[1] W.H. Organization, Rehabilitation, 2024, Online, URL https://www.who.int/
news-room/fact-sheets/detail/disability-and-health.
[2] H. Li, L. Cheng, Z. Li, W. Xue, Active disturbance rejection control for a fluid driven hand rehabilitation device, IEEE/ASME Trans. Mechatronics 26 (2) (2020)
841–853.
[3] M.M. Ullah, U. Hafeez, M.N. Shehzad, M.N. Awais, H. Elahi, A soft robotic
glove for assistance and rehabilitation of stroke affected patients, in: 2019
International Conference on Frontiers of Information Technology, FIT, IEEE,
2019, pp. 110–1105.
[4] J.-H. Lee, Y.S. Chung, H. Rodrigue, Long shape memory alloy tendon-based soft
robotic actuators and implementation as a soft gripper, Sci. Rep. 9 (1) (2019)
11251.
[5] A. Hadi, K. Alipour, S. Kazeminasab, M. Elahinia, ASR glove: A wearable glove
for hand assistance and rehabilitation using shape memory alloys, J. Intell. Mater.
Syst. Struct. 29 (8) (2018) 1575–1585.
[6] T. Tang, D. Zhang, T. Xie, X. Zhu, An exoskeleton system for hand rehabilitation
driven by shape memory alloy, in: 2013 IEEE International Conference on
Robotics and Biomimetics, ROBIO, IEEE, 2013, pp. 756–761.
[7] S.J. Park, U. Kim, C.H. Park, A novel fabric muscle based on shape memory
alloy springs, Soft Robot. 7 (3) (2020) 321–331.
[8] D. Serrano, D. Copaci, J. Arias, L.E. Moreno, D. Blanco, SMA-based soft exo-glove,
IEEE Robot. Autom. Lett. 8 (9) (2023) 5448–5455.
[9] V. Venkatesan, S. Shanmugam, A. Veerappan, Optimization of elephant trunk soft
pneumatic actuator using finite element method, World J. Eng. 19 (6) (2021)
832–842.
[10] V. Vellaiyan, R. Venkateshkumar, V. Bijalwan, Y. Singh, Structural optimization
and parameter investigation of trapezoidal shape soft pneumatic actuator, Eng.
Res. Express 6 (4) (2024) 045510.
[11] V. Venkatesan, S. Shanmugam, A. Veerappan, Structural analysis of bending soft
pneumatic network actuators for various designs using the finite element method,
World J. Eng. 20 (6) (2022) 1088–1096.
[12] S.-S. Yun, B.B. Kang, K.-J. Cho, Exo-glove PM: An easily customizable mod ularized pneumatic assistive glove, IEEE Robot. Autom. Lett. 2 (3) (2017)
1725–1732.
[13] P. Polygerinos, Z. Wang, K.C. Galloway, R.J. Wood, C.J. Walsh, Soft robotic
glove for combined assistance and at-home rehabilitation, Robot. Auton. Syst.
73 (2015) 135–143.
[14] P. Agarwal, J. Fox, Y. Yun, M.K. O’Malley, A.D. Deshpande, An index finger
exoskeleton with series elastic actuation for rehabilitation: Design, control and
performance characterization, Int. J. Robot. Res. 34 (14) (2015) 1747–1772.
[15] L. Gerez, G. Gao, A. Dwivedi, M. Liarokapis, A hybrid, wearable exoskeleton
glove equipped with variable stiffness joints, abduction capabilities, and a
telescopic thumb, IEEE Access 8 (2020) 173345–173358.
[16] H.K. Yap, J.H. Lim, J.C.H. Goh, C.-H. Yeow, Design of a soft robotic glove for
hand rehabilitation of stroke patients with clenched fist deformity using inflatable
plastic actuators, J. Med. Devices 10 (4) (2016) 044504.
[17] H.K. Yap, J.H. Lim, F. Nasrallah, C.-H. Yeow, Design and preliminary feasibility
study of a soft robotic glove for hand function assistance in stroke survivors,
Front. Neurosci. 11 (2017) 547.
[18] T. Bützer, O. Lambercy, J. Arata, R. Gassert, Fully wearable actuated soft
exoskeleton for grasping assistance in everyday activities, Soft Robot. 8 (2)
(2021) 128–143.
[19] D.Y.-L. Lim, H.-S. Lai, R.C.-H. Yeow, A bidirectional fabric-based soft robotic
glove for hand function assistance in patients with chronic stroke, J. NeuroEng.
Rehabil. 20 (1) (2023) 120.
[20] H. In, B.B. Kang, M. Sin, K.-J. Cho, Exo-glove: A wearable robot for the hand with
a soft tendon routing system, IEEE Robot. Autom. Mag. 22 (1) (2015) 97–105.
[21] J. Lai, A. Song, J. Wang, Y. Lu, T. Wu, H. Li, B. Xu, X. Wei, A novel soft glove
utilizing honeycomb pneumatic actuators (HPAs) for assisting activities of daily
living, IEEE Trans. Neural Syst. Rehabil. Eng. 31 (2023) 3223–3233.
[22] Y. Zhu, W. Gong, K. Chu, X. Wang, Z. Hu, H. Su, A novel wearable soft glove
for hand rehabilitation and assistive grasping, Sensors 22 (16) (2022) 6294.
[23] L. Saharan, M.J. de Andrade, W. Saleem, R.H. Baughman, Y. Tadesse, iGrab:
hand orthosis powered by twisted and coiled polymer muscles, Smart Mater.
Struct. 26 (10) (2017) 105048.
[24] Y. Wang, S. Zheng, J. Pang, S. Li, J. Li, Design and experiment of a hand
movement device driven by shape memory alloy wires, J. Robot. 2021 (1) (2021)
6611581.
[25] Q. Xie, Q. Meng, W. Yu, Z. Wu, R. Xu, Q. Zeng, Z. Zhou, T. Yang, H. Yu, Design
of a SMA-based soft composite structure for wearable rehabilitation gloves, Front.
Neurorobotics 17 (2023) 1047493.
[26] J. Lai, A. Song, K. Shi, Q. Ji, Y. Lu, H. Li, Design and evaluation of a bidirectional
soft glove for hand rehabilitation-assistance tasks, IEEE Trans. Med. Robot.
Bionics 5 (3) (2023) 730–740.
[27] DYNALLOY.lnc, Flexinol® actuator wire technical and design data, 2024, URL
https://dynalloy.com/wp-content/uploads/2025/03/TCF1140.pdf, (Accessed
2024).
[28] W.G.A. Abdelaal, G. Nagib, Modeling and simulation of sma actuator wire, in:
2014 9th International Conference on Computer Engineering & Systems, ICCES,
IEEE, 2014, pp. 401–405.
[29] T.W. Choon, A.S. Salleh, S. Jamian, M.I. Ghazali, Phase transformation temper atures for shape memory alloy wire, World Acad. Sci. Eng. Technol. 25 (304)
(2007) 304–307.
[30] Z. Yao, C. Linnenberg, A. Argubi-Wollesen, R. Weidner, J.P. Wulfsberg,
Biomimetic design of an ultra-comp