[1] Y. Pan, R. A. Birdsey, J. Fang, R. Houghton, P. E. Kauppi, W. A., Kurz, [...] D. Hayes, “A large and persistent carbon sink in the world’s forests,” Science, vol. 19, pp. 988–993, 2011.
[2] R. J. Mitchell, J. K. Beaton, P. E., Bellamy, A. Broome, J. Chetcutti, S. Eaton [...], S. woodward, “Ash dieback in the UK: A review of the ecological and conservation implications and potential management options,” Biological Conservation, ovl. 175, pp. 95–109.
[3] Green Paper on Forest Protection and Information in the EU: Preparing forests for climate change, SEC, 2010.
[4] C. Potter, T. Harwood, J. Knight, I. Tomlinson, “Learning from history, predicting the future: the UK Dutch elm disease outbreak in relation to contemporary disease threats,” Philosophical Transactions of The Royal Society, vol. 366, pp. 1966–1974, 2011.
[5] M. McMullan, M. Rafiqi, G. Kaithakottil, D. J., Clavijo, L. Bilham, E. Orton [...], M. D. Clark, “The ash dieback invasion of Europe was founded by two genetically divergent individuals,” Nature Ecology and Evolution, vol. 2, pp. 1000-1008, 2018.
[6] N. Brown, D. J.G. Inward, M. Jeger and S. Denman, ”A review of Agrilus biguttatus in UK forests and its relationship with acute oak decline,” Forestry: An International Journal of Forest Research, vol. 88, no. 1, pp. 53-63, 2015.
[7] S. Papic, R. Longauer, I. Milenkovic, J. Rozsypalek, “Genetic predispositions of common ash to the ash dieback caused by ash dieback fungus,” GENETIKA, vol. 25, no. 1, pp. 221-229, 2018.
[8] R. Worrell, An Assesment of The Potential Impacts of Ash Dieback in Scotland, Commisioned by Forestry Commission Scotland, 2013.
[9] N. Brown, Epidemiology of acute oak decline in Great Britain, PhD thesis submitted at Imperial College London, 2014.
[10] S. Denman, N. Brown, S. Kirk, M. Jeger and J. Webber, ”A description of the symptoms of Acute Oak Decline in Britain and a comparative review on causes of similar disorders on oak in Europe,” Forestry: An International Journal of Forest Research, vol. 87, no. 4, pp. 535-551, 2014.
[11] W. C. Shortle, K. R. Dudzik, Wood Decay in Living and Dead Trees: A Pictorial Overview, U.S. FOREST SERVICE, 2012.
[12] L. Costello and S. Quarles, ”Detection of wood decay in blue gum and elm: An evaluation of the Resistograph and the portable drill,” Journal of Arboriculture, vol. 25, pp. 311–317, 1999.
[13] S. A., Hagrey, ”Electrical resistivity imaging of tree trunks,” Near Surface Geophysics, vol. 4, pp. 179–187, 2006.
[14] A. Catena, ”Thermography shows damaged tissue and cavities present in trees,” Nondestructive Characterization of Materials, vol. 11, pp. 515– 522.
[15] L. V. Socco, L. Sambuelli, R. Martinis, E. Comino, G. Nicolotti, “Feasibility of ultrasonic tomography for nondestructive testing of decay on living trees,” Research in Nondestructive Evaluation, vol. 15, no. 1, pp. 31-54, 2004.
[16] A. M. Alani, J. Chambers, P. Melarange, L. Lantini, F. Tosti, “The Use of Ultrasonic Tomography for the Non-destructive Assessment of Tree Trunks,” EGU General Assembly, EGU2020-20872.
[17] Q. Wei, B. Leblon, and L. A. Rocque, ”On the use of X-ray computed tomography for determining wood properties: a review,” Can. J. For. Res. vol. 41. pp. 2120-2140, 2001.
[18] F. Boero, A. Fedeli, M. Lanini, M. Maffongelli, R. Monleone, M. Pastorino, A. Randazzo, A. Slvade and A. Sansalone, ”Microwave Tomography for the Inspection of Wood Materials: Imaging System and Experimental Results,” IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 7, pp. 3497-3510, July 2018.
