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Abstract 

Urban heat island (UHI) is one of the important effects of urbanization on built 

environment. Land surface temperature data was taken from moderate-resolution 

imaging spectroradiometer (MODIS) to investigate the long-term spatiotemporal 

patterns of UHI in Wuhan during 2001~2018 and, the UHI intensity changes of built-

up land in 13 administrative regions in Wuhan were analyzed. Furthermore, 34 spatial 

error models and 34 ordinary least squares models were established and compared. 

Spatial error models showed good fitting effect, which were used to determine the 

influence of normalized difference vegetation index (NDVI), normalized difference 

building index (NDBI), and social–economic factors (population and nighttime light) 

on UHI intensity in central urban area and new urban area. The explanatory power 

changes of these four indicators during 2001~2018 were explored as well. The average 

UHI intensity in 2014~2018 has increased by about 0.45 °C compared to that in 

2001~2005. NDBI is the most dominant factor contributing to the increase in 

temperature. The impact of NDVI on UHI intensity changes from negative to positive, 

and the impact of NDBI on UHI intensity in central urban area is weakened during 

2001–2018. Social–economic factors have a greater impact on new urban area than on 

central urban area. These findings show the effects and the explanatory power changes 

of driving factors during 18 years, which can provide a better understanding of the 

formation and development of UHI and support for the future urban planning of Wuhan. 

 

Keywords: Urban heat island; Land surface temperature; Spatial autocorrelation; 

Spatial error model 

  



 3 

 

Differences in urban heat island and its driving factors 

between central and new urban areas of Wuhan, China 

 

Introduction  

With the rapid process of industrialization and globalization, the level of urbanization 

in China has continued to rise. Since reform and opening up, China has changed a lot 

in a very short period of time, and a large number of rural people have poured into cities, 

achieving a leap in urbanization (Zhang 2008). According to the seventh national 

census, the level of urbanization has continued to increase. The urban population 

reaches 901.99 million, accounting for 63.89%, and the rural population is 509.79 

million, accounting for 36.11%. Compared to 2010, the proportion of urban population 

increases by 14.21% in 2020. It is estimated that in 2030, 1 billion Chinese people will 

live in urban areas (Taylor 2015). Rapid urbanization has brought many achievements, 

providing residents with safer housing conditions, better quality of education, and better 

medical treatment. But there are also many problems and adverse effects. The 

development of urbanization will lead to the loss of wildlife habitats, destroying 

biodiversity (Hughes 2017); result in environment pollution (Hao et al. 2020); and 

cause eutrophication of water bodies (Jiang et al. 2008). At the same time, urbanization 

destroys the surface energy balance and brings the urban heat island (UHI) (Monteiro 

et al. 2021). UHI is one of the main adverse effects of urbanization. It is a phenomenon 

that the temperature in urban area is higher than that in the suburb. UHI will affect the 

urban ecological environment, causing local temperatures to rise, thereby increasing 

the demand for refrigeration and increasing energy consumption (Yang et al. 2020). 

UHI will also have a secondary impact on the weather, bringing more thunderstorms 

(van Heerwaarden and de Arellano 2008). Human life and health will be threatened by 

high temperature, aggravating cardiovascular diseases and respiratory diseases, thus 

leading to heatstroke and even death (Macintyre and Heaviside 2019). There are two 

categories of UHI, atmospheric urban heat island (AUHI) and surface urban heat island 

(SUHI). AUHI can further be divided into boundary layer UHI and canopy layer UHI. 

Boundary layer UHI refers to the air temperature difference between urban and rural 

areas in the layer from rooftop or treetop to the atmosphere unaffected by urban 

landscapes. Towers and radiosondes are used for the air temperature measurement. 

However, different temperature sensors make it difficult to do the temperature 
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comparison, and climate model simulation is usually used to describe boundary layer 

UHI (Hu et al. 2019). Canopy layer UHI refers to the air temperature difference 

between urban and rural areas in the layer from surface to rooftop or treetop. It mainly 

uses the data from ground observations or automobile transects (Pichierri et al. 2012). 

