[1] Galliazzo V. I ponti romani. Catalogo generale. Treviso: Edizioni Canova, 1994.
[2] Watson C, Watson T, Coleman R. Structural monitoring of cable-stayed bridge: analysis of GPS versus modeled deflections. J Survey Eng 2007;133:23–28. https://doi.org/10.1155/2013/947867
[3] Moschas F, Stiros S. Measurement of the dynamic displacements and of the modal frequencies of a short-span pedestrian bridge using GPS and an accelerometer. Eng Struct 2011;33:10–17. https://doi.org/10.1061/(ASCE)0733-9453(2007)133:1(23)
[4] Zhou G-D, Yi T-H. Recent developments on wireless sensor networks technology for bridge health monitoring. Math Prob Eng 2013;947867. https://doi.org/10.1155/2013/947867
[5] Alani AM, Aboutalebi M, Kilic G. Integrated health assessment strategy using NDT for reinforced concrete bridges, NDTE Int 2014;61:80-94. https://doi.org/10.1016/j.ndteint.2013.10.001
[6] Pieraccini M, Parrini F, Fratini M, Atzeni C, Spinelli P, Micheloni M. Static and dynamic testing of bridges through microwave interferometry. NDTE Int 2007;40:208–214. https://doi.org/10.1016/j.ndteint.2006.10.007Get rights and content
[7] Gentile, C. Deflection measurement on vibrating stay cables by non-contact microwave interferometer. NDTE Int 2010;43:231–240. https://doi.org/10.1016/j.ndteint.2009.11.007
[8] Melville BW, Coleman SE. Bridge Scour. Water Resources Publications, LLC, Colorado, USA, 2000.
[9] Briaud JL, Ting F, Chen HC, Cao Y, Han SW, Kwak K. Erosion function apparatus for scour rate predictions. J Geotech Geoenviron 2001;127(2):105-113. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:2(105)
[10] Hamill L. Bridge hydraulics. London: E and FN Spon; 1999.
[11] Prendergast LJ, Gavin K. A review of bridge scour monitoring techniques, J Rock Mech Geotech 2014;6(2):138-149. https://doi.org/10.1016/j.jrmge.2014.01.007
[12] Shirole AM, Holt RC. Planning for a comprehensive bridge safety assurance program. Transp Res Rec, Washington DC (1991), pp. 137-142.
[13] Briaud JL, Chen H, Li Y, Nurtjahyo P, Wang J. SRICOS-EFA method for contraction scour in fine-grained soils. J Geotech Geoenviron 2005;131(10):1283-1294. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:10(1283)
[14] Ferretti A, Prati C, Rocca F. Permanent scatterers in SAR interferometry. IEEE Trans Geosci Remote Sens 2001;39:8–20. doi: 10.1109/IGARSS.1999.772008
[15] Berardino P, Fornaro G, Lanari R, Sansosti E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans Geosci Remote Sens 2002;40:2375–2383. doi: 10.1109/TGRS.2002.803792
[16] Massonnet D, Feigl K, Rossi M, Adragna F. Radar interferometric mapping of deformation in the year after the Landers earthquake. Nature 1994;369:227–230. https://doi.org/10.1038/369227a0
[17] Jung J, Kim D-J, Palanisamy Vadivel SK, Yun S-H. Long-term deflection monitoring for bridges using X and C-band time-series SAR interferometry. Remote Sens 2019;11(11):1258. https://doi.org/10.3390/rs11111258
[18] Bianchini Ciampoli L, Gagliardi V, Clementini C, Latini D, Del Frate F, Benedetto A. transport infrastructure monitoring by InSAR and GPR data fusion. Surv Geophys 2019. https://doi.org/10.1007/s10712-019-09563-7
[19] Tosti F, Gagliardi V, D'Amico F, Alani AM. Transport infrastructure monitoring by data fusion of GPR and SAR imagery information. Transp Res Proc 2020;45:771-778. https://doi.org/10.1016/j.trpro.2020.02.097
[20] Fornaro G, Reale D, Verde S. Monitoring thermal dilations with millimetre sensitivity via multi-dimensional SAR imaging. In: Proceedings of the 2012 Tyrrhenian Workshop on Advances in Radar and Remote Sensing (TyWRRS), Naples, Italy; Sept. 2012. p. 131–5.
[21] Goel K, Rodriguez Gonzalez F, Adam N, Duro J, Gaset M. 2014. Thermal dilation monitoring of complex urban infrastructure using high resolution SAR data. In: Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium (IGARSS), Quebec City, QC, Canada; July 2014. p. 954–7.
