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Classification of Speaking and Singing Voices Using
Bioimpedance Measurements and Deep Learning
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Summary: The acts of speaking and singing are different phenomena displaying distinct characteristics. The
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classification and distinction of these voice acts is vastly approached utilizing voice audio recordings and micro-
phones. The use of audio recordings, however, can become challenging and computationally expensive due to the
complexity of the voice signal. The research presented in this paper seeks to address this issue by implementing a
deep learning classifier of speaking and singing voices based on bioimpedance measurement in replacement of
audio recordings. In addition, the proposed research aims to develop a real-time voice act classification for the
integration with voice-to-MIDI conversion. For such purposes, a system was designed, implemented, and tested
using electroglottographic signals, Mel Frequency Cepstral Coefficients, and a deep neural network. The lack of
datasets for the training of the model was tackled by creating a dedicated dataset 7200 bioimpedance measure-
ment of both singing and speaking. The use of bioimpedance measurements allows to deliver high classification
accuracy whilst keeping low computational needs for both preprocessing and classification. These characteristics,
in turn, allows a fast deployment of the system for near-real-time applications. After the training, the system was
broadly tested achieving a testing accuracy of 92% to 94%.
Key Words: Speech classification−Singing detection−Bioimpedance measurements−Electroglottography
−EGG-to-MIDI−Voice-to-MIDI−Voice information retrieval−Real-time voice classification.
INTRODUCTION
Amongst the different means of human interaction, voice
represents the primary form of communication. Along with
speech, voice is also used in singing, which is employed as a
form of communication and as an instrument in music.
However, despite being the most basic musical instrument,
voice lacks implementation in modern music technology
compared to most other instruments. Many applications
have been developed throughout the years to emulate musi-
cal instruments’ physical and mechanical characteristics and
deliver digital control signals, mainly in the form of musical
instruments digital interface (MIDI). Due to its nature,
however, voice poses a challenge for its conversion into
MIDI, especially in a real-time environment. This is due to
the processing of voice being bound to the use of micro-
phones and sound recordings, which complicates voice
information retrieval. A sound recording presents itself as a
complex signal, the processing of which requires lengthy
and computationally expensive procedures. Moreover,
using microphones can add environmental noises and inter-
ferences that, in turn, make singing voice information
retrieval even more complex.

Our previous research proposed in1,2 and3 tackles the
challenges of singing voice information retrieval by
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replacing sound recordings with bioimpedance measure-
ments of the vocal folds. Based on this concept, we proposed
in4 and5 a method for efficient, real-time extraction of sing-
ing voice information based on bioimpedance measure-
ments. The technology employed to evaluate the
bioimpedance variations of phonation is Electroglottogra-
phy (EGG) which will be discussed in section three. Using
bioimpedance measurements instead of recorded sound
delivers a much simpler signal. This simpler signal conse-
quently allows a fast and resource-efficient extraction of
voice information. In addition, as bioimpedance is mea-
sured directly from the larynx, the system is not affected by
external noise and environmental sounds. Any move of the
vocal folds, however, causes a change in bioimpedance and
generates a signal. This, in turn, will produce a MIDI con-
version even for nonphonatory instances. Implementing a
classifier capable of distinguishing singing voice from other
phonation acts would allow the system to discard unwanted
signals and perform the MIDI conversion only for singing
acts.

This project proposes using the information obtained
from bioimpedance measurements to train a neural network
for the real-time classification between speaking voice and
singing voice. This approach offers an advantage in voice
act classification due to the simplicity of the EGG signal.
Voice depends on the oscillation of vocal folds, and the ten-
sion of the folds is employed in singing to control pitch and
duration.6,7 Because such tension is higher in singing, the
tone differs between the speaking and singing voice. Conse-
quently, the fundamental frequency of voice tends to be
more stable in singing.8,9 As a bioimpedance evaluation
solely reflects the vocal folds’ behavior, such measurement
simplifies the estimation of the voice’s fundamental fre-
quency which represents a significant advantage over audio
recordings. Alongside the stability of the fundamental
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frequency, vocal intensity and spectral content also contrib-
ute to the differentiation between speaking and singing.
However, while it excels at evaluating the vocal folds’ fre-
quency, EGG is not reliable in the evaluation of the voice
amplitude intensity.1,2 In addition, as the bioimpedance
measurement is performed at the larynx, the spectral con-
tent added by the vocal tract if fully bypassed.4,5 EGG,
moreover, is not agnostic to gender or age as these can affect
the size and elasticity of the vocal folds. As shown in10

and,11 however, gender and age tend to mainly affect the
mean value of fundamental frequency in an individual vocal
pitch range and not its stability. This project therefore bases
the distinction of singing and speaking voices on the over-
time stability of the fundamental frequency.

