Pantis, A.; Nikoloudakis, C.; Tsoutsos, T. A Critical Review of Macroalgae Exploitation Pathways Implemented under the Scope of Life Cycle Assessment. Chemengineering 2024, 8, 74.
Moreno-Vargas, J.M.; Echeverry-Cardona, L.M.; Torres-Ceron, D.A.; Amaya-Roncancio, S.; Restrepo-Parra, E.; Castillo-Delgado, K.J. Photocatalysis as an Alternative for the Remediation of Wastewater: A Scientometric Review. Chemengineering 2024, 8, 95.
Jafarinejad, S. Simulation for the Performance and Economic Evaluation of Conventional Activated Sludge Process Replacing by Sequencing Batch Reactor Technology in a Petroleum Refinery Wastewater Treatment Plant. Chemengineering 2019, 3, 45.
Taiwo, A.E.; Falowo, O.A.; Okoji, A.I.; Latinwo, L.M.; Betiku, E. Recovery of Value-Added Products from Sewage Sludge: Processes, Life Cycle Assessment, and Costs. In Sewage and Biomass from Wastewater to Energy; Wiley: Hoboken, NJ, USA, 2024; pp. 225–257.
Santiago, Y.C.; González, A.M.; Venturini, O.J.; Sphaier, L.A.; Batlle, E.A.O. Energetic and environmental assessment of oil sludge use in a gasifier/gas microturbine system. Energy 2022, 244, 123103.
Zhang, Y.; Maierdan, Y.; Guo, T.; Chen, B.; Fang, S.; Zhao, L. Biochar as carbon sequestration material combines with sewage sludge incineration ash to prepare lightweight concrete. Constr. Build. Mater. 2022, 343, 128116.
Guo, F.; Liu, W.; Chen, W.; Wang, F.; Zhang, H.; Jiang, X.; Gardy, J. Migration and transformation of phosphorus and toxic metals during sludge incineration with Ca additives. J. Environ. Manag. 2024, 352, 119910.
Chen, Z.; Liu, H.; Wang, H.; Liu, Y.; Wei, Z. Flue gas Pb0 removal from sludge incineration through biological lead oxidation coupled denitrification. Fuel 2024, 355, 129500.
Peng, B.; Zhu, Y.; Tang, L. Study on the fate of phosphorus, fluorine and chlorine in sludge during incineration. Fuel 2024, 358, 130331.
Huang, Y.; Chen, Z.; Liu, Y.; Lu, J.-X.; Bian, Z.; Yio, M.; Cheeseman, C.; Wang, F.; Poon, C.S. Recycling of waste glass and incinerated sewage sludge ash in glass-ceramics. Waste Manag. 2024, 174, 229–239.
Lin, S.; Jiang, X.; Zhao, Y.; Yan, J. Disposal technology and new progress for dioxins and heavy metals in fly ash from municipal solid waste incineration: A critical review. Environ. Pollut. 2022, 311, 119878.
Lan, T.; Meng, Y.; Ju, T.; Chen, Z.; Du, Y.; Deng, Y.; Song, M.; Han, S.; Jiang, J. Synthesis and application of geopolymers from municipal waste incineration fly ash (MSWI FA) as raw ingredient—A review. Resour. Conserv. Recycl. 2022, 182, 106308.
Huang, B.; Gan, M.; Ji, Z.; Fan, X.; Zhang, D.; Chen, X.; Sun, Z.; Huang, X.; Fan, Y. Recent progress on the thermal treatment and resource utilization technologies of municipal waste incineration fly ash: A review. Process. Saf. Environ. Prot. 2022, 159, 547–565.
Sun, J.; Wang, L.; Yu, J.; Guo, B.; Chen, L.; Zhang, Y.; Wang, D.; Shen, Z.; Tsang, D.C. Cytotoxicity of stabilized/solidified municipal solid waste incineration fly ash. J. Hazard. Mater. 2022, 424, 127369.
Monteiro, E.; Ferreira, S. Biomass Waste for Energy Production. Energies 2022, 15, 5943.
Oliveira, J.L.d.M.; Silva, D.P.; Martins, E.M.; Langenbach, T.; Dezotti, M. Biodegradation of 14C-dicofol in wastewater aerobic treatment and sludge anaerobic biodigestion. Environ. Technol. 2012, 33, 695–701.
Thipkhunthod, P.; Meeyoo, V.; Rangsunvigit, P.; Kitiyanan, B.; Siemanond, K.; Rirksomboon, T. Predicting the heating value of sewage sludges in Thailand from proximate and ultimate analyses. Fuel 2005, 84, 849–857.
Shen, J.; Zhu, S.; Liu, X.; Zhang, H.; Tan, J. The prediction of elemental composition of biomass based on proximate analysis. Energy Convers. Manag. 2010, 51, 983–987.
Yin, C.-Y. Prediction of higher heating values of biomass from proximate and ultimate analyses. Fuel 2011, 90, 1128–1132.
Nhuchhen, D.R.; Salam, P.A. Estimation of higher heating value of biomass from proximate analysis: A new approach. Fuel 2012, 99, 55–63.
Wzorek, M. Characterisation of the properties of alternative fuels containing sewage sludge. Fuel Process. Technol. 2012, 104, 80–89.
Rios, M.; Kaltschmitt, M. Electricity generation potential from biogas produced from organic waste in Mexico. Renew. Sustain. Energy Rev. 2016, 54, 384–395.
Ongen, A.; Ozcan, H.K.; Ozbaş, E.E.; Aydin, S.; Yesildag, I. Co-gasification of oily sludge and chicken manure in a laboratory-scale updraft fixed bed gasifier. Clean Technol. Environ. Policy 2022, 24, 2229–2239.
Singha, W.J.; Deka, H. Approaches Involved in the Treatment and Disposal of Petroleum Refinery Sludge. In Environmental Engineering and Waste Management: Recent Trends and Perspectives; Springer Nature: Cham, Switzerland, 2024; pp. 205–246.
Dereli, B.; Gürel, B.; Dolgun, G.K.; Keçebaş, A. Comprehensive study on incineration-based disposal of hazardous gas and liquid wastes from used lubricating oil refineries. Process Saf. Environ. Prot. 2024, 184, 79–95.
Wan, G.; Sun, L.; Xu, L.; Lin, L. Emission of nitrogen/sulfur pollutants and migration of heavy metals during combustion of oily sludge from the oil refining process in fluidized bed. J. Energy Inst. 2024, 112, 101476.
Sahu, R.; Sethi, S.; Bharshankh, A.; Biswas, R. Sustainable Management of Oily Petroleum Refinery Sludge Through Anaerobic Digestion with Bioenergy Production. In Recent Trends in Management and Utilization of Industrial Sludge; Springer Nature: Cham, Switzerland, 2024; pp. 57–94.
Panda, S.; Jain, M.S. A paradigm shift in the management of oil refinery wastes. In Solid Waste Management for Resource-Efficient Systems; Elsevier: Amsterdam, The Netherlands, 2024; pp. 427–440.
Mokhtar, N.M.; Omar, R.; Salleh, M.M.; Idris, A. Characterization of sludge from the wastewater-treatment plant of a refinery. Int. J. Eng. Technol. 2011, 8, 48–56.
Barneto, A.G.; Moltó, J.; Ariza, J.; Conesa, J.A. Thermogravimetric monitoring of oil refinery sludge. J. Anal. Appl. Pyrolysis 2014, 105, 8–13.
Crelier, M.M.M.; Dweck, J. Water content of a Brazilian refinery oil sludge and its influence on pyrolysis enthalpy by thermal analysis. J. Therm. Anal. Calorim. 2009, 97, 551–557.
HSE. Report of Shahid Hasheminejad Gas Refinery Plant, Iran. 2018. Available online: https://www.mashal.ir/content/1/%D9%85%D8%B4%D8%B9%D9%84/57/897/20 (accessed on 4 April 2025). (In Persian).
Weather Spark. The Weather Year Round Anywhere on Earth. Available online: https://weatherspark.com (accessed on 17 November 2023).
Schasfoort, T.; Fard, Z.; Gehrmann, T.; Hollatz, S. Demonstration of the Benefits of SAE 30 Stationary Gas Engine Oil in Full Scale Engine Tests. In Proceedings of the Internal Combustion Engine Division Fall Technical Conference, Virtual, Online, 13–15 October 2021; Volume 85512, p. V001T04A008.
Rice, E.W. (Ed.) Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2012; Volume 10.
Silva, A.P.M.; Barros, R.M.; Lora, E.E.S.; Flórez, C.A.D.; dos Santos, I.F.S.; de Cassia Crispim, A.M.; Renó, M.L.G. Characterization and evaluation of the life cycle of energy use from drying bed sludge. Energy 2022, 263, 125630.
Jin, X.; Teng, D.; Fang, J.; Liu, Y.; Jiang, Z.; Song, Y.; Zhang, T.; Siyal, A.A.; Dai, J.; Fu, J.; et al. Petroleum oil and products recovery from oily sludge: Characterization and analysis of pyrolysis products. Environ. Res. 2021, 202, 111675.
Ogunjuyigbe, A.; Ayodele, T.; Alao, M. Electricity generation from municipal solid waste in some selected cities of Nigeria: An assessment of feasibility, potential and technologies. Renew. Sustain. Energy Rev. 2017, 80, 149–162.
Stehouwer, R.C.; Wolf, A.M.; Doty, W.T. Chemical monitoring of sewage sludge in Pennsylvania: Variability and application uncertainty. J. Environ. Qual. 2000, 29, 1686–1695.
Ji, L.; Gu, D.; Cai, B.; Che, L.; Xiao, L.; Foo, D.C.; Zhang, N.; Lou, Y.; Hu, T.; Li, G.; et al. Environmental impacts and decarbonization pathways of oily sludge pyrolysis based on life cycle assessment. J. Clean. Prod. 2024, 471, 143391.
Jerez, S.; Ventura, M.; Molina, R.; Pariente, M.; Martínez, F.; Melero, J. Comprehensive characterization of an oily sludge from a petrol refinery: A step forward for its valorization within the circular economy strategy. J. Environ. Manag. 2021, 285, 112124.
Shi, D.; Ren, D.; Ma, Z. Impact of Municipal Solid Waste Incineration Bottom Ash as Cement Substitution. Arab. J. Sci. Eng. 2024, 1–12.
Huang, Y.; Zhen, Y.; Liu, L.; Ning, X.; Wang, C.; Li, K.; Zhao, L.; Lu, Q. Comprehensive competitiveness assessment of four typical municipal sludge treatment routes in China based on environmental and techno-economic analysis. Sci. Total Environ. 2023, 895, 165123.
Nkuna, S.G.; Olwal, T.O.; Chowdhury, S.D.; Ndambuki, J.M. A review of wastewater sludge-to-energy generation focused on thermochemical technologies: An improved technological, economical and socio-environmental aspect. Clean. Waste Syst. 2024, 7, 100130.