[22] Bianchini Ciampoli L, Gagliardi V, Calvi A, D’Amico F, Tosti F. Automatic network-level bridge monitoring by integration of InSAR and GIS catalogues. In: Proceedings of SPIE - The International Society for Optical Engineering, 11059. Munich, Germany; June 2019. https://doi.org/10.1117/12.2527299
[23] Del Soldato M, Tomás R, Pont J, Herrera G, Lopez-Davalillos JCG, Mora O., 2016. A multi-sensor approach for monitoring a road bridge in the Valencia harbor (SE Spain) by SAR Interferometry (InSAR). Rend Online Soc Geol Ital 2016;41:235–238. https://doi.org/10.3301/ROL.2016.137
[24] D’Amico F, Gagliardi V, Bianchini Ciampoli L, Tosti F, 2020. Integration of InSAR and GPR techniques for monitoring transition areas in railway bridges. NDTE Int (this issue).
[25] Pipinato A. Masonry bridges. In Pipinato A, editor. Innovative bridge design handbook: construction, rehabilitation and maintenance. Butterworth-Heinemann; 2015.
[26] Fernandez Troyano L Bridge Engineering: A Global Perspective. Thomas Telford; 2003.
[27] UIC Code 778-3R. Recommendations for the inspection, assessment and maintenance of masonry arch bridges. Paris, France, 2018.
[28] Heyman J. The stone skeleton. Cambridge: Cambridge University Press; 1997.
[29] Lourenço PB. Computational strategies for masonry structures. PhD Thesis, Delft University, 1996.
[30] Sarhosis V, De Santis S, De Felice G. A review of experimental investigations and assessment methods for masonry arch bridges. Struct Infrastruct E 2016;12(11):1439–1464. doi: 10.1080/15732479.2015.1136655
[31] Proske D, van Gelder P. Safety of historical stone arch bridges. Germany: Springer-Verlag Berlin Heidelberg; 2009.
[32] Hola J, Schabowicz K. State-of-the-art non-destructive methods for diagnostic testing of building structures – anticipated development trends. Arch Civ Mech Eng 2010;10(3):5-18. https://doi.org/10.1016/S1644-9665(12)60133-2
[33] Berndt E, Schöne I. Tragverhalten von Natursteinmauerwerk aus Elbesandstein. Sonderforschungsbereich 315, Universität Karlsruhe, 1990.
[34] Vicente R, Ferreira TM, Mendes da Silva JA, Varum H. In situ flat-jack testing of traditional masonry walls: case study of the old city center of Coimbra, Portugal. Int J Archit Herit 2015;9(5):794-810. https://doi.org/10.1080/15583058.2013.855840
[35] Bindia L, Tiraboschi C. Flat-jack test: a slightly destructive technique for the diagnosis of brick and stone masonry structures, 1999.
[36] Colla C, Das PC, McCann D, Forde MC. Sonic, electromagnetic and impulse radar investigation of stone masonry bridges. NDTE Int 1997;30(4):249-254. https://doi.org/10.1016/S0963-8695(96)00067-9
[37] McCann DM, Forde MC. Review of NDT methods in the assessment of concrete and masonry structures. NDTE Int 2001;34:71-84. https://doi.org/10.1016/S0963-8695(00)00032-3
[38] Alani AM, Tosti F, Banks K, Bianchini Ciampoli L, Benedetto A. Non-destructive assessment of a historic masonry arch bridge using ground penetrating radar and 3D laser scanner. In: Proceedings of the IMEKO International Conference on Metrology for Archaeology and Cultural Heritage (METROARCHAEO2017), Lecce, Italy; Oct 2017.
[39] AA.VV. Review on the NDTs for inspecting masonry walls. Retrieved from DISWall - Developing Innovative Systems for reinforced Masonry Walls: http://diswall.dic.unipd.it/Results/D5.2_FINAL.pdf. 2006
[40] Williamson PR. A guide to limits of resolution imposed by scattering in ray tomography. Geophysics 1991;56:202-207. https://doi.org/10.1190/1.1443032
[41] Biernat K, Idziaszek-Gonzalez A, Nita K, Sikora J, Wojtowicz S. Nondestructive Impendance Method of Brickwork Damp Identification. In Proceedings of the 42nd International Conference and NDT Exhibition NDE for Safety/Defektoskopie. Seč u Chrudimi, Czech Republic; 2012.