[19] G. Nicolotti, L.V. Socco, R. Martinis, A. Godio, and L. Sambuelli, ”Application and comparison of three tomographic techniques for detection decay in trees”, J. Arboric. vol. 29, pp. 66–78, 2003.
[20] H. Lorenzo, V. Prez-Gracia, A. Novo, and J. Armesto, ”Forestry applications of ground-penetrating radar,” For. Syst., vol. 19, pp. 5–17, 2010.
[21] J. Jezova, L. Mertens and S. Lambot, ”Ground-penetrating radar for observing tree trunks and other cylindrical objects,” Constraction and Building Materials, vol. 123, pp. 214-225, 2016.
[22] S. A. Al Hagrey, ”Geophysical imaging of root-zone, trunk, and moisture heterogeneity,” J. Exp. Bot. vol. 58, pp. 839–854, 2007.
[23] A.M. Alani, L. Bianchini Ciampoli, L. Lantini, F. Tosti, and A. Benedetto, “Mapping the root system of matured trees using ground penetrating radar”, 17th International Conference on Ground Penetrating Radar, 18-21 Jun 2018, Rapperswil, Switzerland.
[24] F. Tosti, L. Bianchini Ciampoli, M. G. Brancadoro, and A. Alani, “GPR applications in mapping the subsurface root system of street trees with road safety-critical implications”, Advances in transportation studies, vol. 44, 2018.
[25] L. Lantini, R. Holleworth, D. Egyir, I. Giannakis, F. Tosti, and A. M. Alani, ”Use of ground penetrating radar for assessing interconnections between root systems of different matured tree species,” in Proc. MetroArchaeo, 2018, Italy.
[26] J. Jezova, J. Harou and S. Lambot, ”Reflection waveforms occurring in bistatic radar testing of columns and tree trunks,” Construction and Building Materials, vol. 174, pp. 388-400, 2018.
[27] L. Lantini, F. Tosti, I. Giannakis, D. Egyir, A. Benedetto, and A. M. Alani, ”A Novel Processing Framework for Tree Root Mapping and Density Estimation using Ground Penetrating Radar,” Conference Proceedings, 10th International Workshop on Advanced Ground Penetrating Radar, Sep 2019, Volume 2019, p.1 – 6.
[28] C. J. Leuschen and R. G. Plumb, “A matched-filter-based reverse-time migration algorithm for ground-penetrating radar data,” IEEE Transactions on Geoscience and Remote Sensing, vol. 39, no. 5, pp. 929-936, 2001.
[29] A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. Norwood, MA, USA: Artech House, 2000.
[30] I. Giannakis and A. Giannopoulos, “Time-synchronized convolutional perfectly matehced layer for improved absorbing perfromance in FDTD,” IEEE Antennas and Wireless Propagation Letters, vol. 14, pp. 690-693, 2015.
[31] I. Giannakis, F. Tosti, L. Lantini and A. M. Alani, “Diagnosing Emerging Infectious Diseases of Tress Using Ground Penetrating Radar,” IEEE Transactions on Geoscience and Remote Sensing, vol. 58, no. 2, pp. 1146-1155, 2020.
[32] R. Solimene, I. Catapano, G. Gennarelli, A. Cuccaro, A. Dell'Aversano, and F. Soldovieri, "SAR imaging algorithms and some unconventional applications," IEEE Signal Process. Mag., vol. 31, no. 4, pp. 90-98, 2014.
[33] I. Catapano, G. Gennarelli, G. Ludeno, R. Persico, and F. Soldovieri, “Ground Penetrating Radar: Operation Principle and Data Processing”, in J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering, 2019 John Wiley & Sons, Inc. DOI: 10.1002/047134608X.W8383.
[34] A.M. Alani, F. Soldovieri, G. Gennarelli, I. Giannakis, I. Catapano, L. Lantini, G. Ludeno and F. Tosti, “A Tomographic Inversion Approach for the Detection of Decay and Cavities in Tree Trunks using Ground Penetrating Radar”, 10th International Workshop on Advanced Ground Penetrating Radar, Sep 2019, Volume 2019, p.1 – 6.
[35] A.M. Alani, F. Soldovieri, I. Catapano, Giannakis, I. G. Gennarelli, L. Lantini, G. Ludeno and F. Tosti, “The Use of Ground Penetrating Radar and Microwave Tomography for the Detection of Decay and Cavities in Tree Trunks”, Remote Sens. 2019, 11, 2073.