Another element that can differ between singing and
speech is the duration of the vocal folds’ contact time, with
singing often requiring lengthier times to sustain longer
notes or phrases. The alteration of contact time, however,
can vary with the style of singing or speaking as well as spe-
cific phrases and phonemes succession making. However,
the evaluation of contact times in EGG results to be mis-
leading and unreliable in the evaluation of each individual
vibratory cycle.12

The successful implementation of this research, in combi-
nation with the work presented in4 and,5 could allow the
development of a voice-to-MIDI converter capable of
applying the conversion solely to singing voice acts avoiding
errors or interferences caused by speech.

The rest of this paper will be organized as follows. Section
two presents a state-of-the-art analysis considering the work
being carried across the literature in singing voice informa-
tion extraction and voice classification. Section three briefly
overviews the theoretical concepts behind the human pho-
nation system and EGG. Section four describes the imple-
mentation of the classifier from the data processing to the
development and training of the neural network. Section
five analyses the results of the testing and evaluates the sys-
tem. Finally, in section six, the conclusions are presented,
the overall development is analyzed, and possible further
implementations are considered.
STATE OF THE ART
In the field of singing voice classification, the recent litera-
ture greatly revolves around singing voice detection (SVD)
within audio segments and music tracks.7 Usually, such a
task is approached by extracting one or more audio features
from an audio segment which are then paired with a classi-
fier for SVD. Therefore, given the powerful features of neu-
ral networks in classification problems, deep learning
approaches are increasingly employed in SVD.13

Schl€uter et al.14 proposed a method for SVD based on
Convolutional Neural Networks where mel-spectrograms
are used to train and evaluate the network. Here the authors
focus on data augmentation for the improvement of the
model by applying pitch-shifting and time-stretching to the
data samples. The system reaches a maximum accuracy of
about 91%. However, using CNNs and data augmentation
results lengthy and computationally expensive. Moreover,
the system is trained and tested on sound recordings and
was not tested on real-time inputs.

You et al., in,15 conducted a comparative study of dif-
ferent techniques for training and testing a CNN. One
approach employs Mel Frequency Cepstrum Coefficients
(MFCCs), resulting in an accuracy of about 88%. The
other employs short time fourier transform (STFT) spec-
trograms reaching an accuracy of about 92%. Despite
the system’s high effectiveness and accuracy, image rec-
ognition and CNN result are inefficient for real-time
applications. Similar to what was presented in,14 this sys-
tem also employed sound recordings and was not tested
on live inputs.

Huang et al, in16 also proposed a CNN methodology for
SVD. Here the authors trained and tested the network with
three different features: MFCCs, discrete fourier transform
(DFT) coefficients and raw audio samples. The research
shows how DFT coefficients yielded the most performing
network with an accuracy of 92%. Once again, however, the
use of CNNs with image recognition results time consuming
and requires significant data preprocessing.

The use of CNN and image recognition techniques on
audio recordings, as presented in,14-16 results too lengthy
and computationally inefficient for a real-time application.
When considering the implementation with voice-to-MIDI
conversion, for the system to be true real-time, a latency
below 20 ms is needed.4,17 In addition, the mentioned meth-
ods are designed for the detection of singing voice within
music recordings or lengthy audio segments and not for the
discrimination between speaking voice and singing voice.

An example of speech-singing classification is proposed
in.18 The authors present a method to discriminate between
a singing voice and a speaking voice by applying maximum
likelihood principles to both MFCCs and voice fundamen-
tal frequency information. The models reached an accuracy
of 65% for MFCCs and 80% on fundamental frequency
measurements. Nevertheless, such accuracy was obtained
using as input 300 ms audio samples for MFCCs and 2 sec-
ond recordings for fundamental frequency, which makes the
method inefficient for true real-time.

