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A B S T R A C T   

There has been a strong tendency in recent decades to develop real-time urban flood prediction models for early 
warning to the public due to a large number of worldwide urban flood occurrences and their disastrous con-
sequences. While a significant breakthrough has been made so far, there are still some potential knowledge gaps 
that need further investigation. This paper presents a comprehensive review of the current state-of-the-art and 
future trends of real-time modelling of flood forecasting in urban drainage systems. Findings showed that the 
combination of various real-time sources of rainfall measurement and the inclusion of other real-time data such 
as soil moisture, wind flow patterns, evaporation, fluvial flow and infiltration should be more investigated in 
real-time flood forecasting models. Additionally, artificial intelligence is also present in most of the new RTFF 
models in UDS and consequently further developments of this technique are expected to appear in future works.   

1. Introduction 

Climate change has likely consequences in hydrology including 
extreme rainfall and changing precipitation patterns that both result in 
more urban floods and adverse effects on existing urban infrastructure 
(Rubinato et al., 2019; Balistrocchi et al., 2020). These effects result in 
loss of property particularly utility infrastructure and household assets, 
human and economy especially income in industries and transport 
interruption in trades (Miller and Hutchins, 2017; Konami et al., 2021). 
Fig. 1 shows the geographical spread of flood occurrences and associated 
losses by country over the recent 30 years based on the data collected 
from CRED (2021). The figure shows developing countries especially in 
Asia and Africa have been dealing mainly with social damages i.e. 
human losses and affected populations while developed countries in 
Europe and North America have been mainly suffering from economic 
loss. For example, China and India as countries mainly affected by flood 
events in Asia are ranked first in the world for the average affected 
people per event whereas the top ranking of average human loss and 
economic loss are reported for Venezuela and Denmark, respectively. 
This unequal distribution of impacts shows the diverse effects of flood 
occurrence. Besides, in recent 30 years, floods have caused more than US 
$1,280 billion for the world economy, affected nearly 2 billion people 
around the world and killed about 214,000 (UNDRR, 2019). Therefore, 
it is of paramount importance for all involved parties including 

stakeholders, communities, and researchers to take proper actions and 
mitigate the risk of flood occurrence. Furthermore, the increasing need 
for new developments and urbanisation will probably exacerbate these 
consequences as natural drainage and open spaces in urban areas are 
routinely being modified or replaced with impervious drainage chan-
nels, paved and impermeable areas (Han and He, 2021). 

Numerous structural measures have been developed such as blue- 
green infrastructure and stormwater management facilities to decline 
the adverse effects of floods (Li et al., 2020). However, non-structural 
approaches especially early flood warning systems have attracted 
more attention in recent decades due mainly to the time saving for 
development and operation, cost-effectiveness and no extra space or 
facilities required for new construction or physical modification 
(Berndtsson et al., 2019; Hadi pour et al., 2020). Early flood warning 
systems have been widely used for real-time forecasting of flood in the 
case of river basins, reservoirs, lakes, stream flows, mountainous areas, 
prairies, urban surface runoff and urban flooding in coastal cities (Hadid 
et al., 2020; Meyers et al., 2021). However, unique features of floods in 
urban and non-urban areas as listed in Table 1 need to be realised for any 
planning of real-time forecasting. These features can be used to deter-
mine the requirements for spatial and temporal data, types of flood 
modelling, the inclusion of potential flood impacts and key performance 
indicators. More specifically, real-time flood forecasting (RTFF) in urban 
drainage systems (UDS) typically requires modelling of distributed 
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systems with high spatial and temporal complexity, which is over-
stressed by spatial limitation as well as short preparation time (Zhao 
et al., 2019a; Mullapudi et al., 2020). 

A significant breakthrough has been made over the recent decades to 
overcome some major challenges in the main steps of RTFF meaning 
“data collection and preparation”, “model development” and “perfor-
mance assessment”. Multiple attempts have been made in the research 
works that focused on at least one of these three main areas of RTFF 
modelling. However, there are still some potential knowledge gaps that 
need further investigation. To address this, a few recent reviews given in 
Table 2 show thorough literature from various perspectives of concepts, 
models and tools for real-time forecasting of urban flooding. Data 
collection and preparation have been critically analysed by several re-
searchers in recent years. McKee and Binns (2015) suggested some 
applicable data merging methods within the scope of hydrological 
models of urban flooding. Furthermore, Ochoa-Rodriguez et al. (2018) 
evaluated the capability of different data merging methods in the 
context of data resolution only. Daal et al. (2017) and Thorndahl et al. 
(2017) linked the data resources to “performance assessment” of urban 
flood forecasting without supporting model development. Daal et al. 
(2017) argued high demand for the model performance assessment is 
heavily affected by the lack of uncertainty analysis of input data. 
Thorndahl et al. (2017) pointed out the accuracy of radar data through 
numerous examples of only hydrological models. Salvadore et al. (2015) 
critically analysed various modelling of urban hydrological processes 
and mapped the future trends of model development based on only data 
resolutions. García et al. (2015) and Nkwunonwo et al. (2020) reviewed 
several real-time control strategies and listed relevant models and soft-
ware tools. Finally more recently, Kourtis and Tsihrintzis (2021) ana-
lysed the impacts of climate change on UDS design and reviewed the 
associated challenges. In summary, these reviews have mainly focused 
on urban flood forecasting with the aid of describing data requirements, 

