13), 3137. DOI: 10.3390/molecules29133137
11. CASPRE; CASPRE - 13C NMR Predictor. https://caspre.ca/ (accessed 2025-01-14)
12. Rigel, N.; Li, D.W.; Brüschweiler, R. COLMARppm: A Web Server Tool for the Accurate and Rapid Prediction of 1H and 13C NMR Chemical Shifts of Organic Molecules and Metabolites. Anal. Chem. 2024, 96 (2), 701-70. DOI: 10.1021/acs.analchem.3c03677
13. Meiler, J.; Will, M. Genius: A Genetic Algorithm for Automated Structure Elucidation from 13C NMR Spectra. J. Am. Chem. Soc. 2002, 124 (9), 1868-1870. DOI: 10.1021/ja0109388
14. Abramson, J.; Adler, J.; Dunger, J. et al. Accurate Structure Prediction of Biomolecular Interactions with AlphaFold 3. Nature. 2024, 630, 493–500. DOI: 10.1038/s41586-024-07487-w
15. Turzo, S.B.A.; Hantz, E.R.; Lindert, S. Applications of Machine Learning in Computer-aided Drug Discovery. QRB Discov. 2022, 3, e14. DOI: 10.1017/qrd.2022.12
16. Ivanova, M.L.; Russo, N.; Djaid, N.; Nikolic, K. Application of Machine Learning for Predicting G9a Inhibitors. Digit. Discov. 2024, 3(10), 2010-2018. DOI: 10.1039/d4dd00101j.
17. Dara, S.; Dhamercherla, S.; Jadav, S.S.; Babu, C.H.M.; Ahsan, M.J. Machine Learning in Drug Discovery: A Review. Artif. Intell. Rev. 2022, 55, 1947–1999. DOI: 10.1007/s10462-021-10058-4
18. Kim, H.J.; Cho, Y.S.; Koh, H.Y.; Kong, J.Y.; No, K.T.; Pae, A.N. Classification of Dopamine Antagonists Using Functional Feature Hypothesis and Topological Descriptors. Bioorg. Med. Chem. 2006, 14(5), 1454-1461. DOI: 10.1016/j.bmc.2005.09.072
19. Sobodu, T.; Yusuf, A.; Kiel, D.; Kong, D. Discrimination vs. Generation: The Machine Learning Dichotomy for Dopaminergic Hit Discovery. ArXiv. 2024. DOI: arxiv.org/pdf/2409.12495
20. Fujishima, S.; Takahashi, Y.; Nishikori. K.; Katoh, T.; Okada, T. Extended Study of the Classification of Dopamine Receptor Agonists and Antagonists using a TFS-based Support Vector Machine. New Gener. Comput. 2007, 25, 203–212. DOI: 10.1007/s00354-007-0012-x
21. Ivanova, M. L; Russo, N.; Nikolic, K. Predicting Novel Pharmacological Activities of Compounds Using PubChem IDs and Machine Learning (CID-SID ML Model). ArXiv. 2025. DOI: 10.48550/arXiv.2501.02154
22. Gnip P, Vokorokos L and Drotár P (2021) Selective Oversampling Approach for Strongly Imbalanced Data. PeerJ Comput. Sci. 2021, 18(7), e604. DOI: 10.7717/peerj-cs.604
23. Scikit-learn Home Page https://scikit-learn.org/stable/index.html (accessed 2025-01-14)
24. Cunningham, P.; Delany, S. J. K-Nearest Neighbour Classifiers - A Tutorial. ACM Comput. Surv. 2021, 54(6): Article 128 (July 2022), 25 pages. DOI: 10.1145/3459665
25. Manzali, Y.; Elfar, M. Random Forest Pruning Techniques: A Recent Review. Oper. Res. Forum. 2023, 4 (2), 43. DOI: 10.1007/s43069-023-00223-6
26. Bentéjac, C.; Csörgő, A.; Martínez-Muñoz, D. A Comparative Analysis of Gradient Boosting Algorithms. Artif. Intell. Rev. 2021, 54, 1937–1967. DOI: 10.1007/s10462-020-09896-5
27. Klusowski. J. M.; Tian, P. M. Large Scale Prediction with Decision Trees. J. Am. Stat. Assoc. 2024, 119(545), 525-537. DOI: 10.1080/01621459.2022.2126782
28. Mushava, J.; Murray, M. (2024) Flexible Loss Functions for Binary Classification in Gradient-Boosted Decision Trees: An Application to Credit Scoring. Expert. Syst. Appl., 2024, 238, 121876. DOI: 10.1016/j.eswa.2023.121876
29. Guido, R.; Ferrisi, S.; Lofaro, D.; Conforti, D. An Overview on the Advancements of Support Vector Machine Models in Healthcare Applications: A Review. Information., 2024, 15(4), 235. DOI: 10.3390/info15040235
30. Rainio, O.; Teuho, J.; Klén, R. Evaluation Metrics and Statistical Tests for Machine Learning. Sci. Rep. 2024, 14, 6086. DOI: 10.1038/s41598-024-56706-x
31. Panda, B. Hyperparameter Tuning. Research Gate. 2019. DOI: 10.13140/RG.2.2.11820.21128
32. Akiba, T.; Sano, S.; Yanase, T.; Ohta, T.; Koyama, M. Optuna: A Next-generation Hyperparameter Optimization Framework. ArXiv, 2019. DOI: 10.48550/arXiv.1907.10902
33. RandomOverSampler Imbalanced Learn https://imbalanced-learn.org/dev/references/generated/imblearn.over_sampling.RandomOverSampler.html (accessed 2025-01-14)