Ahmad, J., Kontoleon, K.J., Majdi, A., Naqash, M.T., Deifalla, A.F., Ben Kahla, N., Isleem, H.F. and Qaidi, S.M.A. (2022) 'A Comprehensive Review on the Ground Granulated Blast Furnace Slag (GGBS) in Concrete Production', Sustainability, 14(14), pp. 8783 Available at: 10.3390/su14148783.
Ahmad, J., Martínez-García, R., Szelag, M., de-Prado-Gil, J., Marzouki, R., Alqurashi, M. and Hussein, E.E. (2021) 'Effects of Steel Fibers (SF) and Ground Granulated Blast Furnace Slag (GGBS) on Recycled Aggregate Concrete', Materials, 14(24), pp. 7497 Available at: 10.3390/ma14247497.
Ahmed, A.O., Etonihu, A.C. and Nweze, N.O. (2022) 'Analysis of Chemical Compositions of Portland Cement and Limestone from Four Geopolitical Zones of Nigeria', Journal of minerals and materials characterization and engineering, 10(2), pp. 113–126 Available at: 10.4236/jmmce.2022.102009.
Akhtar, N., Ahmad, T., Husain, D., Majdi, A., Alam, M.T., Husain, N. and Wayal, A.K.S. (2022) 'Ecological footprint and economic assessment of conventional and geopolymer concrete for sustainable construction', Journal of Cleaner Production, 380, pp. 134910 Available at: 10.1016/j.jclepro.2022.134910.
Altoubat, S., Badran, D., Junaid, M.T. and Leblouba, M. (2016) 'Restrained shrinkage behavior of Self-Compacting Concrete containing ground-granulated blast-furnace slag', Construction & building materials, 129, pp. 98–105 Available at: 10.1016/j.conbuildmat.2016.10.115.
Antoni, Chandra, L. and Hardjito, D. (2015) 'The Impact of Using Fly Ash, Silica Fume and Calcium Carbonate on the Workability and Compressive Strength of Mortar', Procedia Engineering, 125, pp. 773–779 Available at: 10.1016/j.proeng.2015.11.132.
Arrieta Martinez, G. (2012) Experimental studies of the behavior of 'pessimum' aggregates in different test procedures used to evaluate the alkali reactivity of aggregates in concrete. Available at: http://hdl.handle.net/2152/ETD-UT-2012-05-5463 (Accessed: .
Barbuta, M., Bucur, R., Serbanoiu, A.A., Scutarasu, S. and Burlacu, A. (2017) 'Combined Effect of Fly Ash and Fibers on Properties of Cement Concrete', Procedia engineering, 181, pp. 280–284 Available at: 10.1016/j.proeng.2017.02.390.
Bright Singh, S., Murugan, M., Chellapandian, M., Dixit, S., Bansal, S., Sunil Kumar Reddy, K., Gupta, M. and Maksudovna Vafaeva, K. (2023) 'Effect of fly ash addition on the mechanical properties of pervious concrete', Materials today : proceedings, Available at: 10.1016/j.matpr.2023.09.165.
Cantero, B., Bravo, M., de Brito, J., del Bosque, I.F.S. and Medina, C. (2022) 'The Influence of Fly Ash on the Mechanical Performance of Cementitious Materials Produced with Recycled Cement', Applied sciences, 12(4), pp. 2257 Available at: 10.3390/app12042257.
Dadsetan, S. and Bai, J. (2017) 'Mechanical and microstructural properties of self-compacting concrete blended with metakaolin, ground granulated blast-furnace slag and fly ash', Construction & building materials, 146, pp. 658–667 Available at: 10.1016/j.conbuildmat.2017.04.158.
Das, P., Cheela, V.R.S., Mistri, A., Chakraborty, S., Dubey, B. and Barai, S.V. (2022) 'Performance assessment and life cycle analysis of concrete containing ferrochrome slag and fly ash as replacement materials – A circular approach', Construction & building materials, 347, pp. 128609 Available at: 10.1016/j.conbuildmat.2022.128609.