[42] Hola J, Matkowski Z, Schabowicz K, Sikora J, Nita K, Wojtowicz S. Identification of moisture content in brick walls by means of impedance tomography. COMPEL – Int J Comput Math Electr Electr 2012;31(6):1774-1792. https://doi.org/10.1108/03321641211267119
[43] Fauchard C, Antoine R, Bretar F, Lacogne J, Fargier Y, Maisonnave C, Pierrot-Deseilligny M. Assessment of an ancient bridge combining geophysical and advanced photogrammetric methods: Application to the Pont De Coq, France. J Appl Geophys 2013;98:100-112. https://doi.org/10.1016/j.jappgeo.2013.08.009
[44] Bungey JH, Grantham MG, Millard S. Testing of concrete in structures. Crc Press; 2006.
[45] Benedetto A, Pajewski L. Civil Engineering Applications of Ground Penetrating Radar. Springer Transactions in Civil and Environmental Engineering, 2015.
[46] Daniels DJ, Ground Penetrating Radar, 2nd ed., London, U.K.: Inst. Elect. Eng; 2004.
[47] Solla M, Laguela S, Riveiro B, Lorenzo H. Non-destructive testing for the analysis of moisture in the masonry arch bridge of Lubians (Spain). Struct Control Hlth 2013;20:1366-1376. https://doi.org/10.1002/stc.1545
[48] Orban Z, Yakovlev G, Pervushin G. Non-Destructive Testing of masonry arch bridges – an overview. Bautechnik 2008;85(10):711-717. https://doi.org/10.1002/bate.200890136
[49] Lubowiecka I, Armesto J, Arias P, Lorenzo H. Historic bridge modelling using laser scanning, ground penetrating radar and finite element methods in the context of structural dynamics, Eng Struct 2009;31(11):2667-2676. https://doi.org/10.1016/j.engstruct.2009.06.018
[50] Riveiro B, Arias P, Armesto J, Rial F, Solla M. Multidisciplinary approach to historical arch bridges documentation, ISPRS Vol. XXXVII, 2008, pp. 247-252.
[51] Perna S, Wimmer C, Moreira J, Fornaro G. X-band airborne differential interferometry: results of the OrbiSAR campaign over the Perugia area. IEEE Trans Geosci Remote Sens, 2008;46(2):489–503. doi: 10.1109/TGRS.2007.908871
[52] Perna S, Esposito C, Amaral T, Berardino P, Jackson G, Moreira J et al. The InSAeS4 airborne X-band interferometric SAR system: a first assessment on its imaging and topographic mapping capabilities. Remote Sens, 2016;8(1):40. https://doi.org/10.3390/rs8010040
[53] Perna S, Alberti G, Berardino P, Bruzzone L, Califano D, Catapano I et al. The ASI integrated sounder-SAR system operating in the UHF-VHF bands: first results of the 2018 helicopter-borne morocco desert campaign. Remote Sens, 2019;11(16):1845. https://doi.org/10.3390/rs11161845
[54] Rosen PA, Hensley S, Wheeler K, Sadowy G, Miller T, Shaffer S, et al. UAVSAR: a new NASA airborne SAR system for science and technology research. In: Proceedings of the 2006 IEEE Conference on Radar, Verona, NY, USA; April 2006.
[55] Ferretti A, Prati C, Rocca F. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Trans Geosci Remote Sens, 2000;38(5):2202–2212. https://doi.org/10.1109/36.868878.
[56] Colesanti C, Ferretti A, Novali F, Prati C, Rocca F. SAR monitoring of progressive and seasonal ground deformation using the Permanent Scatterers Technique. IEEE Trans Geosci Remote Sens, 2003;41(7):1685-1701.
[57] Daniels DJ. Surface-penetrating radar. Electron Commun Eng, 1996;8(4):165-182. doi: 10.1049/ecej:19960402
[58] Benedetto A, Tosti F, Bianchini Ciampoli L, D'Amico F. An overview of ground-penetrating radar signal processing techniques for road inspections. Signal Process, 2017;132:201-209. https://doi.org/10.1016/j.sigpro.2016.05.016
[59] Bianchini Ciampoli L, Artagan S, Tosti F, Gagliardi V, Alani AM, Benedetto A. A comparative investigation of the effects of concrete sleepers on the GPR signal for the assessment of railway ballast. In: Proceedings of the 17th International Conference on Ground Penetrating Radar (GPR).2018. doi:10.1109/icgpr.2018.8441588
[60] Rhazi J, Dous O, Ballivy G, Laurens S, Balayssac JP. Non destructive health evaluation of concrete bridge decks by GPR and half cell potential techniques. In: Proceedings of 6th International Conference on Nondestructive Testing in Civil Engineering. Berlin, 2003.