SUHI mainly relies on remote sensing satellite data to retrieve land surface temperature 

(LST). After 2005, studies on SUHI have increased exponentially, because the interest 

of UHI increases and the quantity and quality of remote sensing data have been 

enhanced (Zhou et al. 2018). Satellite remote sensing data can better perform the 

spatiotemporal patterns of temperature compared to data from ground observations or 

automobile transects, which gives a full sight to the urban thermal environment of 

Wuhan. Therefore, SUHI using the remote sensing data is focused. The formation and 

development of UHI is affected by many factors. The process of urbanization has led 

to the conversion of a large number of natural surfaces into impervious surfaces. The 

impervious surfaces absorb heat during the day and release it slowly at night, changing 

the balance of surface energy, causing temperature rise and leading to UHI (Morabito 

et al. 2016). In addition, the increase of impervious surface will accelerate the loss of 

surface water (Haase and Nuissl 2007) and thus affect the local climate. Land cover 

changes will have an impact on the local climate (Grigoraș and Urițescu 2019). With 

the advancement of remote sensing technology, some indices based on remote sensing 

data is widely used in the analysis of driving factors of UHI. The normalized difference 

vegetation index (NDVI), normalized difference building index (NDBI), and 

normalized difference water index (NDWI) can identify vegetation, construction land, 

and water bodies and are proved to have close relationships with LST. NDVI has a 

negative correlation with LST (Karakuş 2019). Because the transpiration of vegetation 

(Boegh et al. 1999) and moist soil conditions (Carlson et al. 1994; Goward et al. 2002). 

NDWI reflects the area of water body and also shows a negative correlation with LST 

(Guha et al. 2019). NDBI has a positive impact on LST (Pathak et al. 2021), and its 

influence is greater than NDVI and NDWI (Feng et al. 2019). Additionally, social–

economic factors like population density and nighttime light also have effects on UHI. 

It is found that there is a significant positive relationship between population density 

and LST (Li et al. 2012). The more the population counts, the denser the buildings. 

Population density and impervious cover are highly correlated in Canadian urban areas, 

and the LST of heavily populated urban areas is higher (Zhang and Sun 2019). 

Nighttime light data is widely used to study the process of urbanization (Ma et al. 2012; 

Yi et al. 2014) and also can be used to predict GDP (Liu et al. 2021a), which means 
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that nighttime light data can reflect the socio-economic level. It is positively related to 

impervious surface areas and energy consumption, leading to UHI (Sun et al. 2020). A 

number of studies have discussed the impact of multiple factors on UHI in China. Yue 

et al. performed stepwise multiple linear regression to investigate the relationship 

between UHI and landscape metrics (Yue et al. 2019). Liu et al. analyzed the 

relationship between UHI and urban form metric at national and regional levels by 

ordinary least squares regression (Liu et al. 2021b). Li et al. investigated the impact of 

socioeconomic drivers on annual, summer, and winter average UHI by generalized 

additive model in major Chinese cities (Li et al. 2020). Yang et al. conducted 

correlation analysis between the footprint of UHI and associated factors using 

Spearman’s correlation analysis in 302 Chinese cities (Yang et al. 2019). Huang and 

Wang investigated the relationship between urban morphology and LST using stepwise 

multivariate linear regression in Wuhan (Huang and Wang 2019). Pearson correlation 

coefficient and multiple linear regression analysis are often used for the discussion of 

the driving factors of UHI (Bottyán and Unger 2003; Wang et al. 2020). According to 

the first law of geography, everything is related to each other; the closer the distance, 

the stronger the connection (Tobler 1970). Heat will be transferred through conduction, 

convection, and radiation (Kim et al. 2016). The above methods cannot discuss the 

spatial relationship of LST. Therefore, the spatial regression models have been 

proposed. Spatial lag model (SLM) and spatial error model (SEM) are commonly used 

spatial regression models. And it is found that the fitting effect of SEM is better than 

ordinary least squares model (OLS) and SLM (Yin et al. 2018; Guo et al. 2020a, b). 

Several studies have been conducted to analyze the driving factors of UHI in Wuhan 

using spatial regression models (Lu et al. 2021a, b; Shi et al. 2022). However, the 

above-mentioned researches use the results of a single year or a single season to 

investigate the driving factors Environmental Science and Pollution Research 1 3 of 

UHI. UHI will change dynamically with urban sprawl, and its driving factors will also 

change. The UHI intensity of cities with different development levels is studied and 

find that the impact of population on UHI intensity may be stronger in the early stages 

of urbanization (Cui et al. 2016). The influence of the largest water patch index on UHI 

in Wuhan has been weakened during 2000~2019, and the influence of the average patch 

size of forest land has increased by using ordinary least squares models (Wang et al. 

2020). The analysis of a single year cannot fully understand the explanatory power 

changes of driving factors. At present, there are few studies focus on the long-term 

series of multiple driving factors of UHI while using SEMs. Discussing the influence 
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changes of each driving factor in the process of urban development will deepen the 

understanding of the formation and development of UHI and provide better suggestions 

to alleviate UHI, thus helping the healthy development of the city. Therefore, it will be 

important to fill the gap in long-term series analysis of the explanatory power changes 

of driving factors using SEMs. Wuhan is chosen as the study area. It is known as the 

‘Stove Cities’ in China and is one of the nine national central cities in China, playing 

an important role in politics, economy, and culture. The urbanization rate in Wuhan has 

increased from 40.59% in 2001 to 80.29% in 2018 (from Wuhan Municipal Statistics 

Bureau). The discussion of the changes in UHI and its driving factors not only helps to 

mitigate UHI in Wuhan but also useful for other cities with severe thermal 

environments and rapid urbanization. In summary, there are two objectives in this study. 