Elnaz Khankhaje, Taehoon Kim, Hyounseung Jang, Chang-Soo Kim, Jimin Kim and Mahdi Rafieizonooz (2024) 'A review of utilization of industrial waste materials as cement replacement in pervious concrete: An alternative approach to sustainable pervious concrete production A review of utilization of industrial waste materials as cement replacement in pervious concrete: An alternative approach to sustainable pervious concrete production', Heliyon, 10(4), pp. e26188.
Fan, K., Li, D., Damrongwiriyanupap, N. and Li, L. (2019) 'Compressive stress-strain relationship for fly ash concrete under thermal steady state', Cement & concrete composites, 104, pp. 103371 Available at: 10.1016/j.cemconcomp.2019.103371.
Fantu, T., Alemayehu, G., Kebede, G., Abebe, Y., Selvaraj, S.K. and Paramasivam, V. (2021) 'Experimental investigation of compressive strength for fly ash on high strength concrete C-55 grade', Materials today : proceedings, 46, pp. 7507–7517 Available at: 10.1016/j.matpr.2021.01.213.
Farzad Moghaddam, Vute Sirivivatnanon and Kirk Vessalas (2019) 'The effect of fly ash fineness on heat of hydration, microstructure, flow and compressive strength of blended cement pastes The effect of fly ash fineness on heat of hydration, microstructure, flow and compressive strength of blended cement pastes', Case Studies in Construction Materials, 10.
Fayomi, G.U., Mini, S.E., Fayomi, O.S.I. and Ayoola, A.A. (2019) 'Perspectives on environmental CO2 emission and energy factor in Cement Industry', IOP conference series. Earth and environmental science, 331(1), pp. 12035 Available at: 10.1088/1755-1315/331/1/012035.
Flower, D.J.M. and Sanjayan, J.G. (2007) 'Green house gas emissions due to concrete manufacture', The international journal of life cycle assessment, 12(5), pp. 282–288 Available at: 10.1065/lca2007.05.327.
Ganesh, P. and Murthy, A.R. (2019a) 'Tensile behaviour and durability aspects of sustainable ultra-high performance concrete incorporated with GGBS as cementitious material', Construction & building materials, 197, pp. 667–680 Available at: 10.1016/j.conbuildmat.2018.11.240.
Ganesh, P. and Murthy, A.R. (2019b) 'Tensile behaviour and durability aspects of sustainable ultra-high performance concrete incorporated with GGBS as cementitious material', Construction & building materials, 197, pp. 667–680 Available at: 10.1016/j.conbuildmat.2018.11.240.
Gartner, E. and Hirao, H. (2015) 'A review of alternative approaches to the reduction of CO2 emissions associated with the manufacture of the binder phase in concrete', Cement and concrete research, 78, pp. 126–142 Available at: 10.1016/j.cemconres.2015.04.012.
Gholampour, A. and Ozbakkaloglu, T. (2017) 'Performance of sustainable concretes containing very high volume Class-F fly ash and ground granulated blast furnace slag', Journal of Cleaner Production, 162, pp. 1407–1417 Available at: 10.1016/j.jclepro.2017.06.087.
Gupta, A. (2021) 'Investigation of the strength of ground granulated blast furnace slag based geopolymer composite with silica fume', Materials today : proceedings, 44, pp. 23–28 Available at: 10.1016/j.matpr.2020.06.010.
Hansen, S. and Sadeghian, P. (2020) 'Recycled gypsum powder from waste drywalls combined with fly ash for partial cement replacement in concrete', Journal of cleaner production, 274(C), pp. 122785 Available at: 10.1016/j.jclepro.2020.122785.
Hansted, F.A.S., Mantegazini, D.Z., Ribeiro, T.M., Gonçalves, C.E.C. and Balestieri, J.A.P. (2023) A mini-review on the use of waste in the production of sustainable Portland cement composites, London, England: SAGE Publications.
Hashmi, A.F., Shariq, M. and Baqi, A. (2021) 'An investigation into age-dependent strength, elastic modulus and deflection of low calcium fly ash concrete for sustainable construction', Construction & building materials, 283, pp. 122772 Available at: 10.1016/j.conbuildmat.2021.122772.
He, P., Hossain, M.U., Poon, C.S. and Tsang, D.C.W. (2019) 'Mechanical, durability and environmental aspects of magnesium oxychloride cement boards incorporating waste wood', Journal of cleaner production, 207, pp. 391–399 Available at: 10.1016/j.jclepro.2018.10.015.
