[1] H. Guo, X. Xing, Y. Zhou, W. Jiang, X. Chen, T. Wang, et al. A Survey of Large Language Model for Drug Research and Development. IEEE Access 13 (2025) 51110-51129. https://doi.org/10.1080/14656566.2022.2161366
[2] J. M. Metselaar, T. Lammers Challenges in nanomedicine clinical translation. Drug Deliv. and Transl. Res. 10 (2020) 721–725 https://doi.org/10.1007/s13346-020-00740-5
[3] International Union of Pure and Applied Chemistry. Home page https://iupac.org/
[4] J. Mao, J. Wang, K-H. Cho, K. T. No (2023) iupacGPT: IUPAC-based large-scale molecular pre-trained model for property prediction and molecule generation. ChemRxiv. (2023). https://doi.org/10.26434/chemrxiv-2023-5kjvh
[5] Q. Pei, L. Wu, K. Gao, X. Liang, Y. Fang, J. Zhu, et al. BioT5+: Towards Generalized Biological Understanding with IUPAC Integration and Multi-task Tuning. ArXiv (2024)
https://doi.org/10.48550/arXiv.2402.17810
[6] S. M. Reed. Augmented and Programmatically Optimized LLM Prompts Reduce Chemical. Journal of Chemical Information and Modeling 65 (2025) 4274-4280 https://doi.org/10.1021/acs.jcim.4c02322
[7] J. Handsel, B. Matthews, N.J. Knight, J.C Simon Translating the InChI: adapting neural machine translation to predict IUPAC names from a chemical identifier. J Cheminform 13 (2021) 79. https://doi.org/10.1186/s13321-021-00535-x
[8] J. Carracedo-Cosme, C. Romero-Muñiz, P. Pou, R. Pérez. Molecular Identification from AFM Images Using the IUPAC Nomenclature and Attribute Multimodal Recurrent Neural Networks, ACS Appl. Mater. Interfaces 15 (2023) 22692–22704. https://doi.org/10.1021/acsami.3c01550
[9] National Institutes of Health, PubChem, qHTS for Inhibitors of Human Tyrosyl-DNA Phosphodiesterase 1 (TDP1): qHTS in Cells in Absence of CPT https://pubchem.ncbi.nlm.nih.gov/bioassay/686978 (Accessed 10 February 2025)
[10] H. Zhang, Y. Xiong, D. Su, et al. TDP1-independent pathways in the process and repair of TOP1-induced DNA damage. Nature Communications 13, 4240 (2022). https://doi.org/10.1038/s41467-022-31801-7
[11] A-K. Jakobsen, S. Yuusufi, L. B. Madsen, P. Meldgaard, B. R. Knudsen and M. Stougaard. TDP1 and TOP1 as targets in anticancer treatment of NSCLC: Activity and protein level in normal and tumor tissue from 150 NSCLC patients correlated to clinical data. Lung Cancer 164 (2022) 23-32. https://doi.org/10.1016/j.lungcan.2021.12.010
[12] I. Anticevic, C. Otten, L. Vinkovic, L. Jukic and M. Popovic. Tyrosyl-DNA phosphodiesterase 1 (TDP1) and SPRTN protease repair histone 3 and topoisomerase 1 DNA–protein crosslinks in vivo. Open Biology 13 (2023)13230113. http://doi.org/10.1098/rsob.230113
[13] C. G. Goh, A. S. Bader, T-A. Tran, R. Belotserkovskaya, G. D’Alessandro and S. P. Jackson. TDP1 splice-site mutation causes HAP1 cell hypersensitivity to topoisomerase I inhibition. Nucleic Acids Research (2024) https://doi.org/10.17863/CAM.113417
[14] H. Takashima, C. Boerkoel, J. John et al. Mutation of TDP1, encoding a topoisomerase I–dependent DNA damage repair enzyme, in spinocerebellar ataxia with axonal neuropathy. Nature Genetics 32, (2022) 267–272. https://doi.org/10.1038/ng987