Another approach to speech-singing classification is pro-
posed in.9 This study focuses on the difference in fundamen-
tal frequency between singing and speaking. In this case, a
deep neural network (DNN) was trained using the funda-
mental frequency values in speech and singing recordings
extracted through statistical analysis. The statistical analysis
is carried out by applying a log-linear regression to the fast
fourier transform (FFT) coefficients obtained from an audio
sample. Using DNN in this application, as opposed to
CNN, allows faster training and reduces the time needed for
signal preprocessing. As this system is based on fundamen-
tal frequency readings, the use of recorded sound and micro-
phones could pose a limitation. The system accuracy would
rely significantly on the fundamental frequency readings,
which could be compromised by microphone limitations,



FIGURE 1. Generic EGG waveform.
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such as sensitivity and bandwidth, and surrounding sound
sources.

Therefore, a common point across the literature for both
voice acts classification and SVD is using sound recordings
and microphone inputs. The use of sound data for the evalu-
ation of the fundamental frequency can become highly inef-
ficient given degraded acoustic conditions, external noises,
or surrounding sound sources. The susceptibility of micro-
phones and their usage in acoustically noncontrolled envi-
ronments generate a series of artefacts in the recording that
could cause errors in evaluating the fundamental frequency.
As the fundamental frequency is considered the primary ele-
ment of differentiation between speech and singing, an erro-
neous evaluation would cause a significant drop in accuracy
and efficiency.

This project tries to tackle the differentiation between a
singing voice and a speaking voice using bioimpedance
measurements. The proposed approach employs EGG to
generate a signal mirroring the behavior of vocal folds, rep-
resenting the fundamental frequency of voice. The system
employs a DNN using MFCCs as input features to create a
training dataset and perform real-time prediction on a live
EGG input.
OVERVIEW OF PHONATION AND EGG
This paper discusses voice information extraction through bio-
impedance measurements. This is achieved using EGG which
analyses vocal folds’ behavior during a phonation act. Such a
characteristic allows an EGG to produce a simpler signal than
a microphone audio recording. The core of such difference is
linked to the physiology of voice production.
Phonation
In human phonation, a steady airflow is generated from the
lungs and pushed through the trachea until it reaches the vocal
folds within the larynx. Stimulated by the airflow, the folds
move repetitively from a contact to a noncontact position,
converting the kinetic energy of the airflow into acoustic
energy.6 The folds’ vibration is periodic by nature; thus, the
number of cycles per second is the frequency of oscillation of
voice. This frequency represents the fundamental frequency of
the produced voice.1 This acoustic signal then, reaches the
vocal tract; the physiological elements of the vocal tract gener-
ate multiple resonances that in turn add harmonics to the origi-
nal sound. This latest stage of phonation defines the
characteristics of a distinguishable voice sound.
EGG
EGG is a known medical technology that evaluates the
behavior of vocal folds by applying an electrical current
across the larynx. A pair of electrodes are placed across the
larynx cartilage, and an alternating current with low voltage
and high frequency is applied across the vocal folds. The
cyclic change in position of the folds causes a change in the
distance between them. This changes the bioelectrical
conductance (and, in turn, impedance) across the larynx.19

Such behavior performs an amplitude modulation (AM) on
the signal applied initially. The demodulation of said AM
signal determines the modulating frequency.20,21 The result
is a sinusoidal-like signal representing the vocal fold move-
ment cycles and, thus, the voice oscillation frequency.22

Figure 1 shows a generic EGG waveform.
Because of its characteristics, EGG can be particularly

efficient in evaluating the fundamental frequency of voice.
By acting directly at the vocal folds’ level, it performs its
reading before any resonance occurs across the vocal tract
and, therefore, before any harmonic is added to the voice by
the vocal tract.23 The bypassing of the vocal tract, thus,
allows to analyze a much simpler signal than an audio
recording which in turn allows more efficient feature extrac-
tion and faster computation. As the amplitude of the voice
is based on the pressure level of the airflow, the EGG is not
as effective in measuring the amplitude of the voice sound
as it is not dependent on the vocal folds’ vibration. Figure 2
shows how the resultant signal is much simpler in compari-
son to that of an audio recording. On the left-hand side, the
time-domain characteristics of the two signals are shown,
while the right-hand side shows the spectral content of each
signal. Both were recorded during the same phonation.
METHODOLOGY
The proposed project employs a DNN to classify the human
voice between singing and speaking. The technique chosen
for this implementation is based on a fully connected DNN
fed with numerical data obtained by processing the MFCCs
of the EGG signals. The existing literature shows how
DNNs are found to outperform traditional machine learn-
ing techniques in the processing of MFCC voice features
due to the nonlinear characteristics of the input data.24,25

