WHO. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide, print version; World Health Organization: Geneva, Switzerland, 2021; pp. 1–273. ISBN 978-92-4-003421-1.
Aguilar, A.J.; de la Hoz-Torres, M.L.; Costa, N.; Arezes, P.; Martínez-Aires, M.D.; Ruiz, D.P. Assessment of ventilation rates inside educational buildings in Southwestern Europe: Analysis of implemented strategic measures. J. Build. Eng. 2022, 51, 104204.
Wells, W.F. Airborne Contagion and Air Hygiene: An Ecological Study of Droplet Infections; Commonwealth Fund: Cambridge, MA, USA; Harvard University Press: Cambridge, MA, USA, 1955; 423p.
Dai, H.; Zhao, B. Association of the infection probability of COVID-19 with ventilation rates in confined spaces. Build. Simul. 2020, 13, 1321–1327.
Iwamura, N.; Tsutsumi, K. SARS-CoV-2 airborne infection probability estimated by using indoor carbon dioxide. Environ. Sci. Pollut. Res. 2023, 30, 79227–79240.
Biasin, M.; Bianco, A.; Pareschi, G.; Cavalleri, A.; Cavatorta, C.; Fenizia, C.; Galli, P.; Lessio, L.; Lualdi, M.; Tombetti, E.; et al. UV-C irradiation is highly effective in inactivating SARS-CoV-2 replication. Sci. Rep. 2021, 11, 6260.
Kowalski,W.J. Ultraviolet Germicidal Irradiation Handbook: UVGI for Air and Surface Disinfection; Springer: New York, NY, USA,
Riley, R.L.; Nardell, E.A. Clearing the air: The theory and application of ultraviolet air disinfection. Am. Rev. Respir. Dis. 1990, 142, 1233–1234.
Cui, H. Quantitative Microbial risk Assessment for Airborne transmission of SARS-CoV-2 And the efficacy of Ultraviolet Germicidal Irradiation (UVGI) Systems. Master’s Thesis, Purdue University,West Lafayette, IN, USA, 2022.
Park, S.; Mistrick, R.; Rim, D. Performance of upper-room ultraviolet germicidal irradiation (UVGI) system in learning environments: Effects of ventilation rate, UV fluence rate, and UV radiating volume. Sustain. Cities Soc. 2022, 85, 104048.
Yan, S.;Wang, L.; Birnkrant, M.J.; Zhai, Z.; Miller, S.L. Multizone Modeling of Airborne SARS-CoV-2 Quanta Transmission and infection Mitigation Strategies in Office, Hotel, Retail, and School Buildings. Buildings 2023, 13, 102.
Emmerich, S.J.; Hirnikel, D. Validation of multizone IAQ modeling of residential-scale buildings: A review. Ashrae Trans. 2001, 107, 619–628.
Shrestha, P.; DeGraw, J.W.; Zhang, M.; Liu, X. Multizonal modeling of SARS-CoV-2 aerosol dispersion in a virtual office building. Build Environ. 2021, 206, 108347.
Noakes, C.J.; Beggs, C.B.; Sleigh, P.A. Effect of room mixing and ventilation strategy on the performance of upper room ultraviolet germicidal irradiation systems. Proc. Ashrae Iaq. 2004, 1–13.
Lau, J.; Bahnfleth,W.; Freihaut, J. Estimating the effects of ambient conditions on the performance of UVGI air cleaners. Build Environ. 2009, 44, 1362–1370.
Abhijith, K.V.; Kukadia, V.; Kumar, P. Investigation of air pollution mitigation measures, ventilation, and indoor air quality at three schools in London. Atmos. Environ. 2022, 289, 119303.
Rawat, N.; Kumar, P. Interventions for improving indoor and outdoor air quality in and around schools. Sci. Total Environ. 2023, 858, 159813.
Lyu, J.; Shi, Y.; Chen, C.; Zhang, X.; Chu, W.; Lian, Z. Characteristics of PM2.5 emissions from six types of commercial cooking in Chinese cities and their health effects. Environ. Pollut. 2022, 313, 120180.
Kang, K.; Kim, H.; Kim, D.D.; Lee, Y.G.; Kim, T. Characteristics of cooking-generated PM 10 and PM 2.5 in residential buildings with different cooking and ventilation types. Sci. Total Environ. 2019, 668, 56–66.
Ng, L.C.; Musser, A.; Persily, A.K.; Emmerich, S.J. Airflow and Indoor Air Quality Models of DOE Reference Commercial Buildings; NIST Technical Note 2072; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2019; 135p.
Riley, E.C.; Murphy, G.; Riley, R.L. Airborne spread of measles in a suburban elementary school. Am. J. Epidemiol. 1978, 107, 421–432.
Yan, S.; Wang, L.; Birnkrant, M.J.; Zhai, J.; Miller, S.L. Evaluating SARS-CoV-2 airborne quanta transmission and exposure risk in a mechanically ventilated multizone office building. Build. Environ. 2022, 219, 109184.
