1.Murray CJL, Ikuta KS, Sharara F, Swetschinski L, Robles Aguilar G, Gray A, Han C, Bisignano C, Rao P, Wool E, et al. 2022. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet 399:629–655. https://doi.org/10.1016/S0140-6736(21)02724-0
2.Friedländer C. 1882. Ueber die Schizomyceten bei der acuten fibrösenPneumonie. Archiv für pathologische Anatomie und Physiologie und für klinische Medicin 87:319–324. https://doi.org/10.1515/9783112404508-017
3.Martin RM, Bachman MA. 2018. Colonization, infection, and the accessory genome of Klebsiella pneumoniae Front Cell Infect Microbiol 8:4. https://doi.org/10.3389/fcimb.2018.00004
4.Fung CP, Lin YT, Lin JC, Chen TL, Yeh KM, Chang FY, Chuang HC, Wu HS, Tseng CP, Siu LK. 2012. Klebsiella pneumoniae in gastrointestinal tract and pyogenic liver abscess. Emerg Infect Dis 18:1322–1325. https://doi.org/10.3201/eid1808.111053
5.Paczosa MK, Mecsas J. 2016. Klebsiella pneumoniae: going on the offensewith a strong defense. Microbiol Mol Biol Rev 80:629–661. https://doi.org/10.1128/MMBR.00078-15
6.Podschun R, Ullmann U. 1998. Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev 11:589–603. https://doi.org/10.1128/CMR.11.4.589
7.Paterson DL, Bonomo RA. 2005. Extended-spectrum beta-lactamases: a clinical update. Clin Microbiol Rev 18:657–686. https://doi.org/10.1128/CMR.18.4.657-686.2005
8.Bush K, Bradford PA. 2020. Epidemiology of β-lactamase-producing pathogens. Clin Microbiol Rev 33:e00047-19. https://doi.org/10.1128/CMR.00047-19
9.Khedkar S, Smyshlyaev G, Letunic I, Maistrenko OM, Coelho LP, Orakov A, Forslund SK, Hildebrand F, Luetge M, Schmidt TSB, Barabas O, Bork P. 2022. Landscape of mobile genetic elements and their antibiotic resistance cargo in prokaryotic genomes. Nucleic Acids Res 50:3155–3168. https://doi.org/10.1093/nar/gkac163
10.EClinicalMedicine. 2021. Antimicrobial resistance: a top ten global public health threat. EClinicalMedicine 41:101221. https://doi.org/10.1016/j.eclinm.2021.101221
11.Kelesidis T, Falagas ME. 2015. Substandard/counterfeit antimicrobial drugs. Clin Microbiol Rev 28:443–464. https://doi.org/10.1128/CMR.00072-14
12.Morgan DJ, Okeke IN, Laxminarayan R, Perencevich EN, Weisenberg S. 2011. Non-prescription antimicrobial use worldwide: a systematic review. Lancet Infect Dis 11:692–701. https://doi.org/10.1016/S1473-3099(11)70054-8
13.NIHR Global Health Research Unit on Genomic Surveillance of AMR. 2020. Whole-genome sequencing as part of national and international surveillance programmes for antimicrobial resistance: a roadmap. BMJ Glob Health 5:e002244. https://doi.org/10.1136/bmjgh-2019-002244
14.Baker S, Thomson N, Weill FX, Holt KE. 2018. Genomic insights into the emergence and spread of antimicrobial-resistant bacterial pathogens. Science 360:733–738. https://doi.org/10.1126/science.aar3777
15.Bentley SD, Parkhill J. 2015. Genomic perspectives on the evolution and spread of bacterial pathogens. Proc Biol Sci 282:20150488. https://doi.org/10.1098/rspb.2015.0488
16.Navasardyan N, Harutyunyan T, Abrahamyan L. 2016. Antibiotic use: a cross-sectional survey of knowledge, attitude and practice among Yerevan adult population, Master of Public Health Integrating Experience Project, Yerevan
17.Sheng J, Cave R, Ter-Stepanyan MM, Kotsinyan N, Chen J, Zhang L, Jiang T, Mkrtchyan HV. 2023. Whole-Genome Sequencing and Comparative Genomics Analysis of a Newly Emerged Multidrug-Resistant Klebsiella pneumoniae Isolate of ST967. Microbiol Spectr 11:e0401122. https://doi.org/10.1128/spectrum.04011-22