The training dataset was constructed using 2400 samples of
EGG with a 50% ratio of singing and speaking. The samples
were recorded from 12 participants, each performing 100
sung notes at different frequencies and 100 spoken words
with different intonations. For the singing, to minimize the
effect of styles at this initial stage, the participants were
asked to perform a sustained sung vowel at several pitches
that would comfortably suit their vocal range. Similarly, for
the spoken words, the participants were required to pro-
nounce 100 separate words with their natural speech



FIGURE 2. Comparison of EGG and audio for the same phonation in time and frequency domain.
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pitches. The selected words were chosen to include sustained
vocalic content so to perform a comparison with the sus-
tained vowels of the singing samples.

Finally, to increase nonlinearity and the size of the data-
set, the samples were subjected to a data augmentation pro-
cess based on pitch-shifting. Each sample was pitch-shifted
up and down by three semitones generating three versions
of each. Data augmentation, thus, brought the dataset to a
total of 7200 samples. Pitch-shifting is proven to be highly
effective to both increase the data and obtain more general-
ized models.14
FIGURE 3. Mel frequency window bank.
Data preprocessing
In recent years, MFCCs have become widely used for voice
information retrieval due to their ability to accurately repre-
sent spectral information at lower frequencies26,27,28 and are
considered to be the most appropriate for voice classifica-
tion tasks.29 MFCCs are the cepstrum coefficients of a sig-
nal with the frequency zones mapped to the mel scale by
applying a series of triangular windows. As such a scale is
intended to mimic the logarithmic perception of human
hearing, MFCCs offer higher resolution than conventional
FFT regarding the human voice spectrum.30 These charac-
teristics allow MFCCs to capture more detailed spectral
and temporal characteristics than other methods commonly
employed in speech processing such as entropy-based pitch
estimation.31 As the distinction between singing and speak-
ing is here based mostly on the variability of the fundamen-
tal frequency, moreover, MFCCs result more suitable for
the proposed application when compared to signal energy
and amplitude-based methods.32,33

MFCCs are derived as follows:

A DFT is performed on a given signal.

1. The powers of the resulting spectrum are mapped to
the mel scale. This is achieved by applying a series of
overlapping triangular windows, typically 20 or 40.
The number of windows per frequency band decreases
with an increase in frequency resulting in higher preci-
sion in the lower end of the spectrum. Figure 3 shows a
typical mel frequency window bank featuring 20 win-
dows.

2. At each of the mel frequencies, the logarithms of the
powers are calculated and then processed through a
discrete cosine transform (DCT).

3. The MFCCs are the amplitudes of the DCT spectrum.

To train the network, the whole dataset was processed
to extract the MFCCs which were then organized into a
set of characterizing signal features referred to as a fea-
ture matrix.

For each sample, the coefficients were calculated using
a DFT frame size of 512 samples and 20 triangular win-
dows for the mel frequency mapping. The MFCCs proc-
essing delivers an array of coefficients the dimensions of
which are dictated by the number of triangular windows
and the length of the sample. The recorded samples in
the dataset all feature different lengths depending both
on the type of phonation and on the speaker, hence, the
resulting arrays will feature variable lengths. For a dura-
tion of 500 ms, for example, a sampling frequency of



FIGURE 4. MFCC data array for a sample with a 500 ms duration.
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44.1 kHz, and 20 triangular windows, the resulting array
will present a size of 20 £ 43. This can be confirmed
through equation 1.

For: sample rate = 44100, frame size = 512, samples dura-
tion 0.5seconds

duration in samples ¼ 44100 ¢ 0:5 ¼ 22050

number of frames ¼ duration in samples
frame size

¼ 22050
512

¼ 43 ð1Þ

The resulting coefficients are then organized into a CSV
file. Figure 4 shows the output array for a single sample of
500 ms.

