Vagnoli, M.; Remenyte-Prescott, R.; Andrews, J. Railway bridge structural health monitoring and fault detection: State-of-the-art methods and future challenges. Struct. Health Monit. 2018, 17, 971–1007.
Ko, J.M.; Ni, Y.-Q. Technology developments in structural health monitoring of large-scale bridges. Eng. Struct. 2005, 27, 1715–1725.
Nasr, A.; Kjellström, E.; Björnsson, I.; Honfi, D.; Ivanov, O.L.; Johansson, J. Bridges in a changing climate: A study of the potential impacts of climate change on bridges and their possible adaptations. Struct. Infrastruct. Eng. 2020, 16, 738–749.
Thakkar, K.; Rana, A.; Goyal, H. Fragility analysis of bridge structures: A global perspective & critical review of past & present trends. Adv. Bridg. Eng. 2023, 4, 10.
Sotoudeh, S.; Jahangiri, M.; Ranjbarnia, M.; Zakeri, J.-A. Three-dimensional modeling of an old masonry bridge and assessing its current capacity. Period. Polytech. Civ. Eng. 2020, 64, 460–473.
Selvakumaran, S.; Plank, S.; Geiß, C.; Rossi, C.; Middleton, C. Remote monitoring to predict bridge scour failure using Interferometric Synthetic Aperture Radar (InSAR) stacking techniques. Int. J. Appl. Earth Obs. Geoinformation 2018, 73, 463–470.
Benedettini, F.; Gentile, C. Operational modal testing and FE model tuning of a cable-stayed bridge. Eng. Struct. 2011, 33, 2063–2073.
Piniotis, G.; Gikas, V.; Mpimis, T.; Perakis, H. Deck and Cable Dynamic Testing of a Single-span Bridge Using Radar Interferometry and Videometry Measurements. J. Appl. Geodesy 2016, 10, 87–94.
Neitzel, F.; Niemeier, W.; Weisbrich, S.; Lehmann, M. Investigation of low-cost accelerometer, terrestrial laser scanner and ground-based radar interferometer for vibration monitoring of bridges. In Proceedings of the 6th European Workshop on Structural Health Monitoring, Dresden, Germany, 3–6 July 2012.
Sotoudeh, S.; Lantini, L.; Munisami, K.J.; Alani, A.M.; Tosti, F. An Investigation into the Acquisition Parameters for GB-SAR Assessment of Bridge Structural Components. In Proceedings of the EGU General Assembly, Vienna, Austria, 23–28 April 2023.
Sotoudeh, S.; Benedetto, F.; Uzor, S.; Lantini, L.; Munisami, K.; Tosti, F. A study into the integration of AR-based data collection and multi-dimensional signal processing methods for GB-SAR target detection. In Proceedings of the Second International Conference on Geographic Information and Remote Sensing Technology (GIRST 2023), Qingdao, China, 21–23 July 2023.
Sotoudeh, S.; Uzor, S.; Lantini, L.; Munisami, K.; Tosti, F. Detection of structural targets using ground-based interferometric synthetic aperture radar and augmented reality. In Proceedings of the Multimodal Sensing and Artificial Intelligence: Technologies and Applications III, Munich, Germany, 26–30 June 2023.
Farrar, C.R.; Darling, T.W.; Migliori, A.; Baker, W.E. Microwave interferometers for non-contact vibration measurements on large structures. Mech. Syst. Signal Process. 1999, 13, 241–253.
Wu, S.; Zhang, B.; Ding, X.; Zhang, L.; Zhang, Z.; Zhang, Z. Radar Interferometry for Urban Infrastructure Stability Monitoring: From Techniques to Applications. Sustainability 2023, 15, 14654.
Miccinesi, L.; Pieraccini, M. Bridge Monitoring by a Monostatic/Bistatic Interferometric Radar Able to Retrieve the Dynamic 3D Displacement Vector. IEEE Access 2020, 8, 210339–210346.