18.Sheng J, Cave R, Ter-Stepanyan MM, Lu S, Wang Y, Liu T, Mkrtchyan HV. 2024. Emergence of mcr-8.1-bearing MDR-hypervirulent Klebsiella pneumoniae ST307. Microbiol Spectr 13:e01910–24. https://doi.org/10.1128/spectrum.01910-24
19.Kitchel B, Rasheed JK, Patel JB, Srinivasan A, Navon-Venezia S, Carmeli Y, Brolund A, Giske CG. 2009. Molecular epidemiology of KPC-producing Klebsiella pneumoniae isolates in the United States: clonal expansion of multilocus sequence type 258. Antimicrob Agents Chemother 53:3365–3370. https://doi.org/10.1128/AAC.00126-09
20.Agosta M, Bencardino D, Argentieri M, Pansani L, Sisto A, CiofiDegli Atti ML, D’Amore C, Bagolan P, Iacobelli BD, Magnani M, Raponi M, Perno CF, Andreoni F, Bernaschi P. 2023. Clonal spread of hospital-acquired NDM-1-producing Klebsiella pneumoniae and Escherichia coli in an Italian neonatal surgery unit: a retrospective study. Antibiotics (Basel) 12:642. https://doi.org/10.3390/antibiotics12040642
21.Guo Q, Spychala CN, McElheny CL, Doi Y. 2016. Comparative analysis of an IncR plasmid carrying armA, blaDHA-1 and qnrB4 from Klebsiella pneumoniae ST37 isolates. J Antimicrob Chemother 71:882–886. https://doi.org/10.1093/jac/dkv444
22.Yang J, Ye L, Guo L, Zhao Q, Chen R, Luo Y, Chen Y, Tian S, Zhao J, Shen D, Han L. 2013. A nosocomial outbreak of KPC-2-producing Klebsiella pneumoniae in a Chinese hospital: dissemination of ST11 and emergence of ST37, ST392 and ST395. Clin Microbiol Infect 19:E509–E515. https://doi.org/10.1111/1469-0691.12275
23.Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M, Monnet DL, Pulcini C, Kahlmeter G, Kluytmans J, Carmeli Y, et al. 2018. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis 18:318–327. https://doi.org/10.1016/S1473-3099(17)30753-3
24.Bevan ER, Jones AM, Hawkey PM. 2017. Global epidemiology of CTX-M β-lactamases: temporal and geographical shifts in genotype. J Antimicrob Chemother 72:2145–2155. https://doi.org/10.1093/jac/dkx146
25.Pitout JD, Laupland KB. 2008. Extended-spectrum β-lactamase-producing Enterobacteriaceae: an emerging public-health concern. Lancet Infect Dis 8:159–166. https://doi.org/10.1016/S1473-3099(08)70041-0
26.Karlowsky JA, Kazmierczak KM, Bouchillon SK, de Jonge BLM, Stone GG, Sahm DF. 2019. In Vitro Activity of Ceftazidime-Avibactam against Clinical Isolates of Enterobacteriaceae and Pseudomonas aeruginosa collected in Latin American Countries: results from the INFORM Global Surveillance Program, 2012 to 2015. Antimicrob Agents Chemother 63:e01814-18. https://doi.org/10.1128/AAC.01814-18
27.Liakopoulos A, Mevius D, Ceccarelli D. 2016. A review of SHV extended-spectrum β-lactamases: neglected yet ubiquitous. Front Microbiol 7:1374. https://doi.org/10.3389/fmicb.2016.01374
28.Mbelle NM, Feldman C, Osei Sekyere J, Maningi NE, Modipane L, Essack SY. 2019. The resistome, mobilome, virulome and phylogenomics of multidrug-resistant Escherichia coli clinical isolates from Pretoria, South Africa. Sci Rep 9:16457. https://doi.org/10.1038/s41598-019-52859-2
29.Osei Sekyere J, Maningi NE, Modipane L, Mbelle NM. 2020. Emergence of mcr-9.1 in extended-spectrum-β-Lactamase-producing clinical Enterobacteriaceae in Pretoria, South Africa: Global evolutionary phylogenomics, resistome, and mobilome . mSystems 5. https://doi.org/10.1128/msystems.00148-20
30.Frenk S, Rakovitsky N, Temkin E, Schechner V, Cohen R, Kloyzner BS, Schwaber MJ, Solter E, Cohen S, Stepansky S, Carmeli Y. 2020. Investigation of outbreaks of extended-spectrum beta-lactamase-producing Klebsiella pneumoniae in three neonatal intensive care units using whole genome sequencing. Antibiotics (Basel) 9:705. https://doi.org/10.3390/antibiotics9100705