Hoang, M.D., Tran, Q.T. and Lee, S.H. (2024) Ground granulated blast furnace slag and fly ash concrete Magazine of Civil Engineering.
Hooton, &. and R Doug  (2008) 'Canadian use of ground granulated blast-furnace slag as a supplementary cementing material for enhanced performance of concrete', Canadian Journal of Civil Engineering, 27(4), pp. 754–760.
Hossain, M.U., Cai, R., Ng, S.T., Xuan, D. and Ye, H. (2021) 'Sustainable natural pozzolana concrete – A comparative study on its environmental performance against concretes with other industrial by-products', Construction & building materials, 270, pp. 121429 Available at: 10.1016/j.conbuildmat.2020.121429.
Ignjatović, I., Sas, Z., Dragaš, J., Somlai, J. and Kovács, T. (2017) 'Radiological and material characterization of high volume fly ash concrete', Journal of environmental radioactivity, 168, pp. 38–45 Available at: 10.1016/j.jenvrad.2016.06.021.
Ikotun, B.D., Fanourakis, G.C. and Mishra Bhardwaj, S. (2017) 'The effect of fly ash, β-cyclodextrin and fly ash-β-cyclodextrin composites on concrete workability and strength', Cement & concrete composites, 78, pp. 1–12 Available at: 10.1016/j.cemconcomp.2016.12.008.
Iqbal, S., Ali, A., Holschemacher, K., Ribakov, Y. and Bier, T.A. (2017) 'Effect of Fly Ash on Properties of Self-Compacting High Strength Lightweight Concrete', Periodica polytechnica. Civil engineering. Bauingenieurwesen, 61(1), pp. 81 Available at: 10.3311/PPci.8171.
Jaturapitakkul, C., Songpiriyakij, S., Tangchirapat, W. and Norrarat, P. (2019) 'Evaluation of Strengths from Cement Hydration and Slag Reaction of Mortars Containing High Volume of Ground River Sand and GGBF Slag', Advances in civil engineering, 2019(2019), pp. 1–12 Available at: 10.1155/2019/4892015.
Jena, T. and Panda, K.C. (2018) 'Mechanical and durability properties of marine concrete using fly ash and silpozz', Advances in concrete construction, 6(1), pp. 47–68.
Kaliyavaradhan, S.K., Ling, T. and Mo, K.H. (2020) 'Valorization of waste powders from cement-concrete life cycle: A pathway to circular future', Journal of Cleaner Production, 268, pp. 122358 Available at: 10.1016/j.jclepro.2020.122358.
Kathirvel, P. and Murali, G. (2023) 'Effect of using available GGBFS, silica fume, quartz powder and steel fibres on the fracture behavior of sustainable reactive powder concrete', Construction & building materials, 375, pp. 130997 Available at: 10.1016/j.conbuildmat.2023.130997.
Khodair, Y. and Bommareddy, B. (2017) 'Self-consolidating concrete using recycled concrete aggregate and high volume of fly ash, and slag', Construction & building materials, 153, pp. 307–316 Available at: 10.1016/j.conbuildmat.2017.07.063.
Kim, T. and Chae, C. (2016) 'Environmental Impact Analysis of Acidification and Eutrophication Due to Emissions from the Production of Concrete', Sustainability, 8(6), pp. 578 Available at: 10.3390/su8060578.
Koksal, F., Bayraktar, O.Y., Bodur, B., Benli, A. and Kaplan, G. (2023) 'Insulating and fire-resistant performance of slag and brick powder based one-part alkali-activated lightweight mortars', Structural Concrete, 24(3), pp. 3128–3146 Available at: 10.1002/suco.202200607.
Kumar, S., Murthi, P., Awoyera, P., Gobinath, R. and kumar, S. (2022) 'Impact Resistance and Strength Development of Fly Ash Based Self-compacting Concrete', SILICON, 14(2), pp. 481–492 Available at: 10.1007/s12633-020-00842-2.
Lancellotti, I., Cannio, M., Bollino, F., Catauro, M., Barbieri, L. and Leonelli, C. (2015) 'Geopolymers: An option for the valorization of incinerator bottom ash derived “end of waste”', Ceramics international, 41(2), pp. 2116–2123 Available at: 10.1016/j.ceramint.2014.10.008.