Michel, C.; Keller, S. Advancing Ground-Based Radar Processing for Bridge Infrastructure Monitoring. Sensors 2021, 21, 2172. [PubMed]
Pollock, A.; Berge, E. How to do a systematic review. Int. J. Stroke 2018, 13, 138–156. [PubMed]
Alani, A.M.; Tosti, F.; Bianchini Ciampoli, L.; Gagliardi, V.; Benedetto, A. An integrated investigative approach in health monitoring of masonry arch bridges using GPR and InSAR technologies. NDT E Int. 2020, 115, 102288.
Ferretti, A.; Savio, G.; Barzaghi, R.; Borghi, A.; Musazzi, S.; Novali, F.; Prati, C.; Rocca, F. Submillimeter Accuracy of InSAR Time Series: Experimental Validation. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1142–1153.
Gikas, V. Ambient vibration monitoring of slender structures by microwave interferometer remote sensing. J. Appl. Geodesy 2012, 6, 167–176.
Ataei, S.; Miri, A.; Jahangiri, M. Assessing safety of a railway stone arch bridge by experimental and numerical analyses. J. Croat. Assoc. Civ. Eng. 2017, 69, 1017–1029.
BeanAir. ULP (Ultra-Low-Power) Wireless IOT Vibration Sensor. 19 May 2024. Available online: http://www.wireless-iot. beanair.com/files/UM-RF-07-ENG-Wilow-Wifi-Sensor.pdf (accessed on 22 April 2025).
Luzi, G.; Palamà, R.; Barros-González, B.; Riveiro-Rodríguez, B. Dual Frequency Real Aperture Radar Monitoring of a Railway Bridge. ce/papers 2023, 6, 943–948.
IDS GeoRadar. IBIS-FS Plus Datasheet. 2023. Available online: https://idsgeoradar.com/-/media/files/ids%20georadar/ datasheets/ibis-fs%20plus_datasheet_0224.ashx (accessed on 22 April 2025).
Zhao,W.; Zhang, G.; Zhang, J. Cable force estimation of a long-span cable-stayed bridge with microwave interferometric radar. Comput. Civ. Infrastruct. Eng. 2020, 35, 1419–1433.
IDS GeoRadar PoH. IBIS FS Operation Procedures for Bridges. 2019. Available online: https://idsgeoradar.com/ (accessed on 22 April 2025).
Rödelsperger, S. Real-Time Processing of Ground Based Synthetic Aperture Radar (GB-SAR) Measurements. Ph.D. Thesis, Technische Universität Darmstadt, Darmstadt, Germany, 2011.
Olaszek, P.; ´Swiercz, A.; Boscagli, F. The Integration of Two Interferometric Radars for Measuring Dynamic Displacement of Bridges. Remote. Sens. 2021, 13, 3668.
Michel, C.; Keller, S. Determining and Investigating the Variability of Bridges’ Natural Frequencies with Ground-Based Radar. Appl. Sci. 2022, 12, 5354.
Miccinesi, L.; Beni, A.; Pieraccini, M. Multi-Monostatic Interferometric Radar for Bridge Monitoring. Electronics 2021, 10, 247.
Miccinesi, L.; Pieraccini, M.; Beni, A.; Andries, O.; Consumi, T. Multi-Monostatic Interferometric Radar with Radar Link for Bridge Monitoring. Electronics 2021, 10, 2777.
Asghari, K.; Sotoudeh, S.; Zakeri, J.-A. Numerical evaluation of approach slab influence on transition zone behavior in high-speed railway track. Transp. Geotech. 2021, 28, 100519.
Zhang, J.; Zhou, L.; Tian, Y.; Yu, S.; Zhao, W.; Cheng, Y. Vortex-induced vibration measurement of a long-span suspension bridge through noncontact sensing strategies. Comput. Civ. Infrastruct. Eng. 2021, 37, 1617–1633.
Zhang, G.; Wu, Y.; Zhao, W.; Zhang, J. Radar-based multipoint displacement measurements of a 1200-m-long suspension bridge. ISPRS J. Photogramm. Remote. Sens. 2020, 167, 71–84.
Long, S.; Liu, W.; Ma, J.; Tong, A.; Wu, W.; Zhu, C. Health monitoring and safety evaluation of bridge dynamic load with a ground-based real aperture radar. Surv. Rev. 2022, 54, 172–186.