developing models and measuring model performance, rather than 
discussing real-time forecasting models in the context of urban drainage 
systems. As a result, to the best of our knowledge, there is a lack of a 
critical and comprehensive review to provide knowledge on this context 
to enable the field of research and provide the articulation of current and 

(a)         (b) 

(c)         (d) 

Fig. 1. Geographical occurrences of flood events (1990–2021): a) number of flood events, b) average human loss, c) average affected people, d) average eco-
nomic loss. 

Table 1 
Main features of flood in urban and non-urban areas*.  

Characteristics Drainage systems 

Urban areas Non-urban areas 

Flood description  - Overflow of urban drainage 
infrastructures due to lack of 
proper drainage in an urban 
area  

- Overflow or rise of water 
bodies such as rivers, 
streams, sea level and 
reservoirs 

Flood causalities  - Mainly fast surface runoff 
generated by rainfall  

- Mainly high intensity of 
rainfall or accumulation 
of surface runoff 

Flood duration  - Between a few minutes to a 
couple of days  

- Part of days to a week 

Spatial flood 
impacts  

- Small areas i.e. streets to 
neighbourhoods, can be 
extended to all urban areas, 
but highly distributed  

- Large scale such as 
vulnerable zones, and 
river riparian zones 

Spatial restrictions 
for flood 
management  

- No flexibility in land surfaces 
or underground 
modification as previously 
occupied  

- Fast variation in land use  

- High flexibility in non- 
urban areas 

Main types of 
impacts  

- Economic loss and business 
interruption  

- Human loss, Mental and 
social problems  

- Urban structure and 
infrastructure damages  

- Soil erosion  
- Wasting crops and 

livestock  
- Natural habitat loss  
- Water pollution  
- Reservoir or water 

infrastructure damages 

*: Inspired by Cools et al. (2016), Zhao et al. (2019b), Dao et al. (2020a). 
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Table 2 
Recent literature reviews of urban flood forecasting and modelling.  

Review topic Covered issues based on main steps of urban flood forecasting models Reference  

Specifying required data, providing 
recorded data, preparing the model input 
from collected data 

Developing the model, training/setting up, and testing Model validation and evaluating the efficacy of 
the model performance  

Identifying urbanised catchments’ hydrological 
modelling to map future modelling development 

NF1 Presenting urban hydrological processes, models based on 
only temporal and special resolutions of data 

NF Salvadore et al., 
(2015) 

Reviewing approaches of real-time control and flood 
modelling in UDS 

NF Presenting several real-time control strategies, common 
relevant models and software tools 

NF García et al., 
(2015) 

Describing diverse methods for merging data, 
recorded by rain gauges and radar stations in the 
case of urban flooding 

Reviewing available data types and data 
merging for hydrological models 

NF NF McKee and Binns, 
(2015) 

Inspecting impact of removing uncertainty analysis 
and limited size of data in evaluation periods for the 
performance of real-time control in UDS 

Interpreting uncertainty analysis of input 
data and their role in model performance 

NF Demonstrating demands for model performance 
assessment dealing with long-term historical 
data in one case study 

Daal et al., (2017) 

Explaining the application of radar data for the 
enhancement of rainfall estimation in the concept of 
urban hydrology 

Describing characteristics of radar data, in 
numerous UDS modelling examples 

NF Presenting the accuracy of radar data as the 
input data of urban hydrological models 
demonstrated on some specific models 

Thorndahl et al., 
(2017) 

Discussing challenges and potential of different 
merging strategies in the concept of urban 
hydrology 

Describing both rain gauge and radar data 
and evaluating merging methods based on 
data resolution only. 

NF NF Ochoa-Rodriguez 
et al., (2018) 

Discussing urban flood risk management for 
developing countries 

NF Providing significant materials in flood modelling, their 
status, as well as their strengths and weaknesses, Discussing 
uncertainties and their role in the model calibration 

NF Nkwunonwo et al., 
(2020) 

Challenge aspects of adapting UDS to climate change 
were defined, including hydrologic-hydraulic 
design. 