Lavagna, L. and Nisticò, R. (2023) 'An Insight into the Chemistry of Cement—A Review', Applied sciences, 13(1), pp. 203 Available at: 10.3390/app13010203.
Lee, J. and Lee, T. (2019) 'Influences of Chemical Composition and Fineness on the Development of Concrete Strength by Curing Conditions', Materials, 12(24), pp. 4061 Available at: 10.3390/ma12244061.
Lenka, B.P., Majhi, R.K., Singh, S. and Nayak, A.N. (2022) 'Eco-friendly and cost-effective concrete utilizing high-volume blast furnace slag and demolition waste with lime', European journal of environmental and civil engineering, 26(11), pp. 5351–5373 Available at: 10.1080/19648189.2021.1896581.
Li, J., Guo, L., Zhang, J., Li, Y., Ma, L. and Wang, K. (2025) 'Study on the synergistic hydration mechanism of granulated blast furnace slag-carbide slag-based cementitious materials and the properties of full-solid waste backfill materials', Scientific reports, 15(1), pp. 1947–22 Available at: 10.1038/s41598-025-86509-7.
Liu, J., Wu, Y., Qu, F., Zhao, H. and Su, Y. (2024) 'Assessment of CO2 Capture in FA/GGBS-Blended Cement Systems: From Cement Paste to Commercial Products', Buildings (Basel), 14(1), pp. 154 Available at: 10.3390/buildings14010154.
Liu, Z., Takasu, K., Koyamada, H. and Suyama, H. (2022) 'A study on engineering properties and environmental impact of sustainable concrete with fly ash or GGBS', Construction & building materials, 316, pp. 125776 Available at: 10.1016/j.conbuildmat.2021.125776.
Łukowski, P. and Salih, A. (2015) 'Durability of Mortars Containing Ground Granulated Blast-furnace Slag in Acid and Sulphate Environment', Procedia engineering, 108, pp. 47–54 Available at: 10.1016/j.proeng.2015.06.118.
Ma, C., Xie, Y., Long, G., Chen, B. and Chen, L. (2017) 'Effects of fly ash on mechanical and physical properties of earth-based construction', Construction & building materials, 157, pp. 1074–1083 Available at: 10.1016/j.conbuildmat.2017.09.122.
Mahapatra, C.K., Pradhan, S. and Barai, S.V. (2021) 'Influence of mechanical properties and CO2 emissions on the optimization of self-compacting based hybrid fiber reinforced concrete', Procedia CIRP, 98, pp. 145–150 Available at: 10.1016/j.procir.2021.01.020.
Mahmoud Elsayed, Bassam A. Tayeh, Yazan I. Abu Aisheh, Norhan Abd El-Nasser and Mohamed Abou Elmaaty (2022) 'Shear strength of eco-friendly self-compacting concrete beams containing ground granulated blast furnace slag and fly ash as cement replacement Shear strength of eco-friendly self-compacting concrete beams containing ground granulated blast furnace slag and fly ash as cement replacement', Case Studies in Construction Materials, 17, pp. e01354.
Majhi, R.K., Nayak, A.N. and Mukharjee, B.B. (2018) 'Development of sustainable concrete using recycled coarse aggregate and ground granulated blast furnace slag', Construction & building materials, 159, pp. 417–430 Available at: 10.1016/j.conbuildmat.2017.10.118.
Majhi, R.K., Nayak, A.N. and Mukharjee, B.B. (2020) 'Characterization of lime activated recycled aggregate concrete with high-volume ground granulated blast furnace slag', Construction & building materials, 259, pp. 119882 Available at: 10.1016/j.conbuildmat.2020.119882.
Manjunatha, M., Seth, D. and Balaji, K.V.G.D. (2021) 'Role of engineered fibers on fresh and mechanical properties of concrete prepared with GGBS and PVC waste powder – An experimental study', Materials today : proceedings, 47, pp. 3683–3693 Available at: 10.1016/j.matpr.2021.01.605.
McCarthy, M.J. and Dyer, T.D. (2019) 'Pozzolanas and pozzolanic materials', Lea’s Chemistry of Cement and Concrete, 5, pp. 363–467.
Mohammadhosseini, H., Lim, N.H.A.S., Tahir, M.M., Alyousef, R., Samadi, M., Alabduljabbar, H. and Mohamed, A.M. (2020) 'Effects of Waste Ceramic as Cement and Fine Aggregate on Durability Performance of Sustainable Mortar', Arabian journal for science and engineering (2011), 45(5), pp. 3623–3634 Available at: 10.1007/s13369-019-04198-7.
Mugahed Amran, Y.H., Soto, M.G., Alyousef, R., El-Zeadani, M., Alabduljabbar, H. and Aune, V. (2020) 'Performance investigation of high-proportion Saudi-fly-ash-based concrete', Results in engineering, 6, pp. 100118 Available at: 10.1016/j.rineng.2020.100118.
Mwiti, M.J., Karanja, T.J. and Muthengia, W.J. (2017) 'Thermal Resistivity of Chemically Activated Calcined Clays-Based Cements'Calcined Clays for Sustainable Concrete The Netherlands: Springer Netherlands, pp. 327–333.
Nayak, D.K., Abhilash, P.P., Singh, R., Kumar, R. and Kumar, V. (2022) 'Fly ash for sustainable construction: A review of fly ash concrete and its beneficial use case studies', Cleaner Materials, 6, pp. 100143 Available at: 10.1016/j.clema.2022.100143.
Negash, Y.T., Hassan, A.M., Tseng, M., Wu, K. and Ali, M.H. (2021) 'Sustainable construction and demolition waste management in Somaliland: Regulatory barriers lead to technical and environmental barriers', Journal of cleaner production, 297, pp. 126717 Available at: 10.1016/j.jclepro.2021.126717.
Nguyen, T.B.T., Saengsoy, W. and Tangtermsirikul, S. (2018) 'Effect of initial moisture of wet fly ash on the workability and compressive strength of mortar and concrete', Construction & building materials, 183, pp. 408–416 Available at: 10.1016/j.conbuildmat.2018.06.192.
Nukah, P.D., Abbey, S.J., Booth, C.A. and Oti, J. (2022) 'Evaluation of the Structural Performance of Low Carbon Concrete', Sustainability, 14(24), pp. 16765 Available at: 10.3390/su142416765.
Ogirigbo, O.R. and Black, L. (2016) 'Influence of slag composition and temperature on the hydration and microstructure of slag blended cements', Construction & building materials, 126, pp. 496–507 Available at: 10.1016/j.conbuildmat.2016.09.057.
Oh, D., Noguchi, T., Kitagaki, R. and Park, W. (2014) 'CO2 emission reduction by reuse of building material waste in the Japanese cement industry', Renewable and Sustainable Energy Reviews, 38, pp. 796–810 Available at: 10.1016/j.rser.2014.07.036.
Ohenoja, K., Wigren, V., Österbacka, J. and Illikainen, M. (2019) 'Applicability of Fly Ash from Fluidized Bed Combustion of Peat, Wood, or Wastes to Concrete', Waste and biomass valorization, 10(11), pp. 3525–3534 Available at: 10.1007/s12649-018-0319-5.
Özbay, E., Erdemir, M. and Durmuş, H.İ (2016) 'Utilization and efficiency of ground granulated blast furnace slag on concrete properties – A review', Construction & building materials, 105, pp. 423–434 Available at: 10.1016/j.conbuildmat.2015.12.153.
P., Vignesh, , and K.Vivek (2015) 'AN EXPERIMENTAL INVESTIGATION ON STRENGTH PARAMETERS OF FLYASH BASED GEOPOLYMER CONCRETE WITH GGBS', International Research Journal of Engineering and Technology (IRJET), 2(2), pp. 135–142.
Pal, S.C., Mukherjee, A. and Pathak, S.R. (2003) 'Investigation of hydraulic activity of ground granulated blast furnace slag in concrete', Cement and Concrete Research, 33(9), pp. 1481–1486 Available at: 10.1016/S0008-8846(03)00062-0.
Paliwal, G. and Maru, S. (2017) 'Effect of fly ash and plastic waste on mechanical and durability properties of concrete', Advances in concrete construction, 5(6), pp. 575–586.