Lu, E.; Ren, W.; Dai, H.; Zhu, X. Investigations on electromagnetic wave scattering simulation from rough surface: Some instructions for surface roughness measurement based on machine vison. Precis. Eng. 2023, 82, 156–168.
Pieraccini, M.; Parrini, F.; Fratini, M.; Atzeni, C.; Spinelli, P.; Micheloni, M. Static and dynamic testing of bridges through microwave interferometry. NDT E Int. 2007, 40, 208–214.
Pieraccini, M.; Miccinesi, L.; Nejad, A.A.; Fard, A.N.N. Experimental Dynamic Impact Factor Assessment of Railway Bridges through a Radar Interferometer. Remote. Sens. 2019, 11, 2207.
Liu, X.; Lu, Z.; Yang, W.; Huang, M.; Tong, X. Dynamic Monitoring and Vibration Analysis of Ancient Bridges by Ground-Based Microwave Interferometry and the ESMD Method. Remote. Sens. 2018, 10, 770.
Gentile, C.; Bernardini, G. An interferometric radar for non-contact measurement of deflections on civil engineering structures: Laboratory and full-scale tests. Struct. Infrastruct. Eng. 2009, 6, 521–534.
UIC Code. 778-3R, Recommendations for the Inspection, Assessment and Maintenance of Masonry arch Bridges. UIC International Union of Railways 2011. Available online: https://shop.uic.org/en/7-structural-works/9542-recommendations-for-theinspection- assessment-and-maintenance-of-masonry-arch-bridges-9553.html (accessed on 22 April 2025).
Caduff, R.; Schlunegger, F.; Kos, A.;Wiesmann, A. A review of terrestrial radar interferometry for measuring surface change in the geosciences. Earth Surf. Process. Landforms 2015, 40, 208–228.
IDS GeoRadar. IBIS-FL Datasheet. 2023. Available online: https://idsgeoradar.com/products/interferometric-radar/ibis-fl (accessed on 22 April 2025).
Shao, Z.; Zhang, X.; Li, Y.; Jiang, J. A Comparative Study on Radar Interferometry for Vibrations Monitoring on Different Types of Bridges. IEEE Access 2018, 6, 29677–29684.
Pieraccini, M.; Miccinesi, L. An Interferometric MIMO Radar for Bridge Monitoring. IEEE Geosci. Remote. Sens. Lett. 2019, 16, 1383–1387.
Miccinesi, L.; Consumi, T.; Beni, A.; Pieraccini, M.W-band MIMO GB-SAR for Bridge Testing/Monitoring. Electronics 2021, 10,
Pieraccini, M.; Miccinesi, L. RotoSAR for monitoring bridges. In Proceedings of the 2017 European Radar Conference (EURAD), Nuremberg, Germany, 11–13 October 2017; pp. 311–314.
Tian, W.; Li, Y.; Hu, C.; Li, Y.; Wang, J.; Zeng, T. Vibration Measurement Method for Artificial Structure Based on MIMO Imaging Radar. IEEE Trans. Aerosp. Electron. Syst. 2020, 56, 748–760.
Zhao, Z.; Deng, Y.; Tian,W.; Hu, C.; Lin, Z.; Zeng, T. Dynamic Deformation Measurement of Bridge Structure Based on GB-MIMO Radar. IEEE Trans. Geosci. Remote. Sens. 2022, 60, 1–14.
Gamma Remote Sensing A, Inventor. Anonymous GAMMA Portable Radar Interferometer Model: GPRI-II. User Manual (12- August-2014). Gümligen, Switzerland Patent. 2014. Available online: https://fcc.report/FCC-ID/Y3Z-GPRI-II-2/2386245.pdf (accessed on 22 April 2025).
Zhang, B.; Ding, X.; Werner, C.; Tan, K.; Zhang, B.; Jiang, M.; Zhao, J.; Xu, Y. Dynamic displacement monitoring of long-span bridges with a microwave radar interferometer. ISPRS J. Photogramm. Remote. Sens. 2018, 138, 252–264.
Neitzel, F.; Resnik, B.;Weisbrich, S.; Friedrich, A. Vibration Monitoring of Bridges. Rep. Geod. 2011, 331–340. Available online: https://bibliotekanauki.pl/articles/225415 (accessed on 22 April 2025).