The first objective is to investigate the spatiotemporal patterns of UHI in Wuhan during 

2001~2018 and also the UHI intensity changes in 13 administrative regions, 

respectively. The second one is to compare the fitting effect of SEM and OLS models 

and to analyze the driving factors of UHI and their explanatory power changes in 

Wuhan during the 18 years. 

 

Materials and methods  

Study area 

Wuhan is the central city of China, and the capital of Hubei Province, located between 

113°41′~115°05′E and 29°58′ ~ 31°22′N, with an area of 8569.15 km2 and a permanent 

population of 11.081 million (2018). Wuhan is in the hot summer and cold winter zone, 

with a subtropical monsoon climate. Freshwater resources are abundant. Wetland 

resources rank top 3 among inland cities in China. The Yangtze River and Hanshui 

converge in the center of Wuhan with numerous lakes surround them. There are 13 

administrative Districts, including 7 central urban areas (Jiang’an District, Jianghan 

District, Qiaokou District, Hanyang District, Qingshan District, Hongshan District, and 

Wuchang District) and 6 new urban areas (Huangpi District, Xinzhou District, 

Dongxihu District, Caidian District, Hannan District, and Jiangxia District), the 

geographical distribution is shown in Fig. 1. 
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Fig.1. The location and geographical divisions of Wuhan 

 

Data collection  

Satellite data and other auxiliary data 

MOD11A2 V6 product is used to obtain the daytime LST in Wuhan in summer (June, 

July, and August) during 2001~2018. MODIS (moderate resolution imaging 

spectroradiometer) is aboard the Terra satellite. MOD11A1 product uses the split 

window algorithm to obtain the daily LST under cloud-free conditions, which is in 

10:30 and 22:30 local time. MOD11A2 V6 product calculates the average surface 

temperature in 8 days using MOD11A1 with a spatial resolution of 1 km. The accuracy 

of the LST is higher than 1°C in the range of − 10 ~ 50 °C (Wan 2008). MCD12Q1 V6 

product is used to obtain the land cover data. It provides global land cover types at 

yearly intervals from 2001 to 2018, with a spatial resolution of 500 m. The IGBP 

(Annual International Geosphere-Biosphere Programme classification) classification 

scheme is used. Landsat is a joint project of the United States Geological Survey (USGS) 

and the National Aeronautics and Space Administration (NASA). The satellite acquires 

a complete world map every 16 days with a resolution of 30 m. Landsat5 is used to 

obtain NDVI, NDBI, and MNDWI from 2000 to 2011, and Landsat8 is used to obtain 

these indices from 2013 to 2018. The data in 2012 has not been applied in this study 
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because of the data quality. The Defense Meteorological Satellite Program Operational 

Line-Scan System (DMSP-OLS) provides stable nighttime light data from 1992 to 2013. 

The national polar-orbiting partnership-visible infrared imaging radiometer suite (NPP-

VIIRS) provides nighttime light data from 2012 to the present. A fusion data proposed 

by Chen et al. (Chen et al. 2021) is used, which has a high accuracy and can monitor 

the state of economic activities over a long time series. Different types of population 

data can be obtained in WorldPop. The unconstrained individual countries 2000–2020 

UN adjusted data is employed. This dataset uses a top–down method to predict 

population numbers by collecting census data and then adjust to match United Nations 

national population estimates. Elevation data is obtained from Advanced Spaceborne 

Thermal Emission and Refection Radiometer (ASTER) Global Digital Elevation Model 

Version 3 (GDEM 003) (NASA/METI/AIST/Japan Spacesystems and U.S./Japan 

ASTER Science Team 2019). It is used to avoid the effect of elevation on temperature 

in the UHI intensity calculations (Table 1).  

 

Preprocessing 

Google Earth Engine is a visual geographic analysis platform that stores a variety of 

satellite remote sensing data with long time series and provides algorithms to deal with 

the dataset. MOD11A2 product is obtained, and then, the mean daytime LST is 

calculated during June, July, and August through Google Earth Engine using Eq. (1).  

 

LST = 0.02DN − 273.15                                             (1) 

 

where DN is the pixel gray value.  

Three indices are calculated in Google Earth Engine, and the mean value in summer is 

obtained as well. The influence of clouds is removed by the quality assessment band in 

Landsat product before the calculation of three indices. The formulas are shown in 

Table 2. 
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Methods  

Mean standard deviation  

The mean standard deviation method can reflect the spatial variation of LST (Liu et al. 

