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In recent 50 years, floods:

❖ 1,750 £ billion economy damages

❖ 3.7 billion people are affected

❖ 235,000 people are killed

“Multi-Step Flood Prediction in Drainage Systems Using Time-series Data Mining Techniques”, Piadeh F., Behzadian K. Alani A.M., Water Efficiency Conference, West Indies, Trinidad and Tobago, 2022. [Under review]
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“A Critical Review of Real-Time Modelling of Flood Forecasting in Urban Drainage Systems”, Piadeh F., Behzadian K. Alani A.M., Journal of Hydrology, 2022; 607: 127476

Average human lossNumber of flood events

Average economic lossAverage affected people
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Characteristics 
 Drainage systems 

 Urban areas  Non-urban areas 

Flood description  - Overflow of urban drainage infrastructures due to 

lack of proper drainage in an urban area 

 - Overflow or rise of water bodies such 

as rivers, streams, sea level and 

reservoirs 

Flood causalities  - Mainly fast surface runoff generated by rainfall  - Mainly high intensity of rainfall or 

accumulation of surface runoff 

Flood duration  - Between a few minutes to a couple of days  - Part of days to a week 

Spatial flood impacts  - Small areas i.e. streets to neighbourhoods, can be 

extended to all urban areas, but highly distributed 

 - Large scale such as vulnerable zones, 

and river riparian zones 

Spatial restrictions for 

flood management 

 - No flexibility in land surfaces or underground 

modification as previously occupied. 

- Fast variation in land use 

 - High flexibility in non-urban areas  

Main types of impacts  - Economic loss and business interruption 

- Human loss, 

- Mental and social problems 

- Urban structure and infrastructure damages 

 - Soil erosion 

- Wasting crops and livestock 

- Natural habitat loss 

- Water pollution 

- Reservoir or water infrastructure 

damages 

 1 

“A Critical Review of Real-Time Modelling of Flood Forecasting in Urban Drainage Systems”, Piadeh F., Behzadian K. Alani A.M., Journal of Hydrology, 2022; 607: 127476
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• Empirical models

• Conceptual models

• Physical models

Artificial 

intelligence-based 

model

Artificial 

Neural Network (NN) 

models

Time-series real-time NN

“The Role of Event Identification in Translating Performance Assessment of Time-Series Real-Time Urban Flood Forecasting”, Piadeh F., Behzadian K. Alani A.M., 15th UWL Doctorial Conference, London, UK, 2021. [Poster presentation]
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“A Critical Review of Real-Time Modelling of Flood Forecasting in Urban Drainage Systems”, Piadeh F., Behzadian K. Alani A.M., Journal of Hydrology, 2022; 607: 127476
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Global distribution of installed rain gauge stations

National Centre for Atmospheric Research (NCAR). (2012). Number of stations used by GPC for May 2012. [Online]. Available at https://climatedataguide.ucar.edu, [Accessed 8 Jan. 2022].
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Key

X: Observant rainfall intensity

Y: Observant water depth

Yp: Predicted water depth

u: Delay factor (range of pervious X data)

v: Feedback factor (range of pervious Y)

w: Weight value

b: Bias value

i: Time-step ahead

X(t-u) … X(t-2)X(t-1) X(t)

Y(t-v) … Y(t-2)Y(t-1) Y(t)

5-neuron layers

Recommendation for range of input data: Cross correlation and Cross covariance

10
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Recommendation for range of input data: Cross correlation and Cross covariance

11
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“A Critical Review of Real-Time Modelling of Flood Forecasting in Urban Drainage Systems”, Piadeh F., Behzadian K. Alani A.M., Journal of Hydrology, 2022; 607: 127476

• Integration techniques have more capability to increase the model accuracy than other techniques

• Integration has not much interest due mainly to requirements for :

• More model complexity

• More data records

• Higher computational efforts
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“A Critical Review of Real-Time Modelling of Flood Forecasting in Urban Drainage Systems”, Piadeh F., Behzadian K. Alani A.M., Journal of Hydrology, 2022; 607: 127476

Research question:

• Which type of data merging is more effective?

• How many of data should be add to the time-series model for each iteration?

• Recommendations are compatible with optimisation of used range of data?