Frýba, L. Dynamics Of Railway Bridges; Thomas Telford Publishing: London, UK, 1996.
Weng, J.; Chen, L.; Sun, L.; Zou, Y.; Liu, Z.; Guo, H. Fully automated and non-contact force identification of bridge cables using microwave remote sensing. Measurement 2023, 209, 112508.
Talich, M.; Havrlant, J.; Soukup, L.; Plachý, T.; Polák, M.; Antoš, F.; Ryjáˇcek, P.; Stanˇcík, V. Accuracy Analysis and Appropriate Strategy for Determining Dynamic and Quasi-Static Bridge Structural Response Using Simultaneous Measurements with Two Real Aperture Ground-Based Radars. Remote. Sens. 2023, 15, 837.
Wang, C.; Zhou, L.; Ma, J.; Shi, A.; Li, X.; Liu, L.; Zhang, Z.; Zhang, D. GB-RAR Deformation Information Estimation of High-Speed Railway Bridge in Consideration of the Effects of Colored Noise. Appl. Sci. 2022, 12, 10504.
Wang, R.; Zhang, T.; Liu, X.; Lu, Z.; Guo, T. Distance-restrained atmospheric parameters correction (DR-APC) model for GB-SAR transmission power attenuation compensation in bridges dynamic deflection measurement. Measurement 2022, 205, 112192.
Wang, R.; Huang, Y.; Liu, X.; Wang, H.; Jiang, M. Cyclically Shifted Extreme-point Symmetric Mode Decomposition (CS-ESMD)- based Progressive Denoising Approach for Ground-based Synthetic Aperture Radar Bridge Health Monitoring Signals. Sensors Mater. 2022, 34, 4001–4016.
Liu, Y.; Xie, J.-Z.; Tafsirojjaman, T.; Yue, Q.-R.; Tan, C.; Che, G.-J. CFRP lamella stay-cable and its force measurement based on microwave radar. Case Stud. Constr. Mater. 2022, 16, e00824.
Filograno, M.L.; Piniotis, G.; Gikas, V.; Papavasileiou, V.; Gantes, C.J.; Kandyla, M.; Riziotis, C. Comparative Assessment and Experimental Validation of a Prototype Phase-Optical Time-Domain Reflectometer for Distributed Structural Health Monitoring. J. Sensors 2022, 2022, 6856784.
Schill, F.; Michel, C.; Firus, A. Contactless Deformation Monitoring of Bridges with Spatio-Temporal Resolution: Profile Scanning and Microwave Interferometry. Sensors 2022, 22, 9562.
Raja, B.N.K.; Miramini, S.; Duffield, C.; Chen, S.; Zhang, L. A Simplified Methodology for Condition Assessment of Bridge Bearings Using Vibration Based Structural Health Monitoring Techniques. Int. J. Struct. Stab. Dyn. 2021, 21, 2150133.
Serlenga, V.; Gallipoli, M.R.; Ditommaso, R.; Ponzo, C.F.; Tragni, N.; Perrone, A.; Stabile, T.A.; Calamita, G.; Vignola, L.; Carso, R.F.; et al. An integrated approach for structural behavior characterization of the Gravina Bridge (Matera, Southern Italy). Struct. Health Monit. 2021, 20, 3371–3391.
Erdélyi, J.; Kopáˇcik, A.; Kyrinoviˇc, P. Spatial Data Analysis for Deformation Monitoring of Bridge Structures. Appl. Sci. 2020, 10,
Kuras, P.; Ortyl, Ł.; Owerko, T.; Salamak, M.; Łazi ´ nski, P. GB-SAR in the Diagnosis of Critical City Infrastructure—A Case Study of a Load Test on the Long Tram Extradosed Bridge. Remote. Sens. 2020, 12, 3361.
Katarína, L.; Milan, S.; Bianka, T. Identification of Bearings State on the Bridge Checked by Dynamic Tests. Stroj. ˇcasopis J. Mech. Eng. 2020, 70, 67–76.