Next, to obtain a more suitable format for the DNN
input layer, the mean value for each of the triangular win-
dows is calculated yielding a 20 £ 1 array which then trans-
posed into 1 £ 20. This process overcomes the different
durations of the samples by removing the “time variable”
and provides an equal size feature matrix for each sample.31

Finally, feature scaling is applied, and all the values are
standardized to zero mean and unit variance. Figure 5
shows the final 1 £ 20 array for a single sample.

To train the network, the resulting arrays were organized
in a single CSV file and labelled according to their typology
as either “speech” or “sing.” Figure 6 shows a section of the
training dataset. The first column from the left shows
the labelled assigned to each sample while the following
columns present the MFCC computed per each triangular
window.
FIGURE 5. 1 £ 20 scaled mean a
DNN architecture
The design of the DNN architecture was based on the
underlying principle of implementing real-time voice act
classification for the development of a real-time EGG-to-
MIDI converter.4,5 To achieve a true real-time processing
for voice-to-MIDI conversion, the latency between a phona-
tion act and the delivery of the resulting message cannot
exceed 20 ms.17 For this reason, the design of the DNN was
approached so to achieve the simplest possible architecture.
Based on the training data, the input layer of the DNN was
constructed of 20 neurons to match the 1 £ 20 array repre-
senting each sample and, in turn, the number of windows
employed for the extraction of the MFCCs. Next, the net-
work was implemented with a single hidden layer of 40 neu-
rons featuring the ReLU activation function. The ReLU
does not activate all neurons in a layer at the same time as
only neurons receiving a positive input value are activated.
This characteristic makes the ReLU computationally effi-
cient as only some of the neurons are activated at once.
Finally, the output layer was implemented with a single neu-
ron. Given the binary nature of the classification, the output
layer features a Sigmoid activation function.

The described architecture was selected through an experi-
mental manipulation and testing of the network configuration
by varying the number of neurons in the hidden layer. Whilst
maintaining the dimensions of both the input and the output
layers as 20 and one respectively, the network was thus tested
and evaluated for several hidden layer configurations. This
process will be analyzed in detail in the results section. Figure 7
shows the final architecture of the DNN.
rray for one recorded sample.



FIGURE 6. Labelled dataset for DNN training.

FIGURE 7. DNN architecture with relative input data.
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RESULTS
The performance and behavior of the classification system
were tested using the created dataset, evaluating its accuracy
in training and with “unseen” samples. Finally, the system
was tested for real-time performances using a live input
stream from the EGG.
DNN training and evaluation
The first element for the analysis of the DNN was the evalu-
ation of its accuracy. For the training of the NN, the dataset
was randomly split into training data and validation data
FIGURE 8. Training and validation accu
with a percentage of 70% and 30%, respectively. The train-
ing was performed on several configurations to evaluate the
most suitable architecture, each featuring a different num-
ber of neurons in the hidden layer. In all tested cases, the
training took between 20 and 25 seconds and delivered an
accuracy above 90%. The training was performed over 50
epochs. Figure 8 shows the accuracy score for the various
tested configurations.

Out of the tested architectures, configuring the neural net-
work with 40 hidden neurons delivered the best perfor-
mance, with a training accuracy of almost 96% and a
validation accuracy of about 94%. The architecture was
also tested with extra added hidden layers; this showed a
negligible change in accuracy whilst increasing the compu-
tational needs of the network and it was therefore chosen to
maintain the three-layer configuration. Figure 9 shows the
accuracy through the training epochs for the final 20-40-1
configuration.

Once the model was trained, a performance test was con-
ducted using 250 “unseen” samples recorded from the same
participant as the training dataset. The DNN showed an
accuracy of 92% in classifying “unseen” EGG samples.
Figure 10 shows the confusion matrix for the testing pro-
cess.
Real-time performance testing
Finally, the network was tested for real-time performance.
The EGG signal was streamed through an audio interface
and fed to the trained Neural Network input. This was
racy per number of hidden neurons.



FIGURE 9. Model accuracy over 50 epochs for 20-40-1 configu-
ration.

