[1] Jacobsen, N. E. NMR Spectroscopy Explained: Simplified Theory, Applications and Examples for Organic Chemistry and Structural Biology, 2007, John Wiley & Sons, Inc., DOI: 10.1002/9780470173350
[2] Marion, D. An introduction to biological NMR spectroscopy. Mol. Cel. Proteomics 2013, 12 (11), 3006-25, DOI: 10.1074/mcp.o113.030239
[3] Williamson, D.; Ponte, S.; Iglesias, I.; Tonge, N.; Cobas, C.; Kemsley, E. K. Chemical shift prediction in 13C NMR spectroscopy using ensembles of message passing neural networks (MPNNs). J. Magn. Reson. 2024, 368, 107795, DOI: 10.1016/j.jmr.2024.107795
[4] Rull, H.; Fischer, M.; Kuhn, S. NMR shift prediction from small data quantities. Jornal of Cheminform. 2023, 15, 114, DOI: 10.1186/s13321-023-00785-x
[5] Cortés, I.; Cuadrado, C.; Hernández D. A.; Sarotti, A. M. Machine learning in computational NMR-aided structural elucidation. Front. Nat. Prod. 2023, 2, 1122426, DOI: 10.3389/fntpr.2023.1122426
[6] Klukowski, P.; Riek, R.; Güntert, P. Time-optimized protein NMR assignment with an integrative deep learning approach using AlphaFold and chemical shift prediction.Sci. Adv. 2023, 9, eadi9323. DOI:10.1126/sciadv.adi9323
[7] Bret, C. L. (2000). A General 13C NMR Spectrum Predictor Using Data Mining Techniques. SAR QSAR Environ. Res. 2000, 11(3–4), 211–234, DOI: 10.1080/10629360008033232
[8] Jonas, E.; Kuhn, S.; Schlörer, N; Prediction of chemical shift in NMR: A review. Magn Reson Chem. 2022, 60(11), 1021-1031. DOI: 10.1002/mrc.5234
[9] Jonas, E.; Kuhn. S.; Schlörer, N. Prediction of chemical shift in NMR: A review, Magn. Reson. Chem. 2022, 60(11), 1021, DOI: 10.1002/mrc.5234
[10] Xin, D.; Sader, C., A.; Chaudhary, O.; Jones, P.; Wagner,K.; Tautermann, K.,S; et al Development of a 13C NMR Chemical Shift Prediction Procedure Using B3LYP/cc-pVDZ and Empirically Derived Systematic Error Correction Terms: A Computational Small Molecule Structure Elucidation Method J. Org. Chem. 2017, 82 (10), 5135-5145 DOI: 10.1021/acs.joc.7b00321
[11] CASPER Reilly, D., Wren, C., Giles, S., Cunningham, L., & Hargreaves, P. (2016). CASPER: Computer Assisted Search Prioritisation and Environmental Response Application.
[12] Emerenciano V., P.; Diego, D., G.; Ferreira M., J., P.; Scotti, M., T.; Comasseto, J., V,; Rodrigues, G., V. Computer-aided prediction of 125Te and13CNMRchemicalshiftsofdiorgano tellurides. J. Braz. Chem. Soc. 2007,18(6),11831188. DOI: 10.1590/S0103-50532007000600012
[13] NMRDB https://nmrshiftdb.nmr.uni-koeln.de/ Accessed May 18, 2025.
[14] Ivanova, M., L.; Russo, N.; Nikolic, K. Leveraging 13C NMR spectroscopic data derived from SMILES to predict the functionality of small biomolecules by machine learning: a case study on human Dopamine D1 receptor antagonists, ArXiv, Preprint at DOI: 10.48550/arXiv.2501.14044
[15] National Center for Biotechnology Information. PubChem Bioassay Record for AID 504652, Antagonist of Human D 1 Dopamine Receptor: qHTS, Source: National Center for Advancing Translational Sciences (NCATS). https://pubchem.ncbi.nlm.nih.gov/bioassay/504652. Accessed May 18, 2025.
[16] National Institutes of Health, PubChem https://pubchem.ncbi.nlm.nih.gov/ Accessed May 18, 2025.
[17] National Center for Biotechnology Information. PubChem Bioassay Record for AID 1117267, Source: The Scripps Research Institute Molecular Screening Center. https://pubchem.ncbi.nlm.nih.gov/bioassay/1117267. Accessed Apr. 20, 2025.