[61] Parrillo R, Roberts R. Bridge deck condition assessment using ground penetrating radar. In: Proceedings of the ECNDT. Berlin, 2006.
[62] Benedetto A, Manacorda G, Simi A, Tosti F. Novel perspectives in bridge inspections using GPR. Nondestruct Test Eva, 2012;27(3):239–251. https://doi.org/10.1080/10589759.2012.694883
[63] Alani AM, Aboutalebi M, Kilic G. Applications of ground penetrating radar (GPR) in bridge deck monitoring and assessment. J App Geophys, 2013;97:45-54. https://doi.org/10.1016/j.jappgeo.2013.04.009
[64] Plati C, Loizos A, Gkyrtis K. Assessment of modern roadways using non-destructive geophysical surveying techniques. Surv Geophys, 2019. https://doi.org/10.1007/s10712-019-09518-y
[65] Tosti F, Ferrante C. Using ground penetrating radar methods to investigate reinforced concrete structures. Surv Geophys, 2019. https://doi.org/10.1007/s10712-019-09565-5
[66] Solla M, Lorenzo H, Riveiro B, Rial FI. Non-destructive methodologies in the assessment of the masonry arch bridge of Traba, Spain. Eng Fail Anal, 2011;18(3):828-835. https://doi.org/10.1016/j.engfailanal.2010.12.009
[67] Haeni FP, Placzek G, Trent RE. Use of ground penetrating radar to investigate refilled scour holes at bridge foundations, In: Proceedings of the Fourth International Conference on Ground Penetrating Radar, pp. 285–292. Rovaniemi, Finland, June 1992.
[68] Diamanti N, Giannopoulos A, Forde MC. Numerical modelling and experimental verification of GPR to investigate ring separation in brick masonry arch bridges. NDTE Int, 2008;41:354-363. https://doi.org/10.1016/j.ndteint.2008.01.006
[69] Loizos A, Plati C. Accuracy of ground penetrating radar horn-antenna technique for sensing pavement subsurface. IEEE Sens J 2007;7(5):842–850. doi: 10.1109/JSEN.2007.894152
[70] Saarenketo T. NDT Transportation. In H. M. Jol (Ed.), Ground penetrating radar theory and applications. Elsevier; 2009.
[71] Conde B, Ramos LF, Oliveir DV, Riveiro B, Solla M. Structural assessment of masonry arch bridges by combination of non-destructive testing techniques and three-dimensional numerical modelling: application to Vilanova bridge. Eng Struct, 2017;148:621-638. https://doi.org/10.1016/j.engstruct.2017.07.011
[72] Bergamo O, Campione G, Donadello S, Russo G. In-situ NDT testing procedure as an integral part of failure analysis of historical masonry arch bridges. Eng Fail Anal, 2015;57:31-55. https://doi.org/10.1016/j.engfailanal.2015.07.019
[73] Moro M, Saroli M, Stramondo S, Bignami C, Albano M, Falcucci E. et al. New insights into earthquake precursors from InSAR. Sci Rep, 2017;7:12035. https://doi.org/10.1038/s41598-017-12058-3
[74] Dammann DO, Eriksson LEB., Mahoney AR., Stevens CW., Van der Sanden J, Eicken H, Meyer FJ, Tweedie CE. Mapping arctic bottomfast sea ice using SAR interferometry. Remote Sens, 2018;10(5):720. https://doi.org/10.3390/rs10050720
[75] Guo Q, Xu C, Wen Y, Liu Y, Xu G. The 2017 noneruptive unrest at the Caldera of Cerro Azul Volcano (Galápagos Islands) revealed by InSAR observations and geodetic modelling. Remote Sens, 2019;11(17):1992. https://doi.org/10.3390/rs11171992
[76] Del Soldato M, Solari L, Poggi F, Raspini F, Tomás R, Fanti, R, Casagli, N. Landslide-induced damage probability estimation coupling InSAR and field survey data by fragility curves. Remote Sens, 2019;11(12):1486. https://doi.org/10.3390/rs11121486
[77] Gabriel AK, Goldstein RM, Zebker HA. Mapping small elevation changes over large areas: differential radar interferometry. J Geophys Res, 1989;94(B7):9183-9191. https://doi.org/10.1029/JB094iB07p09183
[78] Massonnet D, Feigl KL. Radar interferometry and its application to changes in the Earth’s surface. Rev Geophys, 1998;36(4):441-500. https://doi.org/10.1029/97RG03139
[79] Rosen PA, Hensley S, Joughin IR, Li FK, Madsen SN, Rodriguez E, Goldstein RM. Synthetic aperture radar interferometry. Proc. IEEE, 2000;88(3): 333-382. doi: 10.1109/5.838084
[80] Bamler R, Hartl P. Synthetic aperture radar interferometry. Inverse Probl, 1998;14:R1-R54. https://doi.org/10.1088/0266-5611/14/4/001
[81] Lanari R, Casu F, Manzo M, Lundgren P. Application of the SBAS-DInSAR technique to fault creep: a case study of the Hayward fault, California. Remote Sens Environ,2007;109(1):20–28. https ://doi.org/10.1016/j. rse.2006.12.003
[82] Lanari R, Mora O, Manunta M, Mallorqui JJ, Berardino P, Sansosti E. A small-baseline approach for investigating deformations on full-resolution differential SAR interferograms. IEEE Trans Geosci Remote Sens, 2004;42(7):1377–1386. doi:10.1109/tgrs.2004.828196
[83] Casu F, Manzo M, Lanari R. A quantitative assessment of the SBAS algorithm performance for surface deformation retrieval from DInSAR data. Remote Sens Environ, 2006;102(3-4):195–210. https://doi.org/10.1016/j.rse.2006.01.023
[84] Lanari R, Lundgren P, Manzo M, Casu F. Satellite radar interferometry time series analysis of surface deformation for Los Angeles, California. Geophys Res Lett, 2004;31(23). https://doi.org/10.1029/2004GL021294
[85] Colesanti C, Ferretti A, Prati C, Rocca F. Monitoring landslides and tectonic motions with the Permanent Scatterers Technique, Eng Geol, 2003;68:3–14. https://doi.org/10.1016/S0013-7952(02)00195-3
[86] Colesanti C, Mouelic SL, Bennani M, Raucoules D, Carnec C, Ferretti A. Detection of mining related ground instabilities using the Permanent Scatterers technique—a case study in the east of France. Int J Remote Sens, 2005;26(1):201-207. https://doi.org/10.1080/0143116042000274069
[87] Milillo P, Giardina G, Perissin D, Milillo G, Coletta A, Terranova C. Pre-collapse space geodetic observations of critical infrastructure: the Morandi Bridge, Genoa, Italy. Remote Sensing, 2019;11(12):1403. https://doi.org/10.3390/rs11121403
[88] Koudogbo F, Urdiroz A, Robles JG, Chapron G, Lebon G, Fluteaux V, Priol G. Radar interferometry as an innovative solution for monitoring the construction of the Grand Paris Express metro network—first results. In: World tunnel conference, 2–25 April, 2018, Dubai.
[89] Barla G, Tamburini A, Del Conte S, Giannico C. InSAR monitoring of tunnel induced ground movements. Geomechanik und Tunnelbau, 2016;9(1):15–22. https ://doi.org/10.1002/geot.20150 0052
[90] Yang Z, Schmid F, Roberts C. Assessment of railway performance by monitoring land subsidence.In: 6th IET conference on railway condition monitoring (RCM 2014), pp 1–6, 2014. https ://doi.org/10.1049/cp.2014.1000
[91] Sarmap. SARscape technical description. http://www.sarmap.ch/pdf/ /SARscapeTechnical.pdf/; 2012 [accessed 11 February 2020].
[92] Sarmap. SAR-Guidebook, http://www.sarmap.ch/pdf/SAR-Guidebook.pdf; 2009 [accessed 11 February 2020].
[93] ENVI SARscape Brochure, https://www.harrisgeospatial.com/Portals/0/pdfs/HG_SARscape_brochure_WEB.pdf [accessed 11 February 2020].
[94] NASA, The Shuttle Radar Topography Mission (SRTM) Collection User Guide. https://lpdaac.usgs.gov/documents/179/SRTM_User_Guide_V3.pdf; 2015 [accessed 11 February 2020].
[95] Rodriguez E, Morris CS, Belz JE, Chapin EC, Martin JM, Daffer W, Hensley S. An assessment of the SRTM topographic products, Technical Report JPL D-31639, Jet Propulsion Laboratory, Pasadena, California, 143 pp., 2005.
[96] National River Flow Archive; 2019, https://nrfa.ceh.ac.uk, UK Centre for Ecology & Hydrology (UKCEH), Wallingford. [accessed 10 October 2019].