2016). The method is therefore used to classify LST. And it is divided into 5 types, 

including low-temperature zone, sub-low-temperature zone, medium-temperature zone, 

sub-high-temperature zone, and high-temperature zone. The classification standards are 

shown in Table 3. 

 

Calculation of UHI intensity  

The UHI intensity is usually calculated by the temperature difference between urban 

and suburban areas. It is defined as follows: 

 

 

 

where Ti is the LST of each pixel, T0 is the average LST of the areas where the NDVI 

is greater than 0.6 or the NDWI is greater than 0.3 according to Lin et al. (Lin et al. 

2018). Because the modified normalized difference water index (MNDWI) is more 

accurate than NDWI (Xu 2006), MMDWI is used instead of NDWI. In addition, to 
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reduce the effect of elevation on temperature, it is ensured that the difference in 

elevation between urban and suburban areas does not exceed 50 m. 

 

 

 

In order to have a better understanding of the urban thermal environment in Wuhan, 

only the human settlements are taken into consideration. The UHI intensity in built-up 

land is calculated. 

 

Spatial autocorrelation  

Moran’s I is widely used to calculate spatial autocorrelation, including global Moran’s 

I and Local Moran’s I. The global Moran’s I can be used to measure the spatial 

clustering or dispersion characteristics. The local Moran’s I shows the contribution of 

each observation (Anselin 1995), which can be used to explore the spatial clustering or 

dispersion characteristics of a local region. The global Moran’s I can be calculated by 

Eq. (3). 

 

 

 

Global Moran’s I ranges from − 1 to 1. Values greater than 0 suggests spatial clustering; 

values less than 0 suggests spatial dispersion; values equal to 0 suggests no spatial 

autocorrelation.  

 

The local Moran’s I can be calculated by Eq. (4). 

 

 

where n is the total number of spatial units, Wij is the spatial weight matrix, xi is the 

observed value of the unit at position i; xj is the observed value of the unit at position 

j; and x is the mean value of all spatial units. Given the spatial resolution of data and 
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related research (Peng et al. 2020; Wu et al. 2021), a 1 km × 1 km fish net is constructed 

by GIS, and the average UHI intensity in the grid is calculated. Through the 

establishment of a spatial weight matrix in the GeoDa software, which is the queen 

adjacency, the spatial correlation analysis of UHI intensity from 2001 to 2018 

(excluding 2012) is carried out. 

 

Spatial error model and ordinary least squares model 

In order to analyze the driving factors of UHI intensity and their influence changes, 

SEMs and OLS models are established and their fitting effect are compared. The 

correlation of error terms is considered in SEM. It can eliminate the interference of 

spatial autocorrelation and get accurate estimation results and statistical theories (Wang 

et al. 2019). It is calculated with Eq. (5). The OLS can be used to quantitatively analyze 

the linear correlation between two or more independent variables and dependent 

variables. It is expressed by Eq. (6). 

 

 

where y is the dependent variable, x is the independent variable, β is the regression 

coefficient, γ is the spatial autoregressive coefficient of the error term, Wε is the spatial 

weight matrix, μ is the random error term, and b is the intercept. 

 

The objects of models are Jianghan, Qiaokou Districts, and Caidian District. To ensure 

sufficient data and obtain accurate results, Jianghan District and Qiaokou District, 

which are geographically connected and similar in UHI intensity, are integrated into 

one object. Jianghan and Qiaokou Districts represent central urban area, which 

development tends to be saturated; Caidian District represents new urban area, with 

sufficient development momentum. The mean value of five independent variables 

including NDVI, NDBI, MNDWI, population, and nighttime light are calculated with 

a fish net of 1 km × 1 km. At the same time, the collinearity diagnosis of 5 independent 

variables is carried out to avoid multicollinearity. MNDWI is eliminated to ensure VIF 

< 5. All data are normalized before performing the regression analysis. SEMs and OLS 

models are established using GeoDa. Log likelihood (LogL), Akaike info criterion 

(AIC), Schwarz criterion (SC), and determination coefficient (R2) can reflect the fitting 

effect of SEMs and OLS models (Guo et al. 2020a). The larger the LogL and R2, the 

smaller the AIC and SC, the better the fitting effect. 

 

Results 

The spatiotemporal pattern of UHI  
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The average and standard deviation of LST in Wuhan over 18 years are shown in 

Table 4. The average LST for each year in summer of Wuhan is between 29 and 32 °C 

and reaches a maximum of 31.34 °C in 2013. During 2001 to 2018, the average LST in 

Wuhan increases slightly. The average LST in 2014~2018 has increased by about 

0.3 °C compared with that in 2001~2005. The standard deviation of LST has also 

increased. The LST distribution is becoming more and more uneven, mainly manifested 

by the increase in the critical temperature of high-temperature zone and sub-high-

temperature zone, which has risen by about 0.5 °C and 0.4 °C, respectively. The critical 

temperature of sub-low temperature zone also increased slightly, which is about 0.1 °C. 