Xing, C.;Wang, P.; Dong,W. Research on the bridge monitoring method of ground-based radar. Arab. J. Geosci. 2020, 13, 1267.
Huang, Q.; Wang, Y.; Luzi, G.; Crosetto, M.; Monserrat, O.; Jiang, J.; Zhao, H.; Ding, Y. Ground-Based Radar Interferometry for Monitoring the Dynamic Performance of a Multitrack Steel Truss High-Speed Railway Bridge. Remote. Sens. 2020, 12, 2594.
Cheng, Q.-H.; Chen, Q.;Wang, H.; Liu, X.-L. Bridge Damage Identification by Ground-based Synthetic Aperture Radar Using Blind Source Separation and Noise Reduction Technology. Sensors Mater. 2020, 32, 4361–4377.
Liu, X.; Jiang, M.; Liu, Z.;Wang, H. A Morphology Filter-Assisted Extreme-Point Symmetric Mode Decomposition (MF-ESMD) Denoising Method for Bridge Dynamic Deflection Based on Ground-Based Microwave Interferometry. Shock. Vib. 2020, 2020,
Sokol, M.; Lamperová, K. Dynamic response of bridges tested by radar interferometry. Vibroengineering Procedia 2019, 23, 138–143.
Owerko, T.; Kuras, P. Effective Processing of Radar Data for Bridge Damage Detection. Shock. Vib. 2019, 2019, 2621092.
Liu, X.;Wang, H.; Huang, M.; Yang,W. An Improved Second-Order Blind Identification (SOBI) Signal De-Noising Method for Dynamic Deflection Measurements of Bridges Using Ground-Based Synthetic Aperture Radar (GBSAR). Appl. Sci. 2019, 9, 3561.
Zhou, L.; Guo, J.; Hu, J.; Ma, J.;Wei, F.; Xue, X. Subsidence analysis of ELH Bridge through ground-based interferometric radar during the crossing of a subway shield tunnel underneath the bridge. Int. J. Remote. Sens. 2018, 39, 1911–1928.
Granello, G.; Andisheh, K.; Palermo, A.; Waldin, J. Microwave Radar Interferometry as a Cost-Efficient Method of Monitoring the Structural Health of Bridges in New Zealand. Struct. Eng. Int. 2018, 28, 518–525.
Luzi, G.; Crosetto, M.; Fernández, E. Radar Interferometry for Monitoring the Vibration Characteristics of Buildings and Civil Structures: Recent Case Studies in Spain. Sensors 2017, 17, 669. [PubMed]
Kafle, B.; Zhang, L.; Mendis, P.; Herath, N.; Maizuar, M.; Duffield, C.; Thompson, R.G. Monitoring the dynamic behaviour of the merlynston creek bridge using interferometric radar sensors and finite element modelling. Int. J. Appl. Mech. 2017, 9, 1750003.
Maizuar, M.; Zhang, L.; Miramini, S.; Mendis, P.; Thompson, R.G. Detecting structural damage to bridge girders using radar interferometry and computational modelling. Struct. Control. Health Monit. 2017, 24, e1985.
Beben, D. Application of Interferometry Method for Dynamic Continuous Testing of Bridges. Period. Polytech. Civ. Eng. 2016, 60, 387–395.
Ferrer, B.; Mas, D.; García-Santos, J.I.; Luzi, G. Parametric Study of the Errors Obtained from the Measurement of the Oscillating Movement of a Bridge Using Image Processing. J. Nondestruct. Evaluation 2016, 35, 53.
Liu, X.; Tong, X.; Ding, K.; Zhao, X.; Zhu, L.; Zhang, X. Measurement of Long-Term Periodic and Dynamic Deflection of the Long-Span Railway Bridge Using Microwave Interferometry. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2015, 8, 4531–4538.
Gentile, C.; Cabboi, A. Vibration-based structural health monitoring of stay cables by microwave remote sensing. Smart Struct. Syst. 2014, 16, 263–280.
Alani, A.M.; Aboutalebi, M.; Kilic, G. Integrated health assessment strategy using NDT for reinforced concrete bridges. NDT E Int. 2014, 61, 80–94.
Alani, A.M.; Aboutalebi, M.; Kilic, G. Use of non-contact sensors (IBIS-S) and finite element methods in the assessment of bridge deck structures. Struct. Concr. 2014, 15, 240–247.
Owerko, T. Variations of Frequency Responses of a Cable-Stayed Bridge and Calculation of the Damping Coefficient of Selected Vibration Modes Based on the Data Recorded with Radar Systems. Geomatics Environ. Eng. 2013, 7, 79.
Kohut, P.; Holak, K.; Uhl, T.; Ortyl, Ł.; Owerko, T.; Kuras, P.; Kocierz, R. Monitoring of a civil structure’s state based on noncontact meas-urements. Struct. Health Monit. 2013, 12, 411–429.
Stabile, T.A.; Perrone, A.; Gallipoli, M.R.; Ditommaso, R.; Ponzo, F.C. Dynamic Survey of the Musmeci Bridge by Joint Application of Ground-Based Microwave Radar Interferometry and Ambient Noise Standard Spectral Ratio Techniques. IEEE Geosci. Remote. Sens. Lett. 2013, 10, 870–874.
Stabile, T.A.; Giocoli, A.; Perrone, A.; Palombo, A.; Pascucci, S.; Pignatti, S. A new joint application of non-invasive remote sensing techniques for structural health monitoring. J. Geophys. Eng. 2012, 9, S53–S63.
Beben, D. Application of the interferometric radar for dynamic tests of corrugated steel plate (CSP) culvert. NDT E Int. 2011, 44, 405–412.
Gentile, C. Application of Microwave Remote Sensing to Dynamic Testing of Stay-Cables. Remote. Sens. 2009, 2, 36–51.
Gentile, C. Deflection measurement on vibrating stay cables by non-contact microwave interferometer. NDT E Int. 2010, 43, 231–240.
Gentile, C.; Bernardini, G. Radar-based measurement of deflections on bridges and large structures. Eur. J. Envi-Ronmental Civ. Eng. 2010, 14, 495.
De Pasquale, G.; Bernardini, G.; Ricci, P.; Gentile, C. Ambient Vibration Testing of Bridges by Non-Contact Microwave Interferometer. In Proceedings of the 2008 IEEE Radar Conference, Rome, Italy, 26–30 May 2008.
Dei, D.; Pieraccini, M.; Fratini, M.; Atzeni, C.; Bartoli, G. Detection of vertical bending and torsional movements of a bridge using a coherent radar. NDT E Int. 2009, 42, 741–747.
Gentile, C.; Bernardini, G. Output-only modal identification of a reinforced concrete bridge from radar-based measurements. NDT E Int. 2008, 41, 544–553.
Maizuar, M.; Lumantarna, E.; Sofi, M.; Oktavianus, Y.; Zhang, L.; Duffield, C.; Mendis, P.;Widyastuti, H. Dynamic Behavior of Indonesian Bridges using Interferometric Radar Technology. Electron. J. Struct. Eng. 2018, 18, 23–29.
Owerko, T.; Ortyl, Ł.; Kocierz, R.; Kuras, P.; Salamak, M. Investigation of displacements of road bridges under test loads using radar interferometry—Case study. In Proceedings of the Sixth International IABMAS Conference 2012, Stresa, Italy, 8–12 July 2012; pp. 181–188.
Arnold, M.; Hoyer, M.; Keller, S. Convolutional neural networks for detecting bridge crossing events with ground-based interferometric radar data. ISPRS Ann. Photogramm. Remote. Sens. Spat. Inf. Sci. 2021, 1, 31–38.
Kuras, P.; Owerko, T.; Ortyl, Ł.; Kocierz, R.; Sukta, O.; Pradelok, S. Advantages of radar interferometry for assessment of dynamic deformation of bridge. In Bridge Maintenance, Safety, Management, Resilience and Sustainability; CRC Press: Boca Raton, FL, USA, 2014; pp. 885–891.
Plachy, T.; Polák, M.; Ryjáˇcek, P.; Talich, M.; Havrlant, J.; Antoš, F.; Litoš, J.; Macho, M.; Soukup, L. Experimental dynamic analysis of the arch road bridge. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Prague, Czech Republic, 6–10 September 2021.
Yu, C.-P.; Cheng, C.-C. Dynamic analysis of a cable-stayed bridge using continuous formulation of 1-D linear member. Earthquakes Struct. 2012, 3, 271–295.
Afzal, M.F.U.D.; Javed, A. Non-contact measurement of vibration modes of large cable-stayed bridge under ambient conditions: A convenient way of condition monitoring of bridges. J. Civ. Struct. Health Monit. 2024, 14, 339–353.
Chen, S.; Chen, D.; Sannasiraj, R.D.A.; Zhang, L. Engineering reliability-based condition assessment for stay cables using non-destructive interferometric radar. Int. J. Struct. Stab. Dyn. 2023, 24, 2450154.
Zhao, S.; Liu, X.; Wang, R. Extreme-point Symmetric Mode Decomposition-based Energy Integral Model for Bridge Abnormality Detection Using Ground-based Synthetic Aperture Radar. Sensors Mater. 2023, 35, 3337.
Cˇ áp, M.; Polák, M.; Plachý, T.; Talich, M.; Havrlant, J.; Soukup, L.; Antoš, F. The footbridge Jesípek–application of radar interferometry for dynamic response evaluation. Acta Polytech. CTU Proc. 2023, 40, 8–14.
Zou, L.; Feng, W.; Masci, O.; Nico, G.; Alani, A.M.; Sato, M. Bridge Monitoring Strategies for Sustainable Development with Microwave Radar Interferometry. Sustainability 2024, 16, 2607.
Zhao, Y.; Zhang, G.; Zang, G.; Zhang, G.; Sang,W.; Zhang, S.; Li,W. Monitoring Bridge Dynamic Deformation Law Based on Digital Photography and Ground-Based RAR Technology. Appl. Sci. 2023, 13, 10838.
Liu, X.; Wang, P.; Lu, Z.; Gao, K.;Wang, H.; Jiao, C.; Zhang, X. Damage detection and analysis of urban bridges using terrestrial laser scanning (TLS), ground-based microwave interfer-ometry, and permanent scatterer interferometry synthetic aperture radar (PS-InSAR). Remote. Sens. 2019, 11, 580.
Placidi, S.; Meta, A.; Testa, L.; Rodelsperger, S. Monitoring structures with FastGBSAR. In Proceedings of the 2015 IEEE Radar Conference, Johannesburg, South Africa, 27–30 October 2015; pp. 435–439.
Michel, C.; Keller, S. Assessing Important Uncertainty Influences of Ground-Based Radar for Bridge Monitoring. IEEE Geosci. Remote. Sens. Lett. 2023, 21, 3501005.
Zhang, G.; Cheng, Y.; Xia, Q.; Zhang, J. Curvature envelope area based rapid identification method of bridge distributional element stiffness using microwave interference radar. Mech. Syst. Signal Process. 2023, 197, 110390.
Pieraccini, M.; Dei, D.; Mecatti, D. Interferometric radar for testing large structures with a built-in seismic accelerometer. Sensors Actuators A Phys. 2013, 204, 25–30.
Grazzini, G.; Pieraccini, M.; Dei, D.; Atzeni, C. Simple microwave sensor for remote detection of structural vibration. Electron. Lett. 2009, 45, 567–569.
Pieraccini, M.; Fratini, M.; Parrini, F.; Atzeni, C.; Bartoli, G. Interferometric radar vs. accelerometer for dynamic monitoring of large structures: An experimental comparison. NDT E Int. 2008, 41, 258–264.
Pieraccini, M.; Fratini, M.; Parrini, F.; Atzeni, C. Dynamic Monitoring of Bridges Using a High-Speed Coherent Radar. IEEE Trans. Geosci. Remote. Sens. 2006, 44, 3284–3288.
Wang, J.; Wang, X.; Fan, C.; Li, Y.; Huang, X. Bridge Dynamic Cable-Tension Estimation with Interferometric Radar and APES-Based Time-Frequency Analysis. Electronics 2021, 10, 501.
Li, Y.; Shao, Z.; Zhang, X.; Jiang, J. Mm-wave Radar Based Micro-Deformation Monitoring for Highway and Freight Railway Bridges. Appl. Comput. Electromagn. Soc. J. 2019, 34, 457–462.
Shao, Z.; Zhang, X.; Li, Y. Analysis and Validation of Super-Resolution Micro-Deformation Monitoring Radar. Prog. Electromagn. Res. M 2017, 62, 41–50.
Ma, Z.; Choi, J.; Yang, L.; Sohn, H. Structural displacement estimation using accelerometer and FMCW millimeter wave radar. Mech. Syst. Signal Process. 2023, 182, 109582.
Ma, Z.; Choi, J.; Sohn, H. Continuous bridge displacement estimation using millimeter-wave radar, strain gauge and accelerometer. Mech. Syst. Signal Process. 2023, 197, 110408.
Dei, D.; Mecatti, D.; Pieraccini, M. Static Testing of a Bridge Using an Interferometric Radar: The Case Study of “Ponte degli Alpini,” Belluno, Italy. Sci. World J. 2013, 2013, 504958.
Pieraccini, M.; Tarchi, D.; Rudolf, H.; Leva, D.; Luzi, G.; Bartoli, G.; Atzeni, C. Structural static testing by interferometric synthetic radar. NDT E Int. 2000, 33, 565–570.
Pieraccini, M.; Tarchi, D.; Rudolf, H.; Leva, D.; Luzi, G.; Atzeni, C. Interferometric radar for remote monitoring of building deformations. Electron. Lett. 2000, 36, 569–570.
Zhang, G.; Zhao, W.; Zhang, J. Bridge distributed stiffness identification of continuous beam bridge based on microwave interferometric radar technology and rotation influence line. Measurement 2023, 220, 113353.
Pagnini, L.; Miccinesi, L.; Beni, A.; Pieraccini, M. Transversal Displacement Detection of an Arched Bridge with a Multimonostatic Multiple-Input Multiple-Output Radar. Sensors 2024, 24, 1839.
Zou, L.; Nico, G.; Alani, A.M.; Sato, M. Strategy for vertical deformation of railway bridge monitoring using polarimetric ground-based real aperture radar system. Struct. Health Monit. 2024, 23, 3719–3730.
Pramudita, A.A.; Lin, D.; Dhiyani, A.A.; Ryanu, H.H.; Adiprabowo, T.; Yudha, E.A. FMCW Radar for Non Contact Bridge Structure Displacement Estimation. IEEE Trans. Instrum. Meas. 2023, 72, 8504914.
Zhu, Y.; Xu, B.; Li, Z.; Li, J.; Hou, J.; Mao,W. Joint Estimation of Ground Displacement and Atmospheric Model Parameters in Ground-Based Radar. Remote. Sens. 2023, 15, 1765.
Zhu, Y.; Xu, B.; Li, Z.; Hou, J.; Wang, Q. Monitoring Bridge Vibrations Based on GBSAR and Validation by High-Rate GPS Measurements. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2021, 14, 5572–5580.
Zhang, C.; Mousavi, A.A.; Masri, S.F.; Gholipour, G.; Yan, K.; Li, X. Vibration feature extraction using signal processing techniques for structural health monitoring: A review. Mech. Syst. Signal Process. 2022, 177, 109175.
Smyth, A.; Wu, M. Multi-rate Kalman filtering for the data fusion of displacement and acceleration response measurements in dynamic system monitoring. Mech. Syst. Signal Process. 2007, 21, 706–723.
Monserrat, O.; Crosetto, M.; Luzi, G. A review of ground-based SAR interferometry for deformation measurement. ISPRS J. Photogramm. Remote Sens. 2014, 93, 40–48.
Arnold, M.; Keller, S. Detection and classification of bridge crossing events with ground-based interferometric radar data and machine learning approaches. ISPRS Ann. Photogramm. Remote. Sens. Spat. Inf. Sci. 2020, 1, 109–116.
Ri, S.; Tsuda, H.; Chang, K.; Hsu, S.; Lo, F.; Lee, T. Dynamic Deformation Measurement by the Sampling Moiré Method from Video Recording and its Application to Bridge Engineering. Exp. Tech. 2020, 44, 313–327.