14

Method and material
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Location of the case study

15

Inputs:

• Rainfall data

• Water level

Output: Water level for lead time

Selected model: NARX (The nonlinear autoregressive network with exogenous inputs)

Pre-phase: Testing the model for 4-step ahead:

• Best correlated rainfall data and water level

• Interpolating all rainfall data (Kriging with external draft)

• Bias adjustment of best rainfall data with others (Multiquadric fitting)

• Integration of all rainfall data

❖ Case study description
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Figure 1. The methodology applied for developing different urban 

flood forecasting models

Rainfall data of 6 

triple bucket rain 
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Data collection and preparation Model development
Performance 

assessment

Water level data of 

ultrasonic gauge 

station (X) Cross-correlation between “X” and “Y” data

Auto-correlation between “Y” and “Y” data

RMSE NNSE

Accuracy of 

overflow detection

Event identification

Linear 

regression 

for infilling 

missing 

data

Using shuffled frog leaping optimisation algorithm

Cross-covariance between “X” and “Y” data
Conventional model 

with one rainfall station

Optimised model

Conventional model 

with 3 rainfall stations

Conventional model 

with 6 rainfall stations
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Hidden layer 1

10 nodes

b

W

+
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1 node

Y(t+i)

1 data

Y(t)

Xn(t)

X2(t)

.
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❖ Method and concept

All the models were developed on a laptop with Intel i7-6700 HQ CPU @ 2.60GHz and 16 GB RAM Memory
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 Key:  

State 
 Captured data 

 Rainfall intensity  Water depth  

(S1): Dry weather, non-flood event  (R1): -   (W1): - 

(S2): Sudden rising flow, non-flood event  (R1): -  (W2): + 

(S3): Ineffective precipitation, non-flood event   (R2): +  (W1): - 

(S4): Flood event  (R2): +  (W2): + 

-: No rainfall, no change for water depth       

+: Rainfall, net change (increase or decrease) for water depth  

 

❖ Typical flood event with temporal boundaries
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Recession curve

Time boundaries of identified event

Peak depth

Depletion curve

Base flow
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End point

Falling limb

Measured data

Predicted data

Rainfall intensity

Inflection point

 Key:  

State 
 Captured data 

 Rainfall intensity  Water depth  

(S1): Dry weather, non-flood event  (R1): -   (W1): - 

(S2): Sudden rising flow, non-flood event  (R1): -  (W2): + 

(S3): Ineffective precipitation, non-flood event   (R2): +  (W1): - 

(S4): Flood event  (R2): +  (W2): + 

-: No rainfall, no change for water depth       

+: Rainfall, net change (increase or decrease) for water depth  

 

“A New Event-based Framework for Artificial Intelligence-based Modelling of Real-Time Flood Forecasting”, Piadeh F., Behzadian K. Alani A.M., Chen A.S., Campos L.C., Water research, Jun. 2022 [Under review]

17



Results and discussion
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❖ Pre-phase analysis
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❖ Pre-phase analysis
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❖ Integration method analysis
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(Left): Cross-correlation

(Right): Cross-covariance
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❖ Integration method analysis
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❖ Optimisation analysis

23

Selected optimisation algorithm: Shuffled frog-leaping algorithm (SFLA)

Each trial: 4 shuffle sample for exploration step

4 shuffle sample for exploitation step

Objectives: RMSE, NSE, and ACC enhancement

Stopping criteria: Improvement less than 0.01%

Bui, Q., Nguyen, Q., Nguyen, X., Pham, V., Nguyen, H., Pham, V. (2020). Verification of novel integrations of swarm intelligence algorithms into deep learning neural network for flood susceptibility mapping. Journal of Hydrology, 581: 124379.

Decision variables: Range of time-series input data
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❖ Optimisation analysis

24
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Key

X: Observant rainfall intensity

Y: Observant water depth

Yp: Predicted water depth

u: Delay factor (range of pervious X data)

v: Feedback factor (range of pervious Y)

w: Weight value

b: Bias value

i: Time-step ahead
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10 × 10 × 10 × 10 ×10 × 10 × 11 × 10 × 15 (min) = 314 Years !!!!!! 

10 × 8 × 15 (min)                                                       = 20 Hrs
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❖ Optimisation analysis
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❖ Optimisation analysis
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Model performance of (Left) Best conventional model, (Right) Optimised model
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Conclusion

Merging method
Integration is more effective but time consuming

01

Integrated method
Regardless of rainfall correlation, increasing input data causes outperformance

02

Input selection
Optimisation result is not compatible with conventional approach

03