But the critical temperature of low-temperature zone doesn’t change much. Fig.  2 

shows the spatiotemporal patterns of LST in Wuhan during 2001~2018. The high-

temperature zones are first located at the central areas, like Jianghan District, Qiaokou 

District, Hanyang District, Jiang’an District, Wuchang District, and Qingshan District. 

The sub-high-temperature zones are scattered around the high-temperature zones and 

are located at some small urban areas. High-temperature zone expands to the 

surrounding areas year by year and connects with sub-high-temperature zones, which 

area increases by about 496.15 km2. The northern Wuhan, where the land type is mainly 

savannas, croplands, and forests and the LST is lower than the central area, shifted from 

high- or sub-high-temperature zones to medium or low temperature zones during 2001-

2018. High temperature zones in central area expand, and the average LST in Wuhan 

increases from 2001 to 2018, while the LST in northern area does not change much, 

resulting in the change from high-temperature zone to low-temperature zone in northern 

Wuhan. The distribution pattern of high-temperature zone has changed from scattered 

distribution to concentrated and contiguous distribution. The high-temperature zones 

are mainly transformed from sub-high-temperature zones. The proportion of medium-

temperature zone, sub-low-temperature zone, and low-temperature zone do not change 

much. Low-temperature zones and sub-low-temperature zones are mainly distributed 

in the city fringe which are water bodies, croplands, and forests. 

 

 

Table 4 The average and standard deviation of LST in Wuhan during 2001~2018 
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Fig. 2. The spatiotemporal patterns of LST in Wuhan during 2001~2018 

 

The changes of UHI intensity  

The UHI intensity changes of built-up land are determined, as shown in Fig. 3. The 

UHI intensity in 2012 is obtained by interpolation. The average LST for each year in 

Wuhan is around 32 ~ 35 °C. The average UHI intensity is around 3 ~ 4 °C and reaches 

the highest of 4.36 °C in 2011. Compared with UHI intensity in 2001~2005, the average 

value in 2014~2018 has increased by about 0.45 °C showing a slightly upward trend. 

The places with high UHI intensity in Wuhan are in the central urban areas. Jianghan 

District and Qiaokou District have the highest UHI intensity among all the central urban 

areas, which is 2 ~ 3 °C higher than the average level of Wuhan and 4 °C higher than 
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the areas with weak UHI intensity such as Huangpi District, Xinzhou District, and 

Hannan District. The UHI intensity in Jianghan District and Qiaokou District is about 

6 °C and even reaches up to 7.57 °C. However, the UHI intensity in Jianghan District 

has a decreasing trend after 2011. The UHI intensity is about 5.37 °C in recent years, 

which is 1 °C lower than that in 2001~2005. Changes in Wuchang District are similar 

to those in Jianghan District, and the UHI intensity begins to be lower than the average 

level of Wuhan. The UHI intensity changes of other central urban areas is similar to the 

average level in Wuhan. The UHI intensity in new urban areas is below the average 

value of Wuhan in general. But the intensity has increased over time and even shows a 

tendency to surpass that of the central urban areas. The UHI intensity in Dongxihu 

District and Caidian District has been higher than the average level of Wuhan in recent 

years. The UHI intensity of Caidian District has the most obvious change among all the 

new urban areas, with an increase of 1.70 °C in the last five years compared to 2001–

2005. The highest intensity reaches up to 4.51 °C. Xinzhou District has the smallest 

increase of about 0.63°C among all the new urban areas, but it is still higher than the 

average level of Wuhan. 

 

Spatial clusters of UHI intensity  

Global Moran’s I is calculated to investigate the spatial autocorrelation of UHI intensity. 

It is found that the global Moran’s I is higher than 0.79 in all the 17 years (excluding 

2012), the P value is less than 0.001, and the Z score is greater than 33, which means a 

strong spatial positive correlation. LISA (local indicators of spatial association) values 

can be used to get the local spatial correlation, as shown in Fig. 4. High–high clusters 

are mainly located at the central urban areas in 2001. During 18 years, high–high 

clusters gradually disperse and move to the city fringe. The UHI intensity of new urban 

areas such as Dongxihu District, Caidian District, and Jiangxia District has increased. 

It can be suggested that the UHI intensity in the central urban areas has weakened, and 

the UHI intensity in the new urban area has increased. 