Dols,W.S.; Polidoro, B.J.; Poppendieck, D.; Emmerich, S.J. A Tool to Model the Fate and Transport of indoor Microbiological Aerosols (FaTIMA); NIST Technical Note 2095; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2020; 32p.
Moreno, T.; Pintó, R.M.; Bosch, A.; Moreno, N.; Alastuey, A.; Minguillón, M.C.; Anfruns-Estrada, E.; Guix, S.; Fuentes, C.; Buonanno, G.; et al. Tracing surface and airborne SARS-CoV-2 RNA inside public buses and subway trains. Environ. Int. 2021, 147, 106326.
Rudnick, S.N.; Milton, D.K. Risk of indoor airborne infection transmission estimated from carbon dioxide concentration. Indoor Air 2003, 13, 237–245.
Polichetti, G.; Cocco, S.; Spinali, A.; Trimarco, V.; Nunziata, A. Effects of particulate matter (PM10, PM2.5 and PM1) on the cardiovascular system. Toxicology 2009, 261, 1–8. Available online: https://www.sciencedirect.com/science/article/abs/pii/S030 0483X09002121 (accessed on 25 May 2025).
Singer, B.C.; Delp,W.W.; Price, P.N.; Apte, M.G. Performance of installed cooking exhaust devices. Indoor Air 2012, 22, 222–234.
Li, Y.; Delsante, A.; Symons, J. Derivation of capture efficiency of kitchen range hoods in a confined space. Build. Environ. 1996, 31, 461–468.
Lunden, M.M.; Delp, W.W.; Singer, B.C. Capture efficiency of cooking—Related fine and ultrafine particles by residential exhaust. Indoor Air. 2015, 25, 45–58.
CIBSE. Environmental Design, CIBSE Guide A; CIBSE: London, UK, 2021; ISBN 978-1-906846-55-8.
HM Government. The Building Regulations 2010. The Building Regulations 2010 For England and Wales, Part F; HM Government: London, UK, 2013.
Underhill, L.J.; Milando, C.W.; Levy, J.I.; Dols, W.S.; Lee, S.K.; Fabian, M.P. Simulation of indoor and outdoor air quality and health impacts following installation of energy-efficient retrofits in a multifamily housing unit. Build. Environ. 2020, 170, 106507.
Shrubsole, C.; Ridley Biddulph, P.; Milner, J.; Vardoulakis, S.; Ucci, M.; Wilkinson, P.; Chalabi, Z.; Davies, M. Indoor PM 2.5 exposure in London’s domestic stock: Modelling current and future exposures following energy efficient refurbishment. Atmos. Environ. 2012, 62, 336–343.
Abbaspour, A.; Bahadori-jahromi, A.; Janbey, A.; Godfrey, P.B.; Amirkhani, S. Enhancing indoor Air Quality and Regulatory Compliance: Ann-Depth Comparative Study on Ventilation Strategies and Their impact on SARS-CoV-2 Transmission Risk. Sustainability 2023, 16, 271.
Buonanno, G.; Stabile, L.; Morawska, L. Estimation of airborne
Bazant, M.Z.; Bush, J.W.M. A guideline to limit indoor airborne transmission of COVID-19. Proc. Natl. Acad. Sci. USA 2021, 118, e2018995118.
Doremalen Nvan Bushmaker, T.; Morris, D.H.; Holbrook, M.G.; Gamble, A.; Williamson, B.N.; Tamin, A.; Harcourt, J.L.; Thornburg, N.J.; Gerber, S.I.; LloydSmith, J.O.; et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N. Engl. J. Med. 2020, 382, 1564–1567.
Fabian, P.; Adamkiewicz, G.; Levy, J.I. Simulating indoor concentrations of NO2 and PM2.5 in multifamily housing for use in health—Based intervention modeling. Indoor Air. 2012, 22, 12–23.
Tran, D.T.; Alleman, L.Y.; Coddeville, P.; Galloo, J.C. Indoor and Built Indoor particle dynamics in schools: Determination of air exchange rate, size-resolved particle deposit rate and penetration factor in real-life conditions. Indoor Built Environ. 2017, 26, 1335–1350.
Schuit, M.A.; Larason, T.C.; Krause, M.L.; Green, B.M.; Holland, B.P.;Wood, S.P.; Grantham, S.; Zong, Y.; Zarobila, C.J.; Freeburger, D.L.; et al. SARS-CoV-2 inactivation by ultraviolet radiation and visible light is dependent on wavelength and sample matrix. J. Photochem. Photobiol. B Biol. 2022, 233, 112503.
Walker, C.M.; Ko, G. Effect of ultraviolet germicidal irradiation on viral aerosols. Environ. Sci. Technol. 2007, 41, 5460–5465.
Beggs, C.B.; Avital, E.J. Upper-room ultraviolet air disinfection might help to reduce COVID-19 transmission in buildings: A feasibility study. Peer J. 2020, 8, e10196.
Centers for Disease Control and Prevention. Environmental Control for Tuberculosis: Basic Upper-Room Ultraviolet Germicidal Irradiation Guidelines for Healthcare Settings; Centers for Disease Control and Prevention: Cincinnati, OH, USA, 2009; p. 87. Available online: http://www.cdc.gov/niosh/docs/2009-105/ (accessed on 20 December 2024).
Buonanno, M.; Randers-Pehrson, G.; Bigelow, A.W.; Trivedi, S.; Lowy, F.D.; Spotnitz, H.M.; Hammer, S.M.; Brenner, D.J. 207-nm UV Light—A Promising Tool for Safe Low-Cost Reduction of Surgical Site Infections. I: In Vitro Studies. PLoS ONE 2013, 8, e76968.
Blatchley, E.R.; Brenner, D.J.; Claus, H.; Cowan, T.E.; Linden, K.G.; Liu, Y.; Mao, T.; Park, S.J.; Piper, P.J.; Simons, R.M.; et al. Far UV-C radiation: An emerging tool for pandemic control. Crit. Rev. Environ. Sci. Technol. 2023, 53, 733–753.
ACGIH. 2021 TLVs and BEIs: Based on the Documentation of the Threshold Limit Values for Chemical and Physical Agents & Biological Exposure Indices; Ansi/Ashrae: Atlanta, GA, USA, 2019.
ANSI/ASHRAE Standard 55; Thermal Environmental Conditions for Human Occupancy. ANSI/ASHRAE: Atlanta, GA, USA, 2017; Volume 7. p. 60.
Santarpia, J.L.; Herrera, V.L.; Rivera, D.N.; Ratnesar-Shumate, S.; Reid, S.P.; Ackerman, D.N.; Denton, P.W.; Martens, J.W.S.; Fang, Y.; Conoan, N.; et al. The size and culture ability of patient generated SARS-CoV2 aerosol. J. Expo. Sci. Environ. Epidemiol. 2021, 32, 706–711.
Lee, B.U. Minimum sizes of respiratory particles carrying SARS-CoV-2 and the possibility of aerosol generation. Int. J. Environ. Res. Publ. Health 2020, 17, 6960.
Santarpia, J.L.; Rivera, D.N.; Herrera, V.L.; Morwitzer, M.J.; Creager, H.M.; Santarpia, G.W.; Crown, K.K.; Brett-Major, D.M.; Schnaubelt, E.R.; Broadhurst, M.J.; et al. Aerosol and surface contamination of SARS-CoV-2 observed in quarantine and isolation care. Sci. Rep. 2020, 10, 12732.
Lednicky, J.A.; Lauzardo, M.; Alam, M.M.; Elbadry, M.A.; Stephenson, C.J.; Gibson, J.C.; Morris, J.G. Isolation of SARS-CoV-2 from the air in a car driven by a COVID patient with mild illness. Int. J. Infect. Dis. 2021, 108, 212–216.
Mallach, G.; Kasloff, S.B.; Kovesi, T.; Kumar, A.; Kulka, R.; Krishnan, J.; Robert, B.; McGuinty, M.; Otter-Moore Sden Yazji, B.; Cutts, T. Aerosol SARS-CoV-2 in hospitals and long-term care homes during the COVID-19 pandemic. PLoS ONE 2021, 16, e0258151.
Justo Alonso, M.; Dols, W.S.; Mathisen, H.M. Using Co-simulation between Energy Plus and CONTAM to evaluate recirculationbased, demand-controlled ventilation strategies in an office building. Build. Environ. 2022, 211, 108737.
Abbaspour, A.; Bahadori-jahromi, A.; Mylona, A.; Janbey, A.; Godfrey, P.B. Mitigation of airborne contaminants dispersion in and educational building and investigate its impacts on indoor air quality and energy performance. Eng. Futur. Sustain. 2023, 1.
Brager, G.; Borgeson, S.; Lee, Y. Summary Report: Control Strategies for Mixed-Mode Buildings. 207AD. Available online: https://escholarship.org/uc/item/8kp8352h (accessed on 10 January 2025).
Brager, G. Mixed-Mode Cooling; Oxford University Press: Oxford, UK, 2006; p. 8.
Peng, Y.; Lei, Y.; Tekler, Z.D.; Antanuri, N.; Lau, S.K.; Chong, A. Hybrid system controls of natural ventilation and HVAC in mixed-mode buildings: A comprehensive review. Energy Build. 2022, 276, 112509. Available online: https://www.sciencedirect. com/science/article/abs/pii/S0378778822006806 (accessed on 18 October 2023).
Li, Z.; Ma, X.; Liao, Y. Combined performance of upper-room UVGI and ceiling-mounted air cleaners Foremoving active bioaerosol. Build. Environ. 2025, 267, 112230.
Lee, B.; Bahneth, W.P. Effects of installation location on performance and economics of in-duct ultraviolet germicidal irradiation systems for air disinfection. Build. Environ. 2013, 67, 193–201.