Akbarighatar, P. (2025) 'Operationalizing responsible AI principles through responsible AI capabilities', Ai and ethics (Online), 5(2), pp. 1787–1801. Available at: https://doi.org/10.1007/s43681-024-00524-4
Barkur, S.K., Schacht, S. and Scholl, J. (2025) 'Deception in LLMs: Self-preservation and autonomous goals in large language models', ArXiv, , pp. 34. Available at: https://doi.org/10.48550/arxiv.2501.16513
Batool, A., Zowghi, D. and Bano, M. (2023) 'Responsible AI governance: A systematic literature review', . Available at: https://doi.org/10.48550/arxiv.2401.10896
Bostrom, N. (2014) Superintelligence. 1. ed. edn.Oxford Univ. Press.
Bostrom, N. (2019), The Vulnerable World Hypothesis. Glob Policy, 10: 455-476. https://doi.org/10.1111/1758-5899.12718
BSI (2025) ‘Design Principles for LLM-base Systems with zero trust’ , Available at: https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/ANSSI-BSI-joint-releases/LLM-based_Systems_Zero_Trust.html#:~:text=In%20this%20collaborative%20German-French%20publication%20titled%20%22Design%20Principles,secure%20deployment%20of%20large%20language%20model%20%28LLM%29%20systems
Bughin, J. (2025) 'Doing versus saying: Responsible AI among large firms', AI & society, 40(4), pp. 2751–2763. Available at: https://doi.org/10.1007/s00146-024-02014-x
Carlsmith, J. (2023) 'Scheming AIs: Will AIs fake alignment during training in order to get power?', . Available at: https://doi.org/10.48550/arxiv.2311.08379
Cummings, M.L. (2025) 'Identifying AI hazards and responsibility gaps', IEEE access, 13, pp. 54338–54349. Available at: https://doi.org/10.1109/ACCESS.2025.3552200
Diffchecker, Available at https://diffcheck.io/
Gensim library. Available at: https://pypi.org/project/gensim/
Goellner, S., Tropmann-Frick, M. and Brumen, B. (2024) 'Responsible artificial intelligence: A structured literature review', . Available at: https://doi.org/10.48550/arxiv.2403.06910
Grassini, S. and Koivisto, M. (2025) 'Artificial creativity? evaluating AI against human performance in creative interpretation of visual stimuli', International journal of human-computer interaction, 41(7), pp. 4037–4048. Available at: https://doi.org/10.1080/10447318.2024.2345430
Greenblatt, R., et al. (2023) 'AI control: Improving safety despite intentional subversion', ArXiv, . Available at: https://doi.org/10.48550/arxiv.2312.06942
He, Y., et al. (2025) 'Evaluating the paperclip maximizer: Are RL-based language models more likely to pursue instrumental goals?', Арѝиж, , pp. 15. Available at: https://doi.org/10.48550/arxiv.2502.12206
Huang, L., et al. (2025) 'A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions', ACM transactions on information systems, 43(2), pp. 1–55. Available at: https://doi.org/10.1145/3703155
Hugging Face models. Available at: https://huggingface.co/
Jedličková, A. (2025) 'Ethical approaches in designing autonomous and intelligent systems: A comprehensive survey towards responsible development', AI & society, 40(4), pp. 2703–2716. Available at: https://doi.org/10.1007/s00146-024-02040-9
Karran, A.J., et al. (2025) 'Multi-stakeholder perspective on responsible artificial intelligence and acceptability in education', NPJ science of learning, 10(1), pp. 44–12. Available at: https://doi.org/10.1038/s41539-025-00333-2
Korbak, T., et al. (2025) 'How to evaluate control measures for LLM agents? A trajectory from today to superintelligence', . Available at: https://doi.org/10.48550/arxiv.2504.05259
Marri,R., Dabbara, L.N. and Karampuri, S. (2024) ‘AI security in different industries: A comprehensive review of vulnerabilities and mitigation strategies ‘, Int. J. Sci. Res. Arch., 13(01), pp. 2375–2393. Available at: https://doi.org/10.30574/ijsra.2024.13.1.1923
Meduri, K. et al., (2025) ‘Accountability and Transparency Ensuring Responsible AI Development’. In P. Bhattacharya, A. Hassan, H. Liu, & B. Bhushan (Eds.), Ethical Dimensions of AI Development (pp. 83-102). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-4147-6.ch004
McCarthy, J., et al. (2006) 'A proposal for the dartmouth summer research project on artificial intelligence: August 31, 1955', The AI magazine, 27(4), pp. 12–14. Available at: https://doi.org/10.1609/aimag.v27i4.1904
Mohamed, N. (2023) 'Current trends in AI and ML for cybersecurity: A state-of-the-art survey', Cogent engineering, 10(2). Available at: https://doi.org/10.1080/23311916.2023.2272358
NLTK. Available at: https://www.nltk.org/
Nye, M., et al. (2021) 'Show your work: Scratchpads for intermediate computation with language models', ArXiv, . Available at: https://doi.org/10.48550/arxiv.2112.00114
Obbu, S. (2025) 'Zero trust architecture for AI-powered cloud systems: Securing the future of automated workloads', World Journal of Advanced Research and Reviews, 26(1), pp. 1315–1339. Available at: https://doi.org/10.30574/wjarr.2025.26.1.1173
Ofusori, L., Bokaba, T. and Mhlongo, S. (2024) 'Artificial intelligence in cybersecurity: A comprehensive review and future direction', Applied artificial intelligence, 38(1). Available at: https://doi.org/10.1080/08839514.2024.2439609
O'Keefe, C. et al., (2025) ‘Law-Following AI: Designing AI Agents to Obey Human Laws’, 94 Fordham L. Rev. 57, Available at: http://dx.doi.org/10.2139/ssrn.5242643
Papagiannidis, E., Mikalef, P. and Conboy, K. (2025) 'Responsible artificial intelligence governance: A review and research framework', The journal of strategic information systems, 34(2), pp. 101885. Available at: https://doi.org/10.1016/j.jsis.2024.101885
Park, P.S., et al. (2024) 'AI deception: A survey of examples, risks, and potential solutions', Patterns (New York, N.Y.), 5(5), pp. 100988. Available at: https://doi.org/10.1016/j.patter.2024.100988
Radanliev, P., et al. (2024) 'Ethics and responsible AI deployment', Frontiers in artificial intelligence, 7, pp. 1377011. Available at: https://doi.org/10.3389/frai.2024.1377011
Raza, S., et al. (2025) 'Who is responsible? the data, models, users or regulations? A comprehensive survey on responsible generative AI for a sustainable future'. Available at: https://doi.org/10.48550/arxiv.2502.08650
Sadek, M., et al. (2025) 'Challenges of responsible AI in practice: Scoping review and recommended actions', AI & society, 40(1), pp. 199–215. Available at: https://doi.org/10.1007/s00146-024-01880-9
Shamsuddin, R., Tabrizi, H.B. and Gottimukkula, P.R. (2025) 'Towards responsible AI: An implementable blueprint for integrating explainability and social-cognitive frameworks in AI systems', AI Perspectives & Advances, 7(1), pp. 1. Available at: https://doi.org/10.1186/s42467-024-00016-5
Shetty, P. (2024) 'AI and security, from an information security and risk manager standpoint', IEEE access, 12, pp. 77468–77474. Available at: https://doi.org/10.1109/ACCESS.2024.3408144
Shi, B., et al. (2017) 'Relationship between divergent thinking and intelligence: An empirical study of the threshold hypothesis with chinese children', Frontiers in psychology, 8, pp. 254. Available at: https://doi.org/10.3389/fpsyg.2017.00254
Smith, S.M., et al. (2025) 'A university framework for the responsible use of generative AI in research', Journal of higher education policy and management, , pp. 1–20. Available at: https://doi.org/10.1080/1360080X.2025.2509187
spaCy. Available at: https://spacy.io/
Stillwell, H. and Harrington, S. (2025) ‘Michael Scott Is Not a Juror: The Limits of AI in Simulating Human Judgment”, SSRN, p.54. Available at: http://dx.doi.org/10.2139/ssrn.5400737
Taylor, I. (2025) 'Is explainable AI responsible AI?', AI & society, 40(3), pp. 1695–1704. Available at: https://doi.org/10.1007/s00146-024-01939-7
Vaswani et al. (2017)’Attention is all you need’, ArXiv, p.15. Available at: https://doi.org/10.48550/arXiv.1706.03762
Vilas, M. J. (2024)’ Position: An Inner Interpretability Framework for AI Inspired by Lessons from Cognitive Neuroscience‘, ArXiv, p.17. Available at: https://doi.org/10.48550/arXiv.2406.01352
Vulpe, S., et al. (2024) 'AI and cybersecurity: A risk society perspective', Frontiers in computer science (Lausanne), 6. Available at: https://doi.org/10.3389/fcomp.2024.1462250
Walker, P.B., et al. (2025) 'Harnessing metacognition for safe and responsible AI', Technologies (Basel), 13(3), pp. 107. Available at: https://doi.org/10.3390/technologies13030107
WinMerge, Available at: https://winmerge.org/?lang=en
Wen, J., et al. (2024) 'Adaptive deployment of untrusted LLMs reduces distributed threats', ArXiv, . Available at: https://doi.org/10.48550/arxiv.2411.17693
Zhang, A.Q., et al. (2025) 'AURA: Amplifying understanding, resilience, and awareness for responsible AI content work', Proceedings of the ACM on human-computer interaction, 9(2), pp. 1–45. Available at: https://doi.org/10.1145/3710931