 

SEM results  

The changes of four driving factors (NDVI, NDBI, population, and nighttime light) in 

Jianghan, Qiaokou, and Caidian Districts from 2001 to 2018 are first investigated, as 

shown in Fig. 5. The NDVI in Jianghan, Qiaokou Districts is lower than that of Caidian 

district, but the other three driving factors are higher, which means that Jianghan and 

Qiaokou Districts have less green space, more population, more human activities, and 

higher urbanization level. During 2001–2018, the population of Jianghan and Qiaokou 

Districts increased, the intensity of nighttime lights increased, and, in recent years, there 

is a trend toward more vegetation cover. For Caidian District, NDBI has increased and 

the intensity of nighttime lights has increased noticeably in recent years. But NDVI has 

a tendency to decrease. In general, the urbanization level of both is increasing, but the 

urbanization level of Jianghan and Qiaokou Districts is higher than that of Caidian 
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district. The change of NDVI shows that Jianghan and Qiaokou Districts are developing 

in a more sustainable way compared to Caidian district. 

 

Fig. 3 The UHI intensity changes of Wuhan and its 13 administrative regions 

during 2001~2018 

 

 



 17 

 

 

Fig. 4 The spatial clustering/dispersion characteristics of Wuhan in 2001, 2010, 

and 2018 

 

 

Fig. 5 Variations of NDVI, NDBI, population, and nighttime light from 2001 to 

2018 

 

From 2001 to 2018 (excluding 2012), 34 SEMs and 34 OLS models are established. 

Through the comparison of LogL, AIC, SC, and R2 , the fitting effect of SEMs and OLS 

models can be analyzed. From Table 5 and 6, it is found that the LogL and R2 in SEMs 

are larger than that in OLS models, and the AIC and SC in SEMs are smaller than those 

in OLS models. It means that the fitting effect of SEMs is better than OLS models for 

both Jianghan and Qiaokou Districts, and Caidian District for each year. Therefore, the 

results from SEMs are discussed. The coeffcient values of four driving factors (NDVI, 

NDBI, population, and nighttime light) in SEMs are shown in Fig. 6. For Jianghan and 

Qiaokou Districts, NDBI has the greatest impact on UHI intensity. For Caidian District, 

NDBI and nighttime light are the main factors driving the increase in surface 

temperature. It can be found that the relationship between NDVI and UHI intensity has 
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changed from a negative correlation to a positive correlation. And the positive 

correlation in Jianghan and Qiaokou Districts is more obvious than that in Caidian 

District. The influence of NDBI on UHI intensity has always been a significant positive 

influence, and the influence in Jianghan and Qiaokou Districts is greater than that in 

Caidian District. However, the influence of NDBI has begun to converge in recent years. 

The main manifestation is that the influence of NDBI on UHI intensity in Jianghan and 

Qiaokou Districts has become smaller. The influence of population and nighttime light 

on UHI intensity is quite different in Jianghan and Qiaokou Districts and Caidian 

District. For Caidian District, the greater the population, the denser the nighttime lights, 

the stronger the UHI intensity. There is a significant positive correlation between 

population and nighttime light and UHI intensity. For Jianghan and Qiaokou Districts, 

population and nighttime lights have little influence on UHI intensity. But in recent 

years, the nighttime light shows a significant positive correlation with UHI intensity. 

 

Discussions  

Driving factors of UHI intensity 

Four driving factors (NDVI, NDBI, population, and night-time light) of UHI are 

considered by establishing SEMs. It is found that the relationship between NDVI and 

UHI intensity has changed from a negative correlation to a positive correlation. There 

may be three reasons through the analysis of original data. Firstly, when the NDVI is 

small, the land cover is mainly water body (Khamchiangta and Dhakal 2020), so the 

UHI intensity is low, which will lead to a positive correlation. Secondly, NDVI values 

are generally low. Mackey et al. found that NDVI showed a strong correlation with 

temperature only after a certain threshold was exceeded (Mackey et al. 2012); thus, the 

negative correlation trend has been weakened. Thirdly, the LST somewhere could be 

affected by the surrounding environment. The green land closed to construction land 

has high LST, which also contributes to a positive correlation. Keeratikasikorn et al. 

find that the mitigation effect of plants on LST is smaller in high-density building areas 

than in low-density building areas in Bangkok (Keeratikasikorn and Bonafoni 2018). 

