Ahmadi, M., Piadeh, F., Hosseini, M.R., Zuo, J., Kocaturk, T., 2024. Unraveling building sector carbon mechanisms: critique and solutions. Renew. Sustain. Energy Rev. 205, 114873. https://doi.org/10.1016/j.rser.2024.114873.
Andersen, C.M.E., Kanafani, K., Zimmermann, R.K., Rasmussen, F.N., Birgisd´ottir, H., 2020. Comparison of GHG emissions from circular and conventional building components. Build. Cities 1 (1), 379–392.
Arenas, N.F., Shafique, M., 2024. Reducing embodied carbon emissions of buildings–a key consideration to meet the net zero target. Sustainable Futures 7, 100166. https://doi.org/10.1016/j.sftr.2024.100166.
Arup, 2016. The Circular Economy in the Built Environment [Online] Available at:. www .Arup.com. (Accessed 10 February 2024).
Arup, 2022. Circular fit-out in Retail Stores: Circular Design Principles [Online] Available at: www.Arup.com.
Ashtiani, M., Palmeri, J., Simonen, K., 2024. End of life modeling and data in north American whole building life cycle assessment tools. http://hdl.handle.net/1773/51 283.
Blay-Armah, A., Bahadori-Jahromi, A., Mylona, A., Barthorpe, M., 2024. An LCA of building demolition waste: a comparison of end-of-life carbon emission. Proc. Instit. Civil Eng. Wast. Res. Manag. https://doi.org/10.1680/jwarm.22.00012.
Bocken, N.M.P., De Pauw, I., Bakker, C., Van Der Grinten, B., 2016. Product design and business model strategies for a circular economy. J. Ind. Prod. Eng. 33 (5), 308–320. https://doi.org/10.1080/21681015.2016.1172124.
Bragadin, M.A., Guardigli, L., Calistri, M., Ferrante, A., 2023. Demolishing or renovating? Life cycle analysis in the design process for building renovation: the ProGETonE case. Sustainability (Basel) 15 (11), 8614. https://doi.org/10.3390/ su15118614.
British Standards Institution (BSI), 2011. Sustainability of Construction Works. Methodology for the Assessment of Performance of Buildings: Part 1. Environ. Perform.: BS EN 15978-1 [online] available at: <Retrieved 12/10/2023>www.BSI group.com.
British Standards Institution (BSI), 2019. Sustainability of Construction Works - Environmental Product Declarations - Core Rules for the Product Category of Construction Products (+A2:2019). Incorporating corrigendum February 2014) [online] available at: <Retrieved 26/06/2024>www.BSIgroup.com.
Cabeza, L.F., Boquera, L., Ch`afer, M., V´erez, D., 2021. Embodied energy and embodied carbon of structural building materials: worldwide progress and barriers through literature map analysis. Energy Build. 231, 110612. https://doi.org/10.1016/j. enbuild.2020.110612.
Chastas, P., Theodosiou, T., Kontoleon, K.J., Bikas, D., 2018. Normalising and assessing carbon emissions in the building sector: a review on the embodied CO2 emissions of residential buildings. Build. Environ. 130, 212–226. https://doi.org/10.1016/j. buildenv.2017.12.032.
Craft, W., Oldfield, P., Reinmuth, G., Hadley, D., Balmforth, S., Nguyen, A., 2024. Towards net-zero embodied carbon: investigating the potential for ambitious embodied carbon reductions in Australian office buildings. Sustain. Cities Soc. 113, 105702. https://doi.org/10.1016/j.scs.2024.105702.
Decorte, Y., Van Den Bossche, N., Steeman, M., 2023. Guidelines for defining the reference study period and system boundaries in comparative LCA of building renovation and reconstruction. Int. J. Life Cycle Assess. 28 (2), 111–130. https://doi. org/10.1007/s11367-022-02114-0.
Delnavaz, M., Norouzianpour, M., Delnavaz, A., Amiri, S., 2023. A comparative study on the environmental impact of cast in situ concrete and industrialized building systems: a life cycle assessment approach. Environ. Dev. Sustain. 1–19. https://doi. org/10.1007/s10668-023-03738-4.
Densley Tingley, D., Giesekam, J., Cooper-Searle, S., 2018. Applying circular economic principles to reduce embodied carbon. Embod. Carb. Build.: Measur. Manag. Mitigat. 265–285. https://doi.org/10.1007/978-3-319-72796-7_12.
Dixit, M.K., 2017. Life cycle embodied energy analysis of residential buildings: a review of literature to investigate embodied energy parameters. Renew. Sustain. Energy Rev. 79, 390–413. https://doi.org/10.1016/j.rser.2017.05.051.
Eberhardt, L.C.M., Birkved, M., Birgisdottir, H., 2022. Building design and construction strategies for a circular economy. Architect. Eng. Des. Manag. 18 (2), 93–113. https://doi.org/10.1080/17452007.2020.1781588.
Ellen MacArthur Foundation (EMF), 2015. Circularity Indicators: an Approach to Measuring Circularity.
Ellen Macarthur Foundation (EMF), 2021. Completing the Picture: How the Circular Economy Tackles Climate Change. Available at: www.ellenmacarthurfoundation. org.
Ellen MacArthur Foundation (EMF) and Arup, 2024. Circular Building Toolkit [Online] Available at: https://ce-toolkit.dhub.arup.com.
Forsythe, P., Wilkinson, S., 2015. Measuring office fit-out changes to determine recurring embodied energy in building life cycle assessment. Facilities 33 (3/4), 262–274. https://doi.org/10.1108/F-08-2013-0065.
Girotto, C.D., Piadeh, F., Bkhtiari, V., Behzadian, K., Chen, A.S., Campos, L.C., Zolgharni, M., 2023. A critical review of digital technology innovations for early warning of water-related disease outbreaks associated with climatic hazards. Int. J. Disaster Risk Reduct., 104151. https://doi.org/10.1016/j.ijdrr.2023.104151.
Grazieschi, G., Asdrubali, F., Thomas, G., 2021. Embodied energy and carbon of building insulating materials: a critical review. Cleaner Environ. Syst. 2, 100032. https://doi. org/10.1016/j.cesys.2021.100032.
Hafez, F.S., Sa’di, B., Safa-Gamal, M., Taufiq-Yap, Y.H., Alrifaey, M., Seyedmahmoudian, M., Stojcevski, A., Horan, B., Mekhilef, S., 2023. Energy efficiency in sustainable buildings: a systematic review with taxonomy, challenges, motivations, methodological aspects, recommendations, and pathways for future research. Energy Strategy Rev. 45, 101013. https://doi.org/10.1016/j. esr.2022.101013.
Hasik, V., Escott, E., Bates, R., Carlisle, S., Faircloth, B., Bilec, M.M., 2019. Comparative whole-building life cycle assessment of renovation and new construction. Build. Environ. 161, 106218. https://doi.org/10.1016/j.buildenv.2019.106218.
Hu, M., 2023. A look at residential building stock in the United States - mapping life cycle embodied carbon emissions and other environmental impact. Sustain. Cities Soc. 89, 104333. https://doi.org/10.1016/j.scs.2022.104333.
Illankoon, C., Vithanage, S.C., Pilanawithana, N.M., 2023. Embodied carbon in Australian residential houses: a preliminary Study. Buildings 13 (10), 2559. https:// doi.org/10.3390/buildings13102559.
Iran Ministry of Roads and Urban Development (IMRU), 2016. Regulations code 2800 on building design against earthquakes. In: Persian, fourth ed.
Iran Ministry of Roads and Urban Development (IMRU), 2020. National building regulations, class 9: design and construction of reinforced concrete buildings. In: Persian, fifth ed.
Izaola, B., Akizu-Gardoki, O., Oregi, X., 2023. Setting baselines of the embodied, operational and whole life carbon emissions of the average Spanish residential building. Sustain. Prod. Consum. 40, 252–264. https://doi.org/10.1016/j. spc.2023.07.001.
Jalali, S., Parapari, D.M., Mahdavinejad, M.J., 2019. Analysis of building facade materials usage pattern in Tehran. Adv. Eng. Forum 31, 46–62. https://doi.org/ 10.4028/www.scientific.net/AEF.31.46.
Joensuu, T., Leino, R., Heinonen, J., Saari, A., 2022. Developing buildings’ life cycle assessment in circular economy-comparing methods for assessing carbon footprint of reusable components. Sustain. Cities Soc. 77, 103499. https://doi.org/10.1016/j. scs.2021.103499.
Keena, N., Rondinel-Oviedo, D.R., De-los-Ríos, A.A., Sarmiento-Pastor, J., Lira-Chirif, A., Raugei, M., Dyson, A., 2023. Implications of circular strategies on energy, water, and GHG emissions in housing of the global North and Global South. Clean. Eng. Technol. 17, 100684. https://doi.org/10.1016/j.clet.2023.100684.
Khoshand, A., Khanlari, K., Abbasianjahromi, H., Zoghi, M., 2020. Construction and demolition waste management: Fuzzy analytic hierarchy process approach. Waste Manag. Res. 38 (7), 773–782. https://doi.org/10.1177/0734242X20910468.
Kiess´e, T.S., Ventura, A., van Der Werf, H.M.G., Cazacliu, B., Idir, R., 2017. Introducing economic actors and their possibilities for action in LCA using sensitivity analysis: application to hemp-based insulation products for building applications. J. Clean. Prod. 142, 3905–3916. https://doi.org/10.1016/j.jclepro.2016.10.069.
Kirchherr, J., Reike, D., Hekkert, M., 2017. Conceptualizing the circular economy: an analysis of 114 definitions. Resour. Conserv. Recycl. 127, 221–232. https://doi.org/ 10.1016/j.resconrec.2017.09.005.
Konietzko, J., Bocken, N., Hultink, E.J., 2020. Circular ecosystem innovation: an initial set of principles. J. Clean. Prod. 253, 119942. https://doi.org/10.1016/j. jclepro.2019.119942.
Lei, B., Yang, W., Yan, Y., Zaland, S., Tang, Z., Dong, W., 2023. Carbon-saving benefits of various end-of-life strategies for different types of building structures. Develop. Built Environ. 16, 100264. https://doi.org/10.1016/j.dibe.2023.100264.
Long, Y., Song, Q., Huang, B., Zeng, X., Wu, H., 2024. Characterizing temporal and spatial characteristics of urban building material metabolism and embodied carbon emissions through a 4D GIS-MFA-LCA model. Resour. Conserv. Recycl. 206, 107642. https://doi.org/10.1016/j.resconrec.2024.107642.
Lu, M., Luo, Z., Cang, Y., Zhang, N., Yang, L., 2024. Methods for calculating building- embodied carbon emissions for the whole design process. Fund. Res. https://doi.org/ 10.1016/j.fmre.2022.07.015.
Luo, X.J., 2022. Retrofitting existing office buildings towards life-cycle net-zero energy and carbon. Sustain. Cities Soc. 83, 103956. https://doi.org/10.1016/j. scs.2022.103956.
Manfredi, S., Allacker, K., Pelletier, N., Chomkhamsri, K., de Souza, D.M., 2012. Product environmental footprint (PEF) guide [Online] Available at: https://eplca.jrc.ec. europa.eu/%3cRetrieved05/05/2025%3e.
Marsh, A.T.M., Velenturf, A.P.M., Bernal, S.A., 2022. Circular economy strategies for concrete: implementation and integration. J. Clean. Prod. 362, 132486. https://doi. org/10.1016/j.jclepro.2022.132486.
Mirzaie, S., Thuring, M., Allacker, K., 2020. End-of-life modelling of buildings to support more informed decisions towards achieving circular economy targets. Int. J. Life Cycle Assess. 25, 2122–2139. https://doi.org/10.1007/s11367-020-01807-8.
Mu˜noz, S., Hosseini, M.R., Crawford, R.H., 2023. Exploring the environmental assessment of circular economy in the construction industry: a scoping review. Sustain. Prod. Consum. https://doi.org/10.1016/j.spc.2023.09.022.
Myint, N.N., Shafique, M., 2024. Embodied carbon emissions of buildings: taking a step towards net zero buildings. Case Stud. Constr. Mater. 20, e03024. https://doi.org/ 10.1016/j.cscm.2024.e03024.
Nawarathna, A., Alwan, Z., Gledson, B., Fernando, N., 2021. Embodied carbon in commercial office buildings: lessons learned from Sri Lanka. J. Build. Eng. 42, 102441. https://doi.org/10.1016/j.jobe.2021.102441.
Oladazimi, A., Mansour, S., Hosseinijou, S.A., 2020. Comparative life cycle assessment of steel and concrete construction frames: a case study of two residential buildings in Iran. Buildings 10 (3), 54. https://doi.org/10.3390/buildings10030054.
Omar, W.M.S.W., Doh, J.-H., Panuwatwanich, K., Miller, D., 2014. Assessment of the embodied carbon in precast concrete wall panels using a hybrid life cycle assessment approach in Malaysia. Sustain. Cities Soc. 10, 101–111. https://doi.org/10.1016/j. scs.2013.06.002.
OneClickLCA, 2024a. How we work with data [Online] Available at: https://oneclicklca. com/en/resources/articles/how-we-work-with-data.
OneClickLCA, 2024b. EPD pre-verification: what is it and how does it work? [Online] Available at: https://oneclicklca.com/en/resources/articles/what-is-epd-pre-verific ation.
Pasanen, P., Sipari, A., Terranova, E., Castro, R., Bruce-Hyrkas, T., 2018. The embodied carbon review—embodied carbon reduction 100+regulations and rating systems globally - bionova ltd [Online] Available at: https://www.buildingtransparency.org.
Pedersen, E., Remmen, A., 2022. Challenges with product environmental footprint: a systematic review. Int. J. Life Cycle Assess. 27, 342–352. https://doi.org/10.1007/ s11367-022-02022-3.
Potting, J., Hekkert, M.P., Worrell, E., Hanemaaijer, A., 2017. Circular economy: measuring innovation in the product chain. Planbureau Voor de Leefomgeving 2544.
Seyedabadi, M.R., Abolhassani, S.S., Eicker, U., 2023. District cradle to grave LCA including the development of a localized embodied carbon database and a detailed end-of-life carbon emission workflow. J. Build. Eng. 76, 107101. https://doi.org/ 10.1016/j.jobe.2023.107101.
Temizel-Sekeryan, S., Rios, F.C., Geremicca, F., Bilec, M.M., 2023. Circular design and embodied carbon in living buildings: the missing potential. J. Architect. Eng. 29 (3), 04023013. https://doi.org/10.1061/JAEIED.AEENG-1445.
Wang, X., Huang, B., Wang, Y., Liu, J., Long, Y., Daigo, I., 2023. The impact of allocation methods on carbon benefits-a case study of construction waste recycling. Resour. Conserv. Recycl. 199, 107269. https://doi.org/10.1016/j.resconrec.2023.107269.
Waldman, B., Huang, M., Simonen, K., 2020. Embodied carbon in construction materials: a framework for quantifying data quality in EPDs. Build. cities 1 (1). https://j ournal-buildingscities.org/articles/10.5334/bc.31.
Wiedenhofer, D., Schug, F., Gauch, H., Lanau, M., Drewniok, M.P., Baumgart, A., Vir´ag, D., Watt, H., Serrenho, A.C., Tingley, D.D., 2024. Mapping material stocks of buildings and mobility infrastructure in the United Kingdom and the Republic of Ireland. Resour. Conserv. Recycl. 206, 107630. https://doi.org/10.1016/j. resconrec.2024.107630.
World Business Council for Sustainable Development (WBCSD), 2022. Circular Transition Indicators V4.0: Metrics by Business. by business [Online] Available at: www.wbcsd.org.
World Green Building Council (World GBC), 2019. Bringing Embodied Carbon Upfront: Coordinated Action for the Building and Construction Sector to Tackle Embodied Carbon, pp. 7–14 [Online] Available at: www.worldgbc.org.
Zakerhosseini, A., Abdoli, M.A., Molayzahedi, S.M., Salmi, F.K., 2023. Life cycle assessment of construction and demolition waste management: a case study of Mashhad, Iran. Environ. Dev. Sustain. 1–27. https://doi.org/10.1007/s10668-023- 03703-1.