Parron-Rubio, M.E., Perez-García, F., Gonzalez-Herrera, A. and Rubio-Cintas, M.D. (2018) 'Concrete Properties Comparison When Substituting a 25% Cement with Slag from Different Provenances', Materials, 11(6), pp. 1029 Available at: 10.3390/ma11061029.
Patra, R.K. and Mukharjee, B.B. (2017) 'Influence of incorporation of granulated blast furnace slag as replacement of fine aggregate on properties of concrete', Journal of Cleaner Production, 165, pp. 468–476 Available at: 10.1016/j.jclepro.2017.07.125.
Phul, A.A., Memon, M.J., Shah, S.N.R. and Sandhu, A.R. (2019) 'GGBS And Fly Ash Effects on Compressive Strength by Partial Replacement of Cement Concrete', Civil Engineering Journal, 5(4), pp. 913–921 Available at: 10.28991/cej-2019-03091299.
Poornima, K.B., Chandrashekar, V.C., Tejaswini, P., S, Madhu , KS and Deepa T (2018) 'Effect on the Engineering Properties of Pervious Concrete by Partial Replacement of Cement with GGBS', GRD Journals- Global Research and Development Journal for Engineering, 3(3), pp. 1–7.
Pourkhorshidi, A.R., Najimi, M., Parhizkar, T., Jafarpour, F. and Hillemeier, B. (2010) 'Applicability of the standard specifications of ASTM C618 for evaluation of natural pozzolans', Cement & concrete composites, 32(10), pp. 794–800 Available at: 10.1016/j.cemconcomp.2010.08.007.
Prasanna Venkatesan Ramani and Pazhani Kandukalpatti Chinnaraj (2015) 'Geopolymer concrete with ground granulated blast furnace slag and black rice husk ash', Građevinar (Zagreb), 67(8.), pp. 741–748 Available at: 10.14256/JCE.1208.2015.
Praveen Kumar, V.V. and Ravi Prasad, D. (2019) 'Influence of supplementary cementitious materials on strength and durability characteristics of concrete', Advances in concrete construction, 7(2), pp. 75–85.
Punashri Prakash Phadnis (2023) 'Effect of Partial Replacement of Fly Ash and GGBS with Cement in Concrete', Journal of Shivaji University, 44(1).
Qu, Z., Liu, Z., Si, R. and Zhang, Y. (2022) 'Effect of Various Fly Ash and Ground Granulated Blast Furnace Slag Content on Concrete Properties: Experiments and Modelling', Materials, 15(9), pp. 3016 Available at: 10.3390/ma15093016.
Quan, H.V., Tan Khoa, N. and Tho, P.C. (Mar 12, 2021) Combined effects of ground granulated blast furnace slag and fly ash on the porosity and chloride penetration of sand concrete. Piscataway: IEEE, pp. 39.
Rahla, K.M., Mateus, R. and Bragança, L. (2019) 'Comparative sustainability assessment of binary blended concretes using Supplementary Cementitious Materials (SCMs) and Ordinary Portland Cement (OPC)', Journal of Cleaner Production, 220, pp. 445–459 Available at: 10.1016/j.jclepro.2019.02.010.
Ramakrishnan, K., Pugazhmani, G., Sripragadeesh, R., Muthu, D. and Venkatasubramanian, C. (2017) 'Experimental study on the mechanical and durability properties of concrete with waste glass powder and ground granulated blast furnace slag as supplementary cementitious materials', Construction & building materials, 156, pp. 739–749 Available at: 10.1016/j.conbuildmat.2017.08.183.
Rao, K.G. (2023) 'Experimental Study on Partial Replacement of Cement by GGBS and Fly Ash in Conventional Concrete', International journal for research in applied science and engineering technology, 11(11), pp. 1566–1575 Available at: 10.22214/ijraset.2023.56713.
Rao, S.K., Sravana, P. and Rao, T.C. (2016) 'Experimental studies in Ultrasonic Pulse Velocity of roller compacted concrete pavement containing fly ash and M-sand', International Journal of Pavement Research and Technology, 9(4), pp. 289–301 Available at: 10.1016/j.ijprt.2016.08.003.
Rathod, S. and Hombal, G. (2017) 'A Comparative Study on Strength and Durability Aspects of fly ash- GGBS based Geopolymer Concrete over Conventional Concrete', International Journal of Engineering Research & Technology (IJERT), 6(6), pp. 1062–67.
Rotaru, I.M., Dobrotă, D., Miriţoiu, C.M. and Dimulescu, C.S. (2023) 'Optimization of the composition of polyvinyl chloride based composite materials with rubber matrices and fly ash additions respectively', Polymer testing, 129, pp. 108280 Available at: 10.1016/j.polymertesting.2023.108280.
S, S.S. and Kolli, R. (2022) 'Experimental investigation on mechanical properties of fly ash-GGBFS based GO-geopolymer concrete using mineral sand (Quartz-Feldspar) as fine aggregate', Materials today : proceedings, 60, pp. 40–45 Available at: 10.1016/j.matpr.2021.11.325.
Sadrmomtazi, A., Tahmouresi, B. and Kohani Khoshkbijari, R. (2018) 'Effect of fly ash and silica fume on transition zone, pore structure and permeability of concrete', Magazine of concrete research, 70(10), pp. 519–532 Available at: 10.1680/jmacr.16.00537.
Saha, A.K. (2018) 'Effect of class F fly ash on the durability properties of concrete', Sustainable Environment Research, 28(1), pp. 25–31 Available at: 10.1016/j.serj.2017.09.001.
Saif, M.S., Shanour, A.S., Abdelaziz, G.E., Elsayad, H.I., Shaaban, I.G., Tayeh, B.A. and Hammad, M.S. (2023) 'Influence of blended powders on properties of Ultra-High Strength Fibre Reinforced Self Compacting Concrete subjected to elevated temperatures', Case Studies in Construction Materials, 18, pp. e01793 Available at: 10.1016/j.cscm.2022.e01793.
Salas Montoya, A., Rodríguez-Barboza, L.I., Colmenero Fonseca, F., Cárcel-Carrasco, J. and Gómez-Zamorano, L.Y. (2023) 'Composite Cements Using Ground Granulated Blast Furnace Slag, Fly Ash, and Geothermal Silica with Alkali Activation', Buildings (Basel), 13(7), pp. 1854 Available at: 10.3390/buildings13071854.
Shaikh, F.U.A. and Supit, S.W.M. (2015) 'Compressive strength and durability properties of high volume fly ash (HVFA) concretes containing ultrafine fly ash (UFFA)', Construction & building materials, 82, pp. 192–205 Available at: 10.1016/j.conbuildmat.2015.02.068.
Shaikh, F.U.A. and Hosan, A. (2019) 'Effect of nano silica on compressive strength and microstructures of high volume blast furnace slag and high volume blast furnace slag-fly ash blended pastes', Sustainable Materials and Technologies, 20, pp. e00111 Available at: 10.1016/j.susmat.2019.e00111.
Shamass, R., Rispoli, O., Limbachiya, V. and Kovacs, R. (2023) 'Mechanical and GWP assessment of concrete using Blast Furnace Slag, Silica Fume and recycled aggregate', Case Studies in Construction Materials, 18, pp. e02164 Available at: 10.1016/j.cscm.2023.e02164.
Sharma, A.K. and Sivapullaiah, P.V. (2016) 'Ground granulated blast furnace slag amended fly ash as an expansive soil stabilizer', Soils and Foundations, 56(2), pp. 205–212 Available at: 10.1016/j.sandf.2016.02.004.
Shen, D., Jiao, Y., Kang, J., Feng, Z. and Shen, Y. (2020) 'Influence of ground granulated blast furnace slag on early-age cracking potential of internally cured high performance concrete', Construction & building materials, 233, pp. 117083 Available at: 10.1016/j.conbuildmat.2019.117083.
Singh, N. (2018) 'Fly Ash-Based Geopolymer Binder: A Future Construction Material', Minerals (Basel), 8(7), pp. 299 Available at: 10.3390/min8070299.
Suda, V.B.R. and Srinivasa Rao, P. (2020) 'Experimental investigation on optimum usage of Micro silica and GGBS for the strength characteristics of concrete', Materials today : proceedings, 27, pp. 805–811 Available at: 10.1016/j.matpr.2019.12.354.
Tangadagi, R.B., Manjunatha, M., Bharath, A. and Preethi, S. (2020) 'Utilization of steel slag as an eco-friendly material in concrete for construction', Journal of Green Engineering, 10(5), pp. 2408–2419.
Teixeira, E.R., Mateus, R., Camões, A.F., Bragança, L. and Branco, F.G. (2016) 'Comparative environmental life-cycle analysis of concretes using biomass and coal fly ashes as partial cement replacement material', Journal of cleaner production, 112(4), pp. 2221–2230 Available at: 10.1016/j.jclepro.2015.09.124.
Teng, S., Lim, T.Y.D. and Sabet Divsholi, B. (2013a) 'Durability and mechanical properties of high strength concrete incorporating ultra fine Ground Granulated Blast-furnace Slag', Construction & building materials, 40, pp. 875–881 Available at: 10.1016/j.conbuildmat.2012.11.052.
Teng, S., Lim, T.Y.D. and Sabet Divsholi, B. (2013b) 'Durability and mechanical properties of high strength concrete incorporating ultra fine Ground Granulated Blast-furnace Slag', Construction & building materials, 40, pp. 875–881 Available at: 10.1016/j.conbuildmat.2012.11.052.
Thomas, M. (2013) Supplementary Cementing Materials in Concrete. 1st edn. United States: CRC Press.
Valcuende, M., Benito, F., Parra, C. and Miñano, I. (2015) 'Shrinkage of self-compacting concrete made with blast furnace slag as fine aggregate', Construction & building materials, 76, pp. 1–9 Available at: 10.1016/j.conbuildmat.2014.11.029.
Vediyappan, S., Chinnaraj, P.K., Hanumantraya, B.B. and Subramanian, S.K. (2021) 'An Experimental Investigation on Geopolymer Concrete Utilising Micronized Biomass Silica and GGBS', KSCE Journal of Civil Engineering, 25(6), pp. 2134–2142 Available at: 10.1007/s12205-021-1477-8.
Vollpracht, A., Soutsos, M. and Kanavaris, F. (2018) 'Strength development of GGBS and fly ash concretes and applicability of fib model code’s maturity function – A critical review', Construction & building materials, 162, pp. 830–846 Available at: 10.1016/j.conbuildmat.2017.12.054.
WANG, P.Z., TRETTIN, R. and RUDERT, V. (2005) 'Effect of fineness and particle size distribution of granulated blast-furnace slag on the hydraulic reactivity in cement systems', Advances in cement research, 17(4), pp. 161–166 Available at: 10.1680/adcr.2005.17.4.161.
Wang, X. and Park, K. (2015) 'Analysis of compressive strength development of concrete containing high volume fly ash', Construction & building materials, 98, pp. 810–819 Available at: 10.1016/j.conbuildmat.2015.08.099.
Xu, G., Tian, Q., Miao, J. and Liu, J. (2017) 'Early-age hydration and mechanical properties of high volume slag and fly ash concrete at different curing temperatures', Construction & building materials, 149, pp. 367–377 Available at: 10.1016/j.conbuildmat.2017.05.080.
Yang, K., Jung, Y., Cho, M. and Tae, S. (2015) 'Effect of supplementary cementitious materials on reduction of CO2 emissions from concrete', Journal of Cleaner Production, 103, pp. 774–783 Available at: 10.1016/j.jclepro.2014.03.018.
Zawrah, M.F., Gado, R.A., Feltin, N., Ducourtieux, S. and Devoille, L. (2016) 'Recycling and utilization assessment of waste fired clay bricks (Grog) with granulated blast-furnace slag for geopolymer production', Process safety and environmental protection, 103, pp. 237–251 Available at: 10.1016/j.psep.2016.08.001.
Zhang, Y., Luo, W., Wang, J., Wang, Y., Xu, Y. and Xiao, J. (2019) 'A review of life cycle assessment of recycled aggregate concrete', Construction and Building Materials, 209, pp. 115–125 Available at: 10.1016/j.conbuildmat.2019.03.078.
Zhao, Y., Gong, J. and Zhao, S. (2017) 'Experimental study on shrinkage of HPC containing fly ash and ground granulated blast-furnace slag', Construction & building materials, 155, pp. 145–153 Available at: 10.1016/j.conbuildmat.2017.07.020.