[15] M. Geraud, A. Cristini, S. Salimbeni, N. Bery, G. Capranico, O. Sordet, et al. TDP1 Mutation Causing SCAN1 Neurodegenerative Syndrome Hampers the Repair of Transcriptional DNA Double-Strand Breaks. Cell Reports 43 (2024) 114214. https://doi.org/10.1016/j.celrep.2024.114214
[16] M.A.M. Salih, H. Takashima and C. F. Boerkoel. Spinocerebellar Ataxia with Axonal Neuropathy Type 1. 2007 Oct 22 [Updated 2022 Jun 30]. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. University of Washington, Seattle. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1105/ (Accessed 10 Feruary 2025)
[17] P. Scott, A. A. Kindi, A. A. Fahdi, N. A. Yarubi, Z. Bruwer, S. A. Adawi, R. Nandhagopal, Spinocerebellar ataxia with axonal neuropathy type 1 revisited, Journal of Clinical Neuroscience 67 (2019) 139-144. https://doi.org/10.1016/j.jocn.2019.05.060
[18] National Institutes of Health, PubChem, Aqueous Solubility from MLSMR Stock Solutions. https://pubchem.ncbi.nlm.nih.gov/bioassay/1996 (Accessed 10 February 2025)
[19] I. Mohammed, and S. R. Sagurthi. Current Approaches and Strategies Applied in First-in-class Drug Discovery. ChemMedChem (2024) e202400639. https://doi.org/10.1002/cmdc.202400639
[20] M. L. Ivanova, N. Russo, N. Djaid, and K. Nikolic. Application of Machine Learning for Predicting G9a Inhibitors. Digital Discovery 3 (2024) 2010-2018. https://doi.org/10.1039/D4DD00101J
[21] D. Ru, J. Li, O. Xie, L. Peng, H. Jiang, and R. Qiu, (2022) Explainable artificial intelligence based on feature optimization for age at onset prediction of spinocerebellar ataxia type 3. Frontiers in Neuroinformatics 16 (2022) 978630. https://doi.org/10.3389/fninf.2022.978630
[22] M. L. Ivanova, N. Russo, and K. Nikolic. Leveraging 13C NMR Spectroscopic Data Derived from SMILES to Predict the Functionality of Small Biomolecules by Machine Learning: a Case Study on Human Dopamine D1 Receptor Antagonists. ArXiv, 2025,
https://doi.org/10.48550/arXiv.2501.14044
[23] C. H. Lai, A. P. K. Kwok, and K. C. Wong. Cheminformatic Identification of Tyrosyl-DNA Phosphodiesterase 1 (Tdp1) Inhibitors: A Comparative Study of SMILES-Based Supervised Machine Learning Models. Journal of Personalized Medicine 14 (2024) 981. https://doi.org/10.3390/jpm14090981
[24] M. L. Ivanova, N. Russo, and K. Nikolic. Predicting Novel Pharmacological Activities of Compounds Using PubChem IDs and Machine Learning (CID-SID ML Model). ArXiv, 2025.
https://doi.org/10.48550/arXiv.2501.02154
[25] L. Breiman. Random Forests. Machine Learning 45 (2001) 5–32. https://doi.org/10.1023/A:1010933404324
[26] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel et al. Scikit-learn: Machine Learning in Python. Jornal of Machine Learning Research 12 (2011) 2825-2830. https://scikit-learn.org/stable/about.html (Accessed 10 February 2025)
[27] A. Y-T. Wang, R. J. Murdock, S. K. Kauwe, A. O. Oliynyk, A. Gurlo, T. D. Sparks, et al. Machine Learning for Materials Scientists: An Introductory Guide toward Best Practices. Chemistry of Materials 32 (2020) 4954-4965. https://doi.org/10.1021/acs.chemmater.0c01907
[28] T. Akiba, S. Sano, T. Yanase, T. Ohta and M. Koyama Optuna: A Next-generation Hyperparameter Optimization Framework. ArXiv (2019).
https://doi.org/10.48550/arXiv.1907.1090