Investigating the impact of climate change 
on data sources 

Reporting modelling approaches and applied software 
statistically 

NF Kourtis and 
Tsihrintzis, (2021) 

NF: Not focused. 
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future directions. 
Hence, extending the aforementioned works, the overall objective of 

this paper is to review all advances of the real-time data-driven fore-
casting models of urban flooding and thereby demonstrating a 
comprehensive picture of the present approaches and highlighting 
future directions of real-time control of urban flooding. The current 
review is organised in the following four sections. The research design 
structure with the relevant bibliometric analysis used to select the peer- 
reviewed papers is first described. Data types and available data sources 
for developing RTFF models in UDS is then presented along with 
reviewing data merging techniques. Hydrological and hydraulic models 
for RTFF in UDS and their performance assessment are then analysed in 
the next section. Finally, conclusions are drawn by summarising key 
findings and making recommendations for future studies on RTFF in 
UDS. 

2. Research design and bibliometric tracking 

RTFF in UDS can be used for a wide range of assessments and ap-
plications such as risk assessment, deep-learning visual assessment and 
GIS-based flood monitoring. The current review mainly focuses on sci-
entific peer-reviewed papers studying real-time forecasting of water 
depth/ discharge in the urban sewer chambers over the last decade 
between 2011 and 2021. This is because this area of research has been 
advancing in recent years and is now placed as a central concern in many 
mitigation flood hazard attempts. 

Appropriate research works were collected from the Scopus search 
engine according to the guideline suggested by Moher et al. (2009). 

They were refined by a set of six search and screen strategies (S1-S6) 
demonstrated in Table 3. The search results started from 913 publica-
tions in S1 and were gradually narrowed down through the following 
steps S2-S3 and finally limited to a total of 67 studies that were then 
classified under three categories of studies as 48 for data collection (S4), 
49 for model development (S5) and 62 for performance assessment (S6). 
Note that although the main focus of this review is flood forecasting in 
urbanised areas, non-urbanised flood forecasting is also reviewed to 
capture recently developed concepts in the field that can be used for 
future directions. 

2.1. Bibliometric analysis 

Bibliometric analysis (BA) was first conducted for the collected 
publications as shown in Fig. 2 for the geographical distribution of case 
studies and clustering analysis, density and timeline of keywords. The 
BA shows most of the relevant studies RTFF are from Europe (66%) and 
the three highest countries for these publications are the UK (17.5%), 
China (15.5%) and Denmark (10.5%). By comparing this with Fig. 1, it 
relatively agrees with geographical locations of flood events generally 
for countries in Europe and America although it is only 7% in Asia 
mainly from China. Evidently, more studies related to RTFF in UDS may 
be required from Southeast Asia and South America to have a better 
balance between geographical locations of flood events and relevant 
publications. 

Analysis of knowledge domain bibliometric track (Fig. 2b-d was 
conducted by VOSviewer software for the collected publications based 
on co-occurrence of key terms for a specific unit of analysis (keywords, 

Table 3 
Flowchart of the search strategies in the study   

Code Search and screen strategy Keywords 

S1 Finding publications studying flooding in urban 
drainage systems 

(Urban OR city OR Domestic) AND (flood OR pluvial OR fluvial OR 
storm) AND (runoff OR overflow OR discharge OR inundation) AND 
(drainage AND system OR network OR sewage OR wastewater OR 
separate OR combined OR Catchment)  

S2 the results were limited to the last decade, English 
language articles, and journal papers only with 
searching under titles, keywords, and abstracts. 

–  

S3 The results were screened for RTFF papers (Forecast OR predict OR estimate OR assess OR real-time OR 
monitor OR susceptibility OR analysis)  

S4 The results were screened for rainfall data sources, 
and rainfall-runoff parameters and key variables. 

(Rainfall OR rain OR storm OR precipitation) AND (satellite OR 
gauge OR radar OR station) OR (merge OR integration OR 
assimilation OR interpolation OR bias adjustment) OR (land AND 
use) OR (evaporation OR evapotranspiration) OR (soil AND 
condition OR moisture OR layer) OR (infiltration OR leakage OR 
dry AND weather AND flow) OR (data AND missing OR filling Or 
cleaning OR imputation OR completion OR event AND 
identification)  

S5 The results were divided and screened for 
modelling types 

(Physical OR empirical OR conceptual) AND (lump OR semi- 
distribute OR distribute) AND (model OR method OR data-driven 
OR algorithm) AND (hydrological OR Hydraulic) OR (water AND 
level AND depth) OR (discharge OR flow OR quantity)  

S6 The results were screened for performance 
assessment approaches 

(Performance OR Sensitivity OR efficiency OR indicator) AND 
(assess OR test OR coefficient)  

F. Piadeh et al.                                                                                                                                                                                                                                  
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titles and abstracts), type of analysis (co-occurrence) and counