Aoudj, S., Khelifa, A., Drouiche, N., 2017. Removal of fluoride, SDS, ammonia and
turbidity from semiconductor wastewater by combined electrocoagulation–electroflotation. Chemosphere 180, 379–387.
APHA, 1998. Standard Methods for the Examination of Water and Wastewater (20th
Ed.). American Public Health Association, American Public Health Association,
American Water Works Association, Water Pollution Control Federation, Washington
D.C.
Aragaw, T.A., 2020. Recovery of iron hydroxides from electro-coagulated sludge for
adsorption removals of dye wastewater: adsorption capacity and adsorbent
characteristics. Surf. Interfaces 18, 100439.
Asaithambi, P., Govindarajan, R., Yesuf, M.B., Selvakumar, P., Alemayehu, E., 2020.
Enhanced treatment of landfill leachate wastewater using sono (US)-ozone (O3)–
electrocoagulation (EC) process: role of process parameters on color, COD and
electrical energy consumption. Process Saf. Environ. Prot. 142, 212–218.
Bakheet, B., Yuan, S., Li, Z., Wang, H., Zuo, J., Komarneni, S., Wang, Y., 2013. Electro�peroxone treatment of Orange II dye wastewater. Water Res. 47, 6234–6243.
Beltr´an, F.J., 2003. Ozone-UV radiation-hydrogen peroxide oxidation technologies.
Chemical Degradation Methods for Wastes and Pollutants. CRC Press, pp. 12–82.
Chen, G., Wu, G., Li, N., Lu, X., Zhao, J., He, M., Yan, B., Zhang, H., Duan, X., Wang, S.,
2021. Landfill leachate treatment by persulphate related advanced oxidation
technologies. J. Hazard Mater. 418, 126355.
Chen, L., Wei, L., Ru, Y., Weng, M., Wang, L., Dai, Q., 2023. A mini-review of the electro�peroxone technology for wastewaters: characteristics, mechanism and prospect.
Chin. Chem. Lett. 34, 108162.
Cui, H., Huang, X., Yu, Z., Chen, P., Cao, X., 2020. Application progress of enhanced
coagulation in water treatment. RSC Adv. 10, 20231–20244.
de Jesús Ruíz-Baltazar, A., ´ Reyes-Lopez, ´ S.Y., P´erez, R., 2017. Magnetic structures
synthesized by controlled oxidative etching: structural characterization and
magnetic behavior. Results Phys. 7, 1828–1832.
Deng, Y., Zhu, X., Chen, N., Feng, C., Wang, H., Kuang, P., Hu, W., 2020. Review on
electrochemical system for landfill leachate treatment: performance, mechanism,
application, shortcoming, and improvement scheme. Sci. Total Environ. 745,
140768.
Duan, L., Sun, B., Wei, M., Luo, S., Pan, F., Xu, A., Li, X., 2015. Catalytic degradation of
Acid Orange 7 by manganese oxide octahedral molecular sieves with
peroxymonosulfate under visible light irradiation. J. Hazard Mater. 285, 356–365.
Eghbali, P., Hassani, A., Wacławek, S., Andrew Lin, K.-Y., Sayyar, Z., Ghanbari, F., 2024.
Recent advances in design and engineering of MXene-based catalysts for
photocatalysis and persulfate-based advanced oxidation processes: a state-of-the-art
review. Chem. Eng. J. 480, 147920.
Galvao, ˜ N., de Souza, J.B., de Sousa Vidal, C.M., 2020. Landfill leachate treatment by
electrocoagulation: effects of current density and electrolysis time. J. Environ. Chem.
Eng. 8, 104368.
Garcia-Segura, S., Eiband, M.M.S., de Melo, J.V., Martínez-Huitle, C.A., 2017.
Electrocoagulation and advanced electrocoagulation processes: a general review
about the fundamentals, emerging applications and its association with other
technologies. J. Electroanal. Chem. 801, 267–299.
Gautam, P., Kumar, S., Vishwakarma, S., Gautam, A., 2022. Synergistic optimization of
electrocoagulation process parameters using response surface methodology for
treatment of hazardous waste landfill leachate. Chemosphere 290, 133255.
Ghalebizade, M., Ayati, B., 2019. Acid Orange 7 treatment and fate by electro-peroxone
process using novel electrode arrangement. Chemosphere 235, 1007–1014.
Ghalebizade, M., Ayati, B., 2020. Investigating electrode arrangement and anode role on
dye removal efficiency of electro-peroxone as an environmental friendly technology.
Separ. Purif. Technol. 251, 117350.
Ghanbari, F., Wu, J., Khatebasreh, M., Ding, D., Lin, K.-Y.A., 2020. Efficient treatment for
landfill leachate through sequential electrocoagulation, electrooxidation and PMS/
UV/CuFe2O4 process. Separ. Purif. Technol. 242, 116828.
GilPavas, E., Dobrosz-Gomez, ´ I., Gomez-García, ´ M.A., ´ 2018. Optimization of sequential
chemical coagulation-electro-oxidation process for the treatment of an industrial
textile wastewater. J. Water Proc. Eng. 22, 73–79.
Guvenc, S.Y., Daniser, Y., Can-Güven, E., Varank, G., Demir, A., 2023. Pre-coagulated
landfill leachate treatment by Electro-oxidation using MMO/Ti, Pt/Ti, and graphite
anodes. Environ. Eng. Res. 28, 210419.
Hassani, A., Scaria, J., Ghanbari, F., Nidheesh, P.V., 2023. Sulfate radicals-based
advanced oxidation processes for the degradation of pharmaceuticals and personal
care products: a review on relevant activation mechanisms, performance, and
perspectives. Environ. Res. 217, 114789.
Hosseinikhah, M., Mokhtarani, N., 2023. Landfill leachate post-treatment by the
photoelectro-peroxone process using a baffled reactor. Separ. Purif. Technol. 306,
122549.
Hou, L., Li, X., Yang, Q., Chen, F., Wang, S., Ma, Y., Wu, Y., Zhu, X., Huang, X., Wang, D.,
2019. Heterogeneous activation of peroxymonosulfate using Mn-Fe layered double
hydroxide: performance and mechanism for organic pollutant degradation. Sci. Total
Environ. 663, 453–464.
Huang, J., Dai, Y., Singewald, K., Liu, C.-C., Saxena, S., Zhang, H., 2019. Effects of MnO2
of different structures on activation of peroxymonosulfate for bisphenol A
degradation under acidic conditions. Chem. Eng. J. 370, 906–915.
˙
Irdemez, S¸ ., Demircioglu, ˘ N., Yildiz, Y.S¸ ., 2006. The effects of pH on phosphate removal
from wastewater by electrocoagulation with iron plate electrodes. J. Hazard Mater.
137, 1231–1235.
Kang, K.-H., Shin, H.S., Park, H., 2002. Characterization of humic substances present in
landfill leachates with different landfill ages and its implications. Water Res. 36,
4023–4032.
Kashani, M.R.K., Wang, Q., Khatebasreh, M., Li, X., Asadi, A.M.S., Boczkaj, G.,
Ghanbari, F., 2023. Sequential treatment of landfill leachate by electrocoagulation/
aeration, PMS/ZVI/UV and electro-Fenton: performance, biodegradability and
toxicity studies. J. Environ. Manag. 338, 117781.
Khataee, A., Safarpour, M., Zarei, M., Aber, S., 2011. Electrochemical generation of H2O2
using immobilized carbon nanotubes on graphite electrode fed with air:
investigation of operational parameters. J. Electroanal. Chem. 659, 63–68.
Khavari Kashani, M.R., Kiani, R., Hassani, A., Kadier, A., Madihi-Bidgoli, S., Lin, K.-Y.A.,
Ghanbari, F., 2022. Electro-peroxone application for ciprofloxacin degradation in
aqueous solution using sacrificial iron anode: a new hybrid process. Separ. Purif.
Technol. 292, 121026.
Kobya, M., Hiz, H., Senturk, E., Aydiner, C., Demirbas, E., 2006. Treatment of potato
chips manufacturing wastewater by electrocoagulation. Desalination 190, 201–211.
Koulini, G., Laiju, A., Ramesh, S., Gandhimathi, R., Nidheesh, P., 2022. Effective
degradation of azo dye from textile wastewater by electro-peroxone process.
Chemosphere 289, 133152
Li, J., Pang, S.-Y., Wang, Z., Guo, Q., Duan, J., Sun, S., Wang, L., Cao, Y., Jiang, J., 2021.
Oxidative transformation of emerging organic contaminants by aqueous
permanganate: kinetics, products, toxicity changes, and effects of manganese
products. Water Res. 203, 117513.
Ma, J., Li, G., Chen, Z., Xu, G., Cai, G., 2001. Enhanced coagulation of surface waters
with high organic content by permangante preoxidation. Water Sci. Technol. Water
Supply 1, 51–61.
Martins, R.C., Quinta-Ferreira, R.M., 2011. Phenolic wastewaters depuration and
biodegradability enhancement by ozone over active catalysts. Desalination 270,
90–97.
Menad, N.-E., Kana, N., Seron, A., Kanari, N., 2021. New EAF slag characterization
methodology for strategic metal recovery. Materials. 14, p. 1513.
Nabi, M., Liang, H., Cheng, L., Yang, W., Gao, D., 2022. A comprehensive review on the
use of conductive materials to improve anaerobic digestion: focusing on landfill
leachate treatment. J. Environ. Manag. 309, 114540.
Niza, N.M., Yusoff, M.S., Zainuri, M.A.A.M., Emmanuel, M.I., Shadi, A.M.H., Hanif, M.H.
M., Kamaruddin, M.A., 2021. Removal of ammoniacal nitrogen from old leachate
using batch electrocoagulation with vibration-induced electrode plate. J. Environ.
Chem. Eng. 9, 105064.
Pang, X., Guo, Y., Zhang, Y., Xu, B., Qi, F., 2016. LaCoO3 perovskite oxide activation of
peroxymonosulfate for aqueous 2-phenyl-5-sulfobenzimidazole degradation: effect
of synthetic method and the reaction mechanism. Chem. Eng. J. 304, 897–907.
Patel, S., Mondal, S., Majumder, S.K., Das, P., Ghosh, P., 2020. Treatment of a
pharmaceutical industrial effluent by a hybrid process of advanced oxidation and
adsorption. ACS Omega 5, 32305–32317.
Peffi Ferreira, L.F., Mazzi de Oliveira, T., Toma, S.H., Toyama, M.M., Araki, K., Avanzi, L.
H., 2020. Superparamagnetic iron oxide nanoparticles (SPIONs) conjugated with
lipase Candida antarctica A for biodiesel synthesis. RSC Adv. 10, 38490–38496.
Pelalak, R., Hassani, A., Heidari, Z., Zhou, M., 2023. State-of-the-art recent applications
of layered double hydroxides (LDHs) material in Fenton-based oxidation processes
for water and wastewater treatment. Chem. Eng. J. 474, 145511.
Peng, G., Qi, C., Wang, X., Zhou, L., He, Q., Zhou, W., Chen, L., 2021. Activation of
peroxymonosulfate by calcined electroplating sludge for ofloxacin degradation.
Chemosphere 266, 128944.
Shahrashoub, M., Bakhtiari, S., Afroosheh, F., Googheri, M.S., 2021. Recovery of iron
from direct reduction iron sludge and biosynthesis of magnetite nanoparticles using
green tea extract. Colloids Surf. A Physicochem. Eng. Asp. 622, 126675.
Sharma, J., Mishra, I., Dionysiou, D.D., Kumar, V., 2015. Oxidative removal of Bisphenol
A by UV-C/peroxymonosulfate (PMS): kinetics, influence of co-existing chemicals
and degradation pathway. Chem. Eng. J. 276, 193–204.
Shebanova, O.N., Lazor, P., 2003. Raman spectroscopic study of magnetite (FeFe2O4): a
new assignment for the vibrational spectrum. J. Solid State Chem. 174, 424–430.
Shen, M., Huang, Z., Luo, X., Ma, Y., Chen, C., Chen, X., Cui, L., 2020. Activation of
persulfate for tetracycline degradation using the catalyst regenerated from Fenton
sludge containing heavy metal: synergistic effect of Cu for catalysis. Chem. Eng. J.
396, 125238.
Srivastava, N., Srivastava, M., Alhazmi, A., Mohammad, A., Khan, S., Pal, D.B., Haque, S.,
Singh, R., Mishra, P.K., Gupta, V.K., 2021. Sustainable green approach to synthesize
Fe3O4/α-Fe2O3 nanocomposite using waste pulp of Syzygium cumini and its
application in functional stability of microbial cellulases. Sci. Rep. 11, 24371.
Tahiri, A., Richel, A., Destain, J., Druart, P., Thonart, P., Ongena, M., 2016.
Comprehensive comparison of the chemical and structural characterization of
landfill leachate and leonardite humic fractions. Anal. Bioanal. Chem. 408,
1917–1928.
Tejera, J., Hermosilla, D., Gasco, ´ A., Miranda, R., Alonso, V., Negro, C., Blanco, A., ´ 2021.
Treatment of mature landfill leachate by electrocoagulation followed by Fenton or
UVA-LED photo-Fenton processes. J. Taiwan Inst. Chem. Eng. 119, 33–44.
Valentín-Reyes, J., Coreno, ˜ O., Nava, J.L., 2022. Concurrent elimination of arsenic and
hydrated silica from natural groundwater by electrocoagulation using iron
electrodes. Chem. Eng. Res. Des. 184, 103–112.
Vilar, V.J., Capelo, S.M., Silva, T.F., Boaventura, R.A., 2011. Solar photo-Fenton as a pre�oxidation step for biological treatment of landfill leachate in a pilot plant with CPCs.
Catal. Today 161, 228–234.
Vinodha, G., Shima, P.D., Cindrella, L., 2019. Mesoporous magnetite nanoparticle�decorated graphene oxide nanosheets for efficient electrochemical detection of
hydrazine. J. Mater. Sci. 54, 4073–4088.
Wang, Y., 2017. In: Zhou, M., Oturan, M., Sir´es, I. (Eds.), Electro-Fenton Process: New
Trends and Scale-Up. The Handbook of Environmental Chemistry, 61. Springer,
pp. 57–84.
Wang, C., Du, J., Liang, Z., Liang, J., Zhao, Z., Cui, F., Shi, W., 2022a. High-efficiency
oxidation of fluoroquinolones by the synergistic activation of peroxymonosulfate via
vacuum ultraviolet and ferrous iron. J. Hazard Mater. 422, 126884.
Wang, H., Yuan, S., Zhan, J., Wang, Y., Yu, G., Deng, S., Huang, J., Wang, B., 2015.
Mechanisms of enhanced total organic carbon elimination from oxalic acid solutions
by electro-peroxone process. Water Res. 80, 20–29.
Wang, J., Wang, S., 2018. Activation of persulfate (PS) and peroxymonosulfate (PMS)
and application for the degradation of emerging contaminants. Chem. Eng. J. 334,
1502–1517.
Wang, Y., Liu, M., Hu, C., Xin, Y., Ma, D., Gao, M., Xie, H., 2022b. Enhanced MnO2/
peroxymonosulfate activation for phthalic acid esters degradation: regulation of
oxygen vacancy. Chem. Eng. J. 433, 134048.
Weiss, S.F., Christensen, M.L., Jørgensen, M.K., 2021. Mechanisms behind pH changes
during electrocoagulation. AIChE J. 67, e17384.
Wu, D., Lu, G., Zhang, R., Lin, Q., Yao, J., Shen, X., Wang, W., 2017. Effective
degradation of diatrizoate by electro-peroxone process using ferrite/carbon
nanotubes based gas diffusion cathode. Electrochim. Acta 236, 297–306.
Xiao, S., Cheng, M., Zhong, H., Liu, Z., Liu, Y., Yang, X., Liang, Q., 2020. Iron-mediated
activation of persulfate and peroxymonosulfate in both homogeneous and
heterogeneous ways: a review. Chem. Eng. J. 384, 123265.
Xie, X., Zhao, W., Hu, Y., Xu, X., Cheng, H., 2019. Permanganate oxidation and ferric ion
precipitation (KMnO4-Fe(III)) process for treating phenylarsenic compounds. Chem.
Eng. J. 357, 600–610.
Yaghoot-Nezhad, A., Wacławek, S., Madihi-Bidgoli, S., Hassani, A., Lin, K.-Y.A.,
Ghanbari, F., 2023. Heterogeneous photocatalytic activation of electrogenerated
chlorine for the production of reactive oxygen and chlorine species: a new approach
for Bisphenol A degradation in saline wastewater. J. Hazard Mater. 445, 130626.
Yang, M., Wang, W., Ma, H., Lu, X., Chen, L., Li, Y., Ma, H., 2024. Peroxymonosulfate
activation by microplastics coagulated sludge-derived iron-carbon composite for
effective degradation of tetracycline hydrochloride: performance and mechanism.
Chem. Eng. J. 479, 147882.
Yang, Y., Guo, H., Zhang, Y., Deng, Q., 2017. Analysis on the removal of ammonia
nitrogen using peroxymonosulfate activated by nanoparticulate zero-valent iron.
Chem. Pap. 71, 1497–1505.
Yu, D., Pei, Y., Ji, Z., He, X., Yao, Z., 2022a. A review on the landfill leachate treatment
technologies and application prospects of three-dimensional electrode technology.
Chemosphere 291, 132895.
Yu, Y., Xiong, Z., Huang, B., Wang, X., Du, Y., He, C., Liu, Y., Yao, G., Lai, B., 2022b.
Synchronous removal of pharmaceutical contaminants and inactivation of
pathogenic microorganisms in real hospital wastewater by electro-peroxone process.
Environ. Int. 168, 107453.
Zhang, L., Wang, J., Qiao, H., Liu, F., Fu, Z., 2020a. Synthesis of manganese oxides for
adsorptive removal of ammonia nitrogen from aqueous solutions. J. Clean. Prod.
272, 123055.
Zhang, Q., Ye, X., Li, H., Chen, D., Xiao, W., Zhao, S., Xiong, R., Li, J., 2020b. Cumulative
effects of pyrolysis temperature and process on properties, chemical speciation, and
environmental risks of heavy metals in magnetic biochar derived from coagulation�flocculation sludge of swine wastewater. J. Environ. Chem. Eng. 8, 104472.
Zhao, J., Nan, J., Zhao, Z., Li, N., Liu, J., Cui, F., 2017. Energy-efficient fabrication of a
novel multivalence Mn3O4-MnO2 heterojunction for dye degradation under visible
light irradiation. Appl. Catal. B Environ. 202, 509–517.
Zhao, J., Wang, J., Lin, D., Liu, Y., Zhang, H., Tang, X., Li, G., Liang, H., 2022. Electrical�based ultrafiltration processes enhanced by in-situ generation of Fe(III): significance
of permanganate oxidation. Chemosphere 297, 134066.
Zhao, J., Yang, J., Yang, L., Zhu, X., Zhou, B., Bai, L., Tang, X., Liang, H., 2023. Effect of a
permanganate-bearing reactive oxidant on flocs in electrocoagulation:
transformations and interfacial interactions. Environ. Sci. 57, 10135–10146.
Zhu, S., Li, X., Kang, J., Duan, X., Wang, S., 2018. Persulfate activation on
crystallographic manganese oxides: mechanism of singlet oxygen evolution for
nonradical selective degradation of aqueous contaminants. Environ. Sci. Technol.
53, 307–315