[18] Buxbaum, J.N.; Reixach, N. Transthyretin: The Servant of Many Masters. Cell Mol Life Sci. 2009, 66(19), 3095-101, DOI: 10.1007/s00018-009-0109-0
[19] Ueda, M. Transthyretin: Its Function and Amyloid Formation, Neurochem. Int. 2022, 155, 105313, DOI: 10.1016/j.neuint.2022.105313
[20] Liz, M., A.; Coelho, T.; Bellotti, V.; Fernandez-Arias, M., I; Mallaina, P.; Obici, L. A Narrative Review of the Role of Transthyretin in Health and Disease. Neurol Ther. 2020, 9(2), 395-402, DOI: 10.1007/s40120-020-00217-0
[21] Nikitin, D.; Wasfy, J., H; Winn, A., N.; Raymond, F.; Shah, K., K.; Kim, S. et al. The effectiveness and value of disease-modifying therapies for transthyretin amyloid cardiomyopathy: A summary from the Institute for Clinical and Economic Review’s Midwest Comparative Effectiveness Public Advisory Council, J. Manag. Care Spec. Pharm. 2025, 31(3), 323-8, DOI: https://www.jmcp.org/doi/abs/10.18553/jmcp.2025.31.3.323
[22] Fleming CE, Saraiva MJ, Sousa MM. Transthyretin enhances nerve regeneration. J Neurochem. 2007,103, 831–839. doi: 10.1111/j.1471-4159.2007.04828.x
[23] Fleming, C.E.; Mar, F.M.; Franquinho, F.; Saraiva, M., J.; Sousa, M., M. Transthyretin internalization by sensory neurons is megalin mediated and necessary for its neuritogenic activity, J Neurosci. 2009, 29, 3220–3232. DOI: 10.1523/JNEUROSCI.6012-08.2009
[24] Rios, X.; Gómez-Vallejo, V.; Martín, A.; Cossío, U.; Morcillo, M. A.; Alemi, M. et al. Radiochemical examination of transthyretin (TTR) brain penetration assisted by iododiflunisal, a TTR tetramer stabilizer and a new candidate drug for AD. Sci Rep 2019, 9, 13672, DOI: 10.1038/s41598-019-50071-w
[25] Nunes, A., F.; Saraiva M. J.; Sousa M., M. Transthyretin knockouts are a new mouse model for increased neuropeptide Y, FASEB J 2007, 20(1), 166-168, DOI: 10.1096/fj.05-4106fje
[26] Magalhães, J.; Eira, J; Liz, M., A. The role of transthyretin in cell biology: impact on human pathophysiology. Cell Mol Life Sci. 2021, 78(17-18), 6105-6117, DOI: 10.1007/s00018-021-03899-3
[27] Ivanova, M., L.; Russo, N.; Djaid, N.; Nikolic, K. Application of machine learning for predicting G9a inhibitors, Digital Discovery, 2024, 3(10), 2010-2018, DOI: 10.1039/D4DD00101J
[28] Ivanova, M., L.; Russo, N.; Djaid, N.; Nikolic, K. Targeting Neurodegeneration: Three Machine Learning Methods for Discovering G9a Inhibitors Using PubChem and Scikit-Learn, ArXiv, 2025, Preprint at DOI: 10.48550/arXiv.2503.16214
[29] Ertl, P.; Rohde, B.; Selzer, P. Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. J Med Chem. 2000, 43(20), 3714-7, DOI: 10.1021/jm000942e
[30] Cheng, T.; Zhao, Y.; Li, X.; Lin, F.; Xu, Y.; Zhang, X. Computation of octanol-water partition coefficients by guiding an additive model with knowledge, J. Chem. Inf. Model. 2007, 47(6), 2140-8, DOI: 10.1021/ci700257y
[31] van der Veen, A., M., H.; Meija, J.; Possolo, A.,A; Hibbert, D., B. Interpretation and use of standard atomic weights (IUPAC Technical Report), Pure Appl. Chem. 2021, 93 (5), 629-646, DOI: 10.1515/pac-2017-1002
[32] Ivanova, M., L.; Russo, N.; Nikolic, K. Predicting novel pharmacological activities of compounds using PubChem IDs and machine learning (CID-SID ML model), ArXiv, 2025, Preprint at DOI: 10.48550/arXiv.2501.02154
[33] Kim, S.; Thiessen, P., A; , Bolton, E., E; Chen, J.; Fu, G. Gindulyte, A. et al. PubChem Substance and Compound databases, Nucleic Acids Res. 2016, 44, D1202-13, DOI: 10.1093/nar/gkv951
[34] National Center for Biotechnology Information. PubChem Bioassay Record for AID 1996, Aqueous Solubility from MLSMR Stock Solutions, Source: Burnham Center for Chemical Genomics. https://pubchem.ncbi.nlm.nih.gov/bioassay/1996. Accessed May 18, 2025.
[35] scikit-learn. PCA. https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html Accessed May 18, 2025.