[36] H. Chen, and A. Cohn, Probabilistic robust hyperbola mixture model for interpreting ground penetrating radar data. In Proceedings of the International Joint Conference on Neural Networks (IJCNN), Shanghai, China, 6–9 June 2010; pp. 1–8.
[37] E. Pasolli, F. Melgani, and M. Donelli, Automatic Analysis of GPR Images: A Pattern-Recognition Approach. IEEE Trans. Geosci. Remote Sens. 2009, 47, 2206–2217.
[38] C. Maas, and J. Schmalzl, Using pattern recognition to automatically localize reflection hyperbolas in data from ground penetrating radar. Comput. Geosci. 2013, 58, 116–125.
[39] S. Birkenfeld, Automatic detection of reflexion hyperbolas in GPR data with neural networks. In Proceedings of the 2010 World Automation Congress, Kobe, Japan, 19–23 September 2010; pp. 1189–1194.
[40] R. Janning, A. Busche, T. Horváth, and L. Schmidt-Thieme, Buried pipe localization using an iterative geometric clustering on GPR data. Artif. Intell. Rev. 2014, 42, 403–425.
[41] R. Janning, T. Horváth, A. Busche, and L. Schmidt-Thieme, GamRec: A Clustering Method Using Geometrical Background Knowledge for GPR Data Preprocessing. In Proceedings of the Artificial Intelligence Applications and Innovations, Halkidiki, Greece, 27–30 September 2012; pp. 347–356.
[42] R.O. Duda, and P.E. Hart, Use of the Hough transformation to detect lines and curves in pictures. Commun. ACM 1972, 15, 11–15.
[43] C.H. Paul, Method and Means for Recognizing Complex Patterns. U.S. Patent 3,069,654, 18 December 1962.
[44] L. Xu, and E. Oja, P. Kultanen, A new curve detection method Randomized Hough transform (RHT). Pattern Recognit. Lett. 1990, 11, 331–338.
[45] L. Xu, A5 problem solving paradigm: A unified perspective and new results on RHT computing, mixture based learning, and evidence combination. In Proceedings of the 2005 IEEE International Conference on Granular Computing, Beijing, China, 25–27 July 2005; pp. 70–77.
[46] L. Xu, and E. Oja, Randomized Hough transform (RHT): Basic mechanisms, algorithms, and complexities. CVGIP Image Underst. 1993, 57, 131–154.
[47] A. Simi, S. Bracciali, and G. Manacorda, Hough transform based automatic pipe detection for array GPR: Algorithm development and on-site tests. In Proceedings of the Radar Conference, Rome, Italy, 26–30 May 2008; pp. 1–6.
[48] G. Borgioli, L. Capineri, P.L. Falorni, S. Matucci, and C.G. Windsor, The Detection of Buried Pipes From Time-of-Flight Radar Data. IEEE Trans. Geosci. Remote Sens. 2008, 46, 2254–2266
[49] C. Windsor, L. Capineri, P. Falorni, S. Matucci, and G. Borgioli, The estimation of buried pipe diameters using ground penetrating radar. Insight-Non-Destr. Test. Cond. Monit. 2005, 47, 394–399
[50] P. Falorni, L. Capineri, L. Masotti, and G.Pinelli, 3-D radar imaging of buried utilities by features estimation of hyperbolic diffraction patterns in radar scans. In Proceedings of the Tenth International Conference on Ground Penetrating Radar, Delft, The Netherlands, 21–24 June 2004; pp. 403–406.
[51] W.L. Song, X. Yang, L.I. Ke-Xin, H.M. Jia, Tree root GPR target detection based on the gradient magnitude and modified Hough transform. J. For. Univ. 2013, 35, 108–112.
[52] W. Li, X. Cui, L. Guo, J. Chen, Xu. Chen and X. Cao, “Tree Root Automatic Recognition in Ground Penetrating Radar Profiles Based on Randomized Hough Transform”, Remote Sens., 8(5), 430, 2016.
[53] A. E. Mihai, A. G. Gerea, G. Curioni, P. Atkins, and F. Hayati, “Direct measurements of tree root relative permittivity for the aid of GPR forward models and site surveys”, Near Surface Geophysics, 17 (3), pp. 299-310, 2019.