This may be due to the increasing areal proportion of urban vegetation patches 

influenced by edge effect (Lin et al. 2018). Compared with Caidian District, Jianghan 

and Qiaokou Districts are more urbanized, and there is less vegetation and smaller 

NDVI (Fig. 5). Therefore, Jianghan and Qiaokou Districts show a higher positive 

relationship between NDVI and LST compared to Caidian District. As for NDBI, the 

influence of NDBI on UHI intensity is stable, which is significant for each year both in 

Jianghan, Qiaokou Districts and Caidian District. And the influence in Jianghan and 

Qiaokou Districts is greater than in Caidian District. It is also because of the high level 

of urbanization in Jianghan and Qiaokou Districts. In recent years, the impact of NDBI 

seems to have weakened in Jianghan and Qiaokou Districts, probably due to the 

decrease of NDBI and the increase of NDVI (Fig. 5), which will reduce LST and help 
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alleviate UHI intensity. Additionally, urban canyon can have an impact on UHI 

intensity and will behave differently in the central and new urban areas, due to the fact 

that the central city is more densely built and has more tall buildings. Sky view factor 

plays an important role in describing urban form, reflecting street geometry and 

building density. The larger the sky view factor, the more open the terrain is (Dirksen 

et al. 2019). Huang and Wang found that LST is positively correlated with sky view 

factor in areas with high-density and high-rise buildings, while in areas with low 

building density, SVF has little effect (Huang and Wang 2019). Tall buildings can form 

shadows to lower LST (Yu et al. 2021). Central urban area has taller and denser 

buildings, a smaller sky view factor, and more shadows formed by buildings, which can 

reduce the surface temperature to some extent. This may be another reason why the 

impact of NDBI on UHI weakens in central urban area. The relationship between 

social–economic factors and UHI intensity in central urban area and new urban area is 

quite different. Research shows that there is a logarithmic relationship between 

economic levels and UHI intensity (Cui et al. 2016). In the early stage of urbanization, 

there is a close relationship between population, nighttime lights and UHI intensity. 

However, the spatial heterogeneity of population and nighttime light decreases as urban 

development tends to be saturated; hence, the correlation between population, nighttime 

light, and UHI intensity in central urban area is smaller than in new urban area. In recent 

years, the impact of nighttime light on UHI intensity in central urban area becomes 

significant. The first areas with strong nighttime light are mainly along the river, which 

have a lower UHI intensity. In recent years, the nighttime lights have increased in areas 

far from the riverside, while the UHI intensity in these areas is high, so a positive 

correlation between nighttime lights and UHI intensity is shown in recent years. 

 

 

Fig. 6 Regression coefcient in SEM of NDVI, NDBI, population, and nighttime 
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light (**P < 0.01, * P < 0.05, and·P < 0.1) 

 

Table 5 The fitting effect comparison of OLS models and SEMs in Jianghan and 

Qiaokou Districts during 2001~2018 

 

 

Urban thermal environment in Wuhan during 2001~2018 

The long-term spatiotemporal patterns of UHI in Wuhan during 2001~2018 are 

investigated. It can be found that the urban thermal environment in Wuhan is getting 

worse and the affected scope of UHI is getting larger. And the UHI intensity in the 

central urban areas has weakened while the UHI intensity in the new urban area has 

increased. Shen et al. (Shen et al. 2016) found that the high-temperature area within the 

old city zones showed a decreasing tendency during 1988–2013 in Wuhan. Gui et al. 

(Gui et al. 2019) find that the LST between urban and rural areas in Wuhan from 2001 

to 2017 has increased, and the daytime ΔLST in summer is 0.106 °C/a in old urban area 

and 0.207 °C/a in urbanized area. The increasing rate of LST in old urban area is slower 

than that in urbanized area, which is consistent with our results. According to the 

driving factors of UHI intensity, the NDVI has increased and tall buildings have been 

constructed in Jianghan and Qiaokou Districts, which may explain the reason why there 

is a slow or even a negative UHI intensity change in central urban areas. In new urban 

area, it is still developing. More and more natural land has been converted into 
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impervious land, causing LST rise. However, although the UHI intensity in central 

urban area has declined, most of UHI intensity is still above 4 °C. The UHI intensity in 

new urban areas is relatively low, but the growth rate is fast. Regional heat island can 

be defined when the UHI intensity is higher than 2 °C (Qiu et al. 2017; Yu et al. 2019). 

It is found that the area of regional heat island in Wuhan increases from 63.4% in 2001 

to 71.4% in 2018, which indicates that most of the living space has suffered from UHI. 

Hot environment will threaten the health and lives of residents. In a case study of 

Jiang’an District from 2003 to 2010, 1 °C increase in mean temperature above the hot 

thresholds will cause a 25.18% increase in non-accidental mortality (Zhang et al. 2016). 

The severe urban thermal environment in Wuhan will undoubtedly cause a large 

number of deaths. Moreover, the impact of high temperature on the elderly is more 

significant (Taylor et al. 2015; Zhang et al. 2017). China’s aging population is 

deepening according to the results of the seventh national census. The ageing 

population (age ≥ 65) is 8.4261 million in Wuhan, and it is 2.5 million more than seven 

years ago, which will further amplify the adverse impact of hot environment. Therefore, 

it is urgent to implement corresponding mitigation strategies to improve the urban 

thermal environment. And it is also necessary to strengthen residents’ awareness of 

environmental changes which will promote the implementation of relevant policies. 

 

 

Table 6 The fitting effect comparison of OLS models and SEMs in Caidian District 

during 2001~2018 
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UHI mitigation strategy  

SEMs have been established to study the driving factors of UHI intensity. It is found 

that there is a positive correlation between NDVI and UHI intensity. Although there is 

the influence of water bodies, the reduction of NDVI range cannot be ignored, which 

indicates that more vegetation is needed. Additionally, the mitigation effect of plants 

on LST is relatively small in high-density building areas (Keeratikasikorn and Bonafoni 

2018), meaning that the cooling effect of vegetation will be affected by adjacent areas. 

To decrease the effect of UHI, higher vegetation coverage is required to enhance the 

cooling effect. Broken green patches will limit its cooling effect (Li et al. 2013b). 

Continuous and complete green patches is needed. However, the area for greening in 

central urban areas is limited; hence, the alternatives of roof greening and vertical 

greening can be conducted. NDBI has the strongest influence on UHI intensity. In 

addition to using the transpiration of vegetation to remove heat, impervious pavement 

can be replaced with permeable pavements to reduce LST by evaporation of water (Li 

et al. 2013a). Promoting the construction of ‘sponge city’ will also play an important 

role in improving the urban thermal environment. Social-economic factors have 

different effects on Jianghan and Qiaokou Districts and Caidian District, which requires 

different mitigation strategies for central urban area and new urban area. It is found that 
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there is a more significant correlation between social–economic factors and UHI 

intensity in new urban area than in central urban area. To reduce population density and 

the brightness of nighttime lights, satellite cities can be established to share part of the 

population and urban functions, which can help to alleviate UHI. The development of 

central urban area has become saturated. Although high-rise buildings may not lead to 

a significant increase in UHI, the substantial reduction in wind speed is not conducive 

to UHI mitigation (Zhou and Chen 2018). The design of urban ventilation corridors can 

better the air circulation and is conducive to create a better living environment (Morris 

and Simmonds 2001).  

 

Conclusions and outlook 

Urban thermal environment has been changing along with urbanization. In this study, 

the dynamic change of LST in Wuhan during summer of 2001~2018 was uncovered. 

Then, the UHI intensity changes of built-up land in 13 administrative regions were 

determined respectively. Finally, the driving factors of UHI intensity and their 

explanatory power changes during 2001~2018 in central urban area and new urban area 

were investigated by SEMs. The following main conclusions can be drawn:  

    1. The LST of Wuhan is becoming more uneven, which is mainly manifested in 

the increase of the critical temperature of high-temperature zone (rises by about 0.5 °C) 

and sub-high-temperature zone (rises by about 0.4 °C). The distribution pattern of high-

temperature zone has changed from scattered distribution to concentrated and 

contiguous distribution. The critical temperature of low-temperature zone does not 

change much.  

    2. The average UHI intensity in 2014~2018 has increased by about 0.45 °C 

compared to that in 2001~2005, showing a slightly upward trend. The central urban 

area shows the strongest UHI intensity which can reach up to 7.57 °C. But in recent 

years, the ecological environment of some central urban areas such as Jianghan and 

Wuchang District have been improved while UHI intensity of new urban areas have 

been getting higher with a tendency to surpass that of the central area.  

    3. The fitting effect of SEMs is better than that of OLS models. The effects of 

driving factors vary between central urban area and new urban area. For Jianghan and 

Qiaokou Districts, NDBI has the greatest impact on UHI intensity. For Caidian District, 

NDBI and nighttime light are the main factors driving the increase in surface 

temperature. Social–economic factors (population and nighttime light) have a greater 

impact on new urban area than on central urban area. Moreover, the explanatory power 

has changed during 18 years. The influence of NDVI changes from negative to positive 

and the impact of NDBI in central urban area is weakened during 2001–2018. 

 

During the urbanization process, the strategy for mitigating UHI should be different. 

Establishing satellite cities is an optimal solution for new urban area considering the 

great impact of social–economic factors. For central urban area, promoting the 
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construction of ‘sponge city’ and increasing green roofs and vertical greening as well 

as ventilation corridors are suitable. This study can offer insights into the formation and 

development of UHI which can better guide urban planning and management in Wuhan 

in the near future. In this study, the changes in explanatory power of the driving factors 

are analyzed using SEMs. Other driving factors, such as the urban landscape pattern, 

the three-dimensional indicators (building height and sky view factor), the 

meteorological factors and traffic levels will be investigated in the future work. 
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