31.Carattoli A. 2009. Resistance plasmid families in Enterobacteriaceae. Antimicrob Agents Chemother 53:2227–2238. https://doi.org/10.1128/AAC.01707-08
32.Hammond DS, Schooneveldt JM, Nimmo GR, Huygens F, GiffardPM. 2005. Bla(SHV) Genes in Klebsiella pneumoniae: differentallele distributions are associated with differentpromoters within individual isolates. Antimicrob Agents Chemother 49:256–263. https://doi.org/10.1128/AAC.49.1.256-263.2005
33.Kim J, Shin HS, Seol SY, Cho DT. 2002. Relationship between blaSHV-12 and blaSHV-2a in Korea. J Antimicrob Chemother 49:261–267. https://doi.org/10.1093/jac/49.2.261
34.Lill R, Srinivasan V, MühlenhoffU. 2014. The role of mitochondria in cytosolic-nuclear iron–sulfur protein biogenesis and in cellular iron regulation. Curr Opin Microbiol 22:111–119. https://doi.org/10.1016/j.mib.2014.09.015
35.Heesemann J, Hantke K, Vocke T, Saken E, Rakin A, Stojiljkovic I, Berner R. 1993. Virulence of Yersinia enterocolitica is closely associated with siderophore production, expression of an iron‐repressible outer membrane polypeptide of 65 000 Da and pesticin sensitivity . Mol Microbiol 8:397–408. https://doi.org/10.1111/j.1365-2958.1993.tb01583.x
36.HeffernanJ, Wildenthal J, Tran H, KatumbaGL, McCoyW, HendersonJ. 2024. Yersiniabactin is a quorum-sensing autoinducer and siderophore in uropathogenic Escherichia coli. mBio. https://doi.org/10.1128/mbio.00277-23:e0027723
37.Hetland MAK, Hawkey J, BernhoffE, Bakksjø RJ, Kaspersen H, Rettedal SI, SundsfjordA, Holt KE, Löhr IH. 2023. Within-patient and global evolutionary dynamics of Klebsiella pneumoniae ST17. Microb Genom 9:mgen001005. https://doi.org/10.1099/mgen.0.001005
38.Holt KE, Wertheim H, Zadoks RN, Baker S, Whitehouse CA, Dance D, Jenney A, Connor TR, Hsu LY, Severin J, et al. 2015. Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health. Proc Natl Acad Sci USA 112:E3574–81. https://doi.org/10.1073/pnas.1501049112
39.Lam MMC, Wick RR, Wyres KL, Gorrie CL, Judd LM, Jenney AWJ, Brisse S, Holt KE. 2018. Genetic diversity, mobilisation and spread of the yersiniabactin-encoding mobile element ICEKp in Klebsiella pneumoniae populations. Microb Genom 4:e000196. https://doi.org/10.1099/mgen.0.000196
40.Lawlor MS, O’connor C, Miller VL. 2007. Yersiniabactin is a virulence factor for Klebsiella pneumoniae during pulmonary infection. Infect Immun 75:1463–1472. https://doi.org/10.1128/IAI.00372-06
41.Lawlor MS, Hsu J, Rick PD, Miller VL. 2005. Identificationof Klebsiella pneumoniae virulence determinants using an intranasal infection model. Mol Microbiol 58:1054–1073. https://doi.org/10.1111/j.1365-2958.2005.04918.x
42.Farzand R, Rajakumar K, Barer MR, Freestone PPE, Mukamolova GV, Oggioni MR, O’Hare HM. 2021. A Virulence Associated Siderophore Importer Reduces Antimicrobial Susceptibility of Klebsiella pneumoniae. Front Microbiol 12:607512. https://doi.org/10.3389/fmicb.2021.607512
43.Gu D, Dong N, Zheng Z, Lin D, Huang M, Wang L, Chan EW-C, Shu L, Yu J, Zhang R, Chen S. 2018. A fatal outbreak of ST11 carbapenem-resistant hypervirulent Klebsiella pneumoniae in a Chinese hospital: a molecular epidemiological study. Lancet Infect Dis 18:37–46. https://doi.org/10.1016/S1473-3099(17)30489-9
44.Mkrtchyan HV, Russell CA, Wang N, Cutler RR. 2013. Could public restrooms be an environment for bacterial resistomes? PLoS One 8:e54223. https://doi.org/10.1371/journal.pone.0054223