FIGURE 10. Confusion matrix for DNN performance with
"unseen" samples.

FIGURE 11. Real-time evaluation through audio and MIDI
recordings.
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implemented within a dedicated Python script. During each
sampling frame, the processing of the EGG signal and the
consequent DNN prediction were executed as follows:

The EGG input stream is sampled at 44.1 kHz, stored in
a buffer with size 8820 samples, and the MFCCs are cal-
culated.
The MFCCs’ mean values are calculated and scaled to
zero mean and unit variance.
The resulting array is reshaped into 1 £ 20 and fed to the
DNN input.
The DNN performs a prediction and classifies the signal
between Singing and Speech.

For the analysis of the real-time performances of the
DNN, a MIDI note number is outputted based on the pre-
diction label. The MIDI note is then recorded together with
the EGG input signal within a Digital Audio Workstation
(DAW). This setup allows recording simultaneously both
the EGG and the prediction labels hence comparing the
effective phonation with the DNN classification. The out-
come of the test showed an efficient behavior of the DNN
with an overall prediction error of about 6% and a time
delay between predictions of about 200 ms. Whether or not
such latency can be considered real-time highly depends on
the application. For voice-to-MIDI conversion, such
latency is above the acceptable threshold. Figure 11 shows
the results recorded in the DAW.

The time delay in between predictions is greatly depen-
dent on the size input buffer. A buffer size of 8820 samples,
in fact, is equivalent to 200 ms when using a sampling rate
of 44.1 kHz. Despite such latency is not acceptable for voice
conversion, it was observed through further testing that
200 ms of signal resulted as the minimum to achieve low
error. This is mainly due to the distinction between speaking
voice and singing voice. Such difference mainly relies on the
steadiness of the fundamental frequency8,9; thus, the DNN
requires sufficient signal periods to detect potential fluctua-
tions.
CONCLUSIONS
The presented research sought to the classification between
speaking voice and singing voice using, as a signal source,
electroglottography (EGG) instead of audio. Following our
previous work in4 and,5 the classification system was
designed to integrate with a real-time voice-to-MIDI con-
version system. Such a system revolves around using EGG
signal for its ease of processing and computational effi-
ciency. 2400 EGG recordings were collected from 12 partici-
pants with a ratio of 50/50 between speaking and singing. In
order to increase the available data and break linearity, the
dataset was augmented through pitch shifting techniques,
and a total of 7200 samples were obtained. The entire data-
set was then processed to extract each entry’s Mel Fre-
quency Cepstral Coefficients (MFCCs). The resulting
coefficients for each individual sample were then rearranged
into a 1 £ 20 array through mean and standard normalisa-
tion. The dataset obtained by this process was then used to
train a fully connected deep neural network (DNN) featur-
ing a single hidden layer and 20-40-1 architecture. The net-
work delivered a validation accuracy of approximately
94%, with a training time of around 25s. The DNN was
tested on 250 “unseen” samples and performed with a pre-
diction accuracy of nearly 92%. Finally, the system was
tested for real-time implementation, showing a total error of
around 6%. The evaluation of the real-time performances
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showed a time between predictions of about 200 ms. Such
delay is primarily due to the use of 8820 samples sized input
buffer. Whether such time between predictions can be con-
sidered real-time depends entirely on the application; for
voice conversion, however, a latency not greater than 15 ms
is required.8,9 The need to employ such a big buffer is dic-
tated by the distinction between speaking and singing, being
mainly dependent on the fluctuations of the fundamental
frequency. In order to allow the neural network to perform
predictions properly, the input would require enough signal
periods to detect changes in the fundamental frequency.

The experiments showed how EGG could effectively clas-
sify singing and speaking voices given its ability to represent
the fundamental frequency of voice. Using EGG in combi-
nation with MFCCs allows the employment of a light deep
neural network (DNN) architecture to achieve high accu-
racy and fast predictions. Using a voice classifier paired
with an EGG-to-MIDI converter could allow the develop-
ment of a standalone device capable of converting singing
voice into MIDI whilst automatically discarding unwanted
signals, such as speaking voice. The current prediction fre-
quency, however, suggests that this would be possible in a
parallel manner by implementing the classifier and the
EGG-to-MIDI converter on two separate threads.
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