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In recent 50 years, floods:
*» 1,750 £ billion economy damages
¢ 3.7 billion people are affected

¢ 235,000 people are killed

“Multi-Step Flood Prediction in Drainage Systems Using Time-series Data Mining Techniques”, Piadeh F., Behzadian K. Alani A.M., Water Efficiency Conference, West Indies, Trinidad and Tobago, 2022. [Under review]
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“A Critical Review of Real-Time Modelling of Flood Forecasting in Urban Drainage Systems”, Piadeh F., Behzadian K. Alani A.M., Journal of Hydrology, 2022; 607: 127476
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Drainage systems

Characteristics

Urban areas Non-urban areas
Flood description - Overflow of urban drainage infrastructures due to - Overflow or rise of water bodies such
lack of proper drainage in an urban area as rivers, streams, sea level and
reservoirs
Flood causalities - Mainly fast surface runoff generated by rainfall - Mainly high intensity of rainfall or
accumulation of surface runoff
Flood duration - Between a few minutes to a couple of days - Part of days to a week
Spatial flood impacts - Small areas i.e. streets to neighbourhoods, can be - Large scale such as vulnerable zones,
extended to all urban areas, but highly distributed and river riparian zones
Spatial restrictions for -No flexibility in land surfaces or underground - High flexibility in non-urban areas
flood management modification as previously occupied.
- Fast variation in land use
Main types of impacts - Economic loss and business interruption - Soil erosion
- Human loss, - Wasting crops and livestock
- Mental and social problems - Natural habitat loss
- Urban structure and infrastructure damages - Water pollution
- Reservoir or water infrastructure
damages

“A Critical Review of Real-Time Modelling of Flood Forecasting in Urban Drainage Systems”, Piadeh F., Behzadian K. Alani A.M., Journal of Hydrology, 2022; 607: 127476
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Flood Event

/4 N N
Mitigation . 'f"} Response N '_'.'"'j:: Recovery

addressing to “plan and design” of]
proper strategies or actions, including
predictions, and determining suitable
constructions.

.......

4

ff)cusing on maintaining designed
plans by “implementation” of proper
actions, particularly public awareness
or running green-blue infrastructures.

“évaluating” designed plans and
related responses, to correct future
planning.

Structural approach

control.

Designing suitable construction facilities
for water balance and flood source

Non-structural approach

oceurring.

Excluding policy and strategy creation,
this part predicts event’s spreads before

/\

Rainfall forecasting

= Flood farecasting

- Where

- What is the nature of rainfall?
- When is it coming? areas?

is it coming?

- ;{Vhat does happen in affected

A

Emphasising on upgrading performance
of instruments and devices

...........

Detection il:struments i1l Better prediction methods

Tackling more accurate spatial and
temporal prediction

« Empirical models
« Conceptual models
 Physical models

Artificial
intelligence-based
model

;

Artificial
Neural Network (NN)
models

8-

Time-series real-time NN

“The Role of Event Identification in Translating Performance Assessment of Time-Series Real-Time Urban Flood Forecasting”, Piadeh F., Behzadian K. Alani A.M., 15" UWL Doctorial Conference, London, UK, 2021. [Poster presentation]
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Data collection and preparation

B

Model calibration

—>

Performance assessment
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“A Critical Review of Real-Time Modelling of Flood Forecasting in Urban Drainage Systems”, Piadeh F., Behzadian K. Alani A.M., Journal of Hydrology, 2022; 607: 127476
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Number of stations per grid - I F e
D i 2 3 4 6

Global distribution of installed rain gauge stations

National Centre for Atmospheric Research (NCAR). (2012). Number of stations used by GPC for May 2012. [Online]. Available at https://climatedataguide.ucar.edu, [Accessed 8 Jan. 2022].
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Recommendation for range of input data: Cross correlation and Cross covariance

Cross-correlation Autocorrelation
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Hidden layer 1

\

X(t-2)[X(t-1)

X(t)

- IVE2)Y(t-1)

Y (D)

Hidden layer 2

[

Key

X: Observant rainfall intensity

Y: Observant water depth

Y, Predicted water depth

u: Delay factor (range of pervious X data)
v: Feedback factor (range of pervious Y)
w: Weight value

b: Bias value

i: Time-step ahead
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Recommendation for range of input data: Cross correlation and Cross covariance

Cross-correlation Autocorrelation
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* Integration techniques have more capability to increase the model accuracy than other technigues
* Integration has not much interest due mainly to requirements for :

» More model complexity Integration

, 4%

* More data records

» Higher computational efforts

Quantitative
precipitation
estimates, 29%

“A Critical Review of Real-Time Modelling of Flood Forecasting in Urban Drainage Systems”, Piadeh F., Behzadian K. Alani A.M., Journal of Hydrology, 2022; 607: 127476
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Research guestion:

« Which type of data merging is more effective?
* How many of data should be add to the time-series model for each iteration?

» Recommendations are compatible with optimisation of used range of data?

“A Critical Review of Real-Time Modelling of Flood Forecasting in Urban Drainage Systems”, Piadeh F., Behzadian K. Alani A.M., Journal of Hydrology, 2022; 607: 127476
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Method and material
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s Case stuady description
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=~ Colne catchment area
=== Rivers and Catchments

Ruislip gauging station
Q Ruislip urban catchment area
D Urban areas
ORainfall monitoring station: ;
@Iver Heath 4 |

Winasor N
@RAF Northolt /&'J N

: S S T T
Brent cross reservoir [\ t /
N2
Stanmore \ Qg o

\
nnnnnn

Location of the case study
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Kool Inputs:

Output: Water level for lead time

* Rainfall data

o \Water level

Selected model: NARX (The nonlinear autoregressive network with exogenous inputs)

Pre-phase: Testing the model for 4-step ahead:

Best correlated rainfall data and water level

Interpolating all rainfall data (kriging with external draft)

Integration of all rainfall data

Bias adjustment of best rainfall data with others (Multiquadric fitting)

—~——y
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s Method and concept

Rainfall data of 6
triple bucket rain
gauge stations (X)

Water level data of
ultrasonic gauge
station (X)

Data collection and preparation »

Linear
regression
for infilling

missing
data

Model development

Cross-covariance between “X” and “Y” data

Auto-correlation between “Y” and “Y” data

Cross-correlation between “X” and “Y” data

Using shuffled frog leaping optimisation algorithm

Conventional model
with one rainfall station

Conventional model
with 3 rainfall stations

Conventional model
with 6 rainfall stations

Optimised model

I e T T e

@ 9] — @L

Hidden layer 2

[v]

5 nodes

All the models were developed on a laptop with Intel 17-6700 HQ CPU @ 2.60GHz and 16 GB RAM Memory
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Performance
assessment

Event identification

Accuracy of
overflow detection
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s Typical flood event with temporal boundaries
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“A New Event-based Framework for Artificial Intelligence-based Modelling of Real-Time Flood Forecasting”, Piadeh F., Behzadian K. Alani A.M., Chen A.S., Campos L.C., Water research, Jun. 2022 [Under review]
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Results and discussion
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s Pre-phase analysis
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s Pre-phase analysis
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s Integration method analysis
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Data relationship between different selected rainfall stations and water level

(Left): Cross-correlation
(Right): Cross-covariance
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s Integration method analysis
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s Optimisation analysis

Mathematical optimisation

I
v v

Deterministic optimisation

Selected optimisation algorithm: Shuffled frog-leaping algorithm (SFLA)

Stochastic optimisation

Decision variables: Range of time-series input data

utilising the gradient knowledge to Generating and using random
explore the search space variables to random explore the

Each trial: 4 shuffle sample for exploration step

Successful in linear but trap
when applying to nonlinear
search problems

search space

No grantee to find the global
solution, but easy to use,
implicitly, and flexibility

4 shuffle sample for exploitation step

; }

Population-based Single solution

Maintain and improve multiple Madifying and improving a single

Objectives: RMSE, NSE, and ACC enhancement candicate solutions Ee e

Stopping criteria: Improvement less than 0.01% } .

Nature-inspired algorithms Metaphor-based algorithms

Concepts sources: Nature Concepts sources: Social

Lake of unified mathematical Less novelty, poor experimental
framework and difficult comparison,

oup 4 validation, and comparison, and
usually applied for small-scall poorly performing implementation
Groyup 1 |
v v v v

Swarm intelligence Evolutionary Physics-based Human-based
Social behaviour of animals Behaviour of natural physical laws in life, defining human communications and

SearCh Space eaCh grOUp in swarms, including sharing evolution, including the communication of the  behaviour in communities

. of joint information through Darwinian theory of candidate solutions based such as competitions of
perfo rmlng |Oca| searCh1 then the optimization process evolution, Biogeography on controlling rules of the volleyball tea r?s or social
they Change information with related to species migration  physical methods, such as learning behaviour of

or Competition of trees for  thermodynamics laws or humans
Othel‘ gl’OUpS acquiring foods and light evolution of the universe
. electromagnets
Shuffled Frog Leaping: Group search for food

Bui, Q., Nguyen, Q., Nguyen, X., Pham, V., Nguyen, H., Pham, V. (2020). Verification of novel integrations of swarm intelligence algorithms into deep learning neural network for flood susceptibility mapping. Journal of Hydrology, 581: 124379.
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s Optimisation analysis
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s Optimisation analysis
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s Optimisation analysis
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Model performance of (Left) Best conventional model, (Right) Optimised model
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Conclusion

01

Integration is more effective but time consuming

02

Regardless of rainfall correlation, increasing input data causes outperformance

03

Optimisation result is not compatible with conventional approach
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