45.Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexibletrimmer for Illumina sequence data. Bioinformatics 30:2114–2120. https://doi.org/10.1093/bioinformatics/btu170
46.Prjibelski A, Antipov D, Meleshko D, Lapidus A, Korobeynikov A. 2020. Using SPAdes de novo assembler. CP in Bioinformatics 70. https://doi.org/10.1002/cpbi.102
47.Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069. https://doi.org/10.1093/bioinformatics/btu153
48.Jolley KA, Bray JE, Maiden MCJ. 2018. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res 3:124. https://doi.org/10.12688/wellcomeopenres.14826.1
49.Lam MMC, Wick RR, Watts SC, Cerdeira LT, Wyres KL, Holt KE. 2021. A genomic surveillance framework and genotyping tool for Klebsiella pneumoniae and its related species complex. Nat Commun 12:4188. https://doi.org/10.1038/s41467-021-24448-3
50.Robertson J, Nash JHE. 2018. MOB-suite: software tools for clustering, reconstruction and typing of plasmids from draft assemblies. Microb Genom 4:e000206. https://doi.org/10.1099/mgen.0.000206
51.Carattoli A, Zankari E, García-Fernández A, Voldby Larsen M, Lund O, Villa L, Møller Aarestrup F, Hasman H. 2014. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother 58:3895–3903. https://doi.org/10.1128/AAC.02412-14
52.Argimón S, David S, Underwood A, Abrudan M, Wheeler NE, Kekre M, Abudahab K, Yeats CA, Goater R, Taylor B, Harste H, Muddyman D, Feil EJ, Brisse S, Holt K, Donado-Godoy P, Ravikumar KL, Okeke IN, Carlos C, Aanensen DM, NIHR Global Health Research Unit on Genomic Surveillance of Antimicrobial Resistance. 2021. Rapid genomic characterization and global surveillance of Klebsiella using Pathogenwatch. Clin Infect Dis 73:S325–S335. https://doi.org/10.1093/cid/ciab784
53.Croucher NJ, Page AJ, Connor TR, Delaney AJ, Keane JA, Bentley SD, Parkhill J, Harris SR. 2015. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res 43:e15. https://doi.org/10.1093/nar/gku1196
54.Price MN, Dehal PS, Arkin AP. 2010. FastTree 2--approximately maximum-likelihood trees for large alignments. PLoS One 5:e9490. https://doi.org/10.1371/journal.pone.0009490
55.Zhang H, Gao S, Lercher MJ, Hu S, Chen WH. 2012. EvolView, an online tool for visualizing, annotating and managing phylogenetic trees. Nucleic Acids Res 40:W569–72. https://doi.org/10.1093/nar/gks576
56.He Z, Zhang H, Gao S, Lercher MJ, Chen WH, Hu S. 2016. Evolview v2: an online visualization and management tool for customized and annotated phylogenetic trees. Nucleic Acids Res 44:W236–41. https://doi.org/10.1093/nar/gkw370
57.Tonkin-Hill G, Lees JA, Bentley SD, Frost SDW, Corander J. 2018. RhierBAPS: An R implementation of the population clustering algorithm hierBAPS. Wellcome Open Res 3:93. https://doi.org/10.12688/wellcomeopenres.14694.1
58.Pritchard L, Glover RH, Humphris S, Elphinstone JG, Toth IK. 2016. Genomics and taxonomy in diagnostics for food security: soft-rotting enterobacterial plant pathogens. Anal Methods 8:12–24. https://doi.org/10.1039/C5AY02550H
59.Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MTG, Fookes M, Falush D, Keane JA, Parkhill J. 2015. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 31:3691–3693. https://doi.org/10.1093/bioinformatics/btv421
60.Drummond AJ, Rambaut A. 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214. https://doi.org/10.1186/1471-2148-7-214
61.Darriba D, Taboada GL, Doallo R, Posada D. 2012. jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772. https://doi.org/10.1038/nmeth.2109