Intergovernmental Panel on Climate Change (IPCC). Climate Change 2021: The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2021.
Shah, S.S.A.; Turrakheil, K.S.; Naveed, M. Impact of wetting and drying cycles on the hydromechanical properties of soil and implications on slope stability. Atmosphere 2024, 15, 1368.
Ng, C.W.W.; Leung, A.K.; Woon, K.H. Effects of soil density on grass-induced suction distributions in compacted soil subjected to rainfall. Can. Geotech. J. 2014, 51, 311–321.
Goh, S.G.; Rahardjo, H.; Leong, E.C. Shear strength of unsaturated soils under multiple drying–wetting cycles. J. Geotech. Geoenviron. Eng. 2014, 140.
Tripathy, S.; Subba Rao, K.S.; Fredlund, D.G. Water content–void ratio swell–shrink paths of compacted expansive soils. Can. Geotech. J. 2002, 39, 938–959.
Yesiller, N.; Miller, C.J.; Inci, G.; Yaldo, K. Desiccation and cracking behavior of three compacted landfill liner soils. Eng. Geol. 2000, 57, 105–121.
Turrakheil, K.S.; Shah, S.S.A.; Naveed, M. Evolution of soil pore structure and shear strength deterioration of compacted soil under controlled wetting and drying cycles. Atmosphere 2024, 15, 843.
Narsilio, G.A.; Santamarina, J.C.; Altschaeffl, A.G. Effects of wetting-drying cycles and desiccation cracks on mechanical behaviour of an unsaturated soil. Catena 2020, 194, 104721.
Albrecht, B.A.; Benson, C.H. Effect of desiccation on compacted natural clays. J. Geotech. Geoenviron. Eng. 2001, 127, 67–75.
Cui, Y.J.; Tang, A.M.; Mantho, A.T.; De Laure, E. Monitoring field soil suction using miniature tensiometers. Geotech. Test. J. 2008, 31, 95–100.
Simona, S.; Barnichon, J.D.; Cui, Y.J.; Tang, A.M.; Delage, P. Microstructure and anisotropic swelling behaviour of compacted bentonite/sand mixture. J. Rock Mech. Geotech. Eng. 2014, 6, 126–132.
Mitchell, J.K.; Soga, K. Fundamentals of Soil Behaviour, 3rd ed.; Wiley: Hoboken, NJ, USA, 2005.
Chen, R.; Ng, C.W.W. Impact of wetting–drying cycles on hydro-mechanical behavior of an unsaturated compacted clay. Appl. Clay Sci. 2013, 86, 38–46.
Nabil, M.; Mustapha, A.; Rios, S. Impact of wetting–drying cycles on the mechanical properties of lime-stabilized soils. Int. J. Pavement Res. Technol. 2020, 13, 83–92.
Wassermann, A.; Abdallah, A.; Cuisinier, O. Impact of wetting and drying cycles on the mechanical behaviour of a cement-treated soil. Transp. Geotech. 2022, 36, 100804.
Consoli, N.C.; Prietto, P.D.M.; Ulbrich, L.A. Influence of fiber and cement addition on behavior of sandy soil. J. Geotech. Geoenviron. Eng. 1998, 124, 1211–1214.
Hopkins, T.C.; Hunsucker, D.Q.; Beckham, T. Long-term performance of flexible pavements located on cement-treated soils. Transp. Res. Rec. 1994, 1440, 20–28. [Google Scholar]
Lv, S.; Xia, C.; Liu, H.; You, L.; Qu, F.; Zhong, W.; Yang, Y.; Washko, S. Strength and fatigue performance for cement-treated aggregate base materials. Int. J. Pavement Eng. 2019, 22, 690–699.
Roberts, J.D. Performance of Cement-Modified Soils: A Follow-Up Report; Federal Highway Administration: Washington, DC, USA, 1986. [Google Scholar]
Niu, W.; Guo, B.; Li, K.; Ren, Z.; Zheng, Y.; Liu, J.; Lin, H.; Men, X. Cementitious material-based stabilization of soft soils by stabilizer. Constr. Build. Mater. 2024, 425, 136046.
Dai, D.; Peng, J.; Wei, R.; Li, L.; Lin, H. Improvement in dynamic behaviors of cement-stabilized soil by super-absorbent-polymer under cyclic loading. Soil Dyn. Earthq. Eng. 2022, 163, 107554.
Azimi, M.; Soltani, A.; Mirzababaei, M.; Jaksa, M.B.; Ashwath, N. Biopolymer stabilization of clayey soil. J. Rock Mech. Geotech. Eng. 2024, 16, 2801–2812.
Bagriacik, B.; Ok, B.; Kahiyah, M.T.M.A. An experimental study on improvement of cohesive soil with eco-friendly guar gum. Soils Rocks 2021, 44, e2021060020.
Banne, S.P.; Kulkarni, S.; Baldovino, J.A. Effect of guar gum content on the mechanical properties of laterite soil for subgrade soil application. Polymers 2024, 16, 2202.
Keshav, N.; Prabhu, A.; Kattimani, A.; Dharwad, A.; Kallatti, C.; Mahalank, S. Enhancing the properties of expansive soil using biopolymers—Xanthan gum and guar gum. In Proceedings of the Indian Geotechnical Conference 2019, Surat, India, 19–21 December 2019; Springer: Singapore, 2021; Volume 138, pp. 121–131.
Sujatha, E.R.; Saisree, S. Geotechnical behaviour of guar gum-treated soil. Soils Found. 2019, 59, 2155–2166.
Firoozi, A.A.; Olgun, C.G.; Baghini, M.S. Fundamentals of soil stabilization. Int. J. Geo-Eng. 2017, 8, 26.
Chang, I.; Lee, M.; Tran, A.T.P.; Lee, S.; Kwon, Y.-M.; Im, J.; Cho, G.-C. Review on biopolymer-based soil treatment (BPST) technology in geotechnical engineering practices. Transp. Geotech. 2020, 24, 100385.
BS 1377-1:2016; Methods of Test for Soils for Civil Engineering Purposes—Part 1: General Requirements and Sample Preparation. British Standards Institution (BSI): London, UK, 2016.
BS 1377-7:1990; Methods of Test for Soils for Civil Engineering Purposes—Part 7: Shear Strength Tests (Total Stress). British Standards Institution (BSI): London, UK, 1990.
Rasband, W. ImageJ, version 1.54h; U.S. National Institutes of Health: Bethesda, MD, USA, 2023. [Google Scholar]
Subramani, A.K.; Ramani, S.E.; Selvasembian, R. Understanding the microstructure, mineralogical and adsorption characteristics of guar gum blended soil as a liner material. Environ. Monit. Assess. 2021, 193, 855.
IndexBox. Cement Price in the United Kingdom. 2022. Available online: https://www.indexbox.io/search/cement-price-in-the-united-kingdom/ (accessed on 12 June 2025).
Agriwatch. Guar Gum Export Price Analysis. May 2024. Available online: https://www.agriwatch.com/market-report/guar-gum (accessed on 12 June 2025).
International Energy Agency (IEA). Cement Production and CO2 Emissions: Global Trends and Outlooks; IEA: Paris, France, 2021; Available online: https://www.iea.org/reports/cement (accessed on 12 June 2025).
Kumar, M.A.; Moghal, A.A.B.; Vydehi, K.V.; Almajed, A. Embodied energy in the production of guar and xanthan biopolymers and their cross-linking effect in enhancing the geotechnical properties of cohesive soil. Buildings 2023, 13, 2304.
Cojean, R. Review of: Al-Rawas, A.A.; Goosen, M.F.A. (Eds.): Expansive Soils: Recent Advances in Characterization and Treatment. Bull. Eng. Geol. Environ. 2007, 66, 505.
Acharya, R.; Pedarla, A.; Bheemasetti, T.V.; Puppala, A. Assessment of guar gum biopolymer treatment toward mitigation of desiccation cracking on slopes built with expansive soils. Transp. Res. Rec. 2019, 2657, 78–88.
Rasul, J.M.; Ghataora, G.S.; Burrow, M.P.N. The effect of wetting and drying on the performance of stabilized subgrade soils. Transp. Geotech. 2018, 14, 1–7.
Horpibulsuk, S.; Rachan, R.; Chindaprasirt, P. Analysis of strength development in cement-stabilized silty clay from microstructural considerations. Constr. Build. Mater. 2010, 24, 2011–2021.
Cuisinier, O.; Masrouri, F.; Mehenni, A. Alteration of the hydromechanical performances of a stabilized compacted soil exposed to successive wetting–drying cycles. J. Mater. Civ. Eng. 2020, 32, 04020052.
Estabragh, A.R.; Pereshkafti, M.R.S.; Parsaei, B.; Javadi, A.A. Stabilised expansive soil behaviour during wetting and drying. Int. J. Pavement Eng. 2013, 14, 418–427.
Ng, C.W.W.; Menzies, B.K. Advanced Unsaturated Soil Mechanics and Engineering; Taylor & Francis: London, UK, 2007. [Google Scholar]
Hamza, M.; Nie, Z.; Aziz, M.; Ijaz, N.; Fang, C.; Ghani, M.U.; Ijaz, Z.; Noshin, S.; Salman, M. Geotechnical properties of problematic expansive subgrade stabilized with guar gum biopolymer. Clean Technol. Environ. Policy 2023, 25, 1699–1719.
Shah, S.N.; Ali, S.A.; Khan, A. Impact of wetting–drying cycles on the mechanical behavior of expansive soils. Int. J. Geotech. Eng. 2024, 18, 123–134. [Google Scholar]
EN 1997-1; Eurocode 7—Geotechnical Design—Part 1: General Rules. CEN: Brussels, Belgium, 2004.
Liu, Y.; Ni, J.; Gu, J.; Liu, S.; Huang, Y.; Sadeghi, H. Influence of biopolymer–vegetation interaction on soil hydro-mechanical properties under climate change: A review. Sci. Total Environ. 2024, 954, 176535.
Reddy, K.R.; Janga, J.K.; Kumar, G. Sustainability and resilience: A new paradigm in geotechnical and geoenvironmental engineering. Indian Geotech. J. 2024.
Scrivener, K.L.; John, V.M.; Gartner, E.M. Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry. Cem. Concr. Res. 2018, 114, 2–26.
Abu Dabous, S.; Zeiada, W.; Zayed, T.; Al-Ruzouq, R. Sustainability-informed multi-criteria decision support framework for ranking and prioritization of pavement sections. J. Clean. Prod. 2020, 244, 118755.
Raj, N.; Selvakumar, S.; Soundara, B.; Kulanthaivel, P. Sustainable utilization of biopolymers as green adhesive in soil improvement: A review. Environ. Sci. Pollut. Res. 2023, 30, 118117–118132.
Fatehi, H.; Ong, D.E.L.; Yu, J.; Chang, I. Biopolymers as green binders for soil improvement in geotechnical applications: A review. Geosciences 2021, 11, 291.
Awasthi, S.K.; Kumar, M.; Kumar, V.; Sarsaiya, S.; Anerao, P.; Ghosh, P.; Singh, L.; Liu, H.; Zhang, Z.; Awasthi, M.K. Comprehensive review on recent advancements in biodegradation and sustainable management of biopolymers. Environ. Pollut. 2022, 307, 119600.
Kögel-Knabner, I.; Amelung, W.; Cao, Z.; Fiedler, S.; Frenzel, P.; Jahn, R.; Kalbitz, K.; Kölbl, A.; Schloter, M. Biogeochemistry of paddy soils. Geoderma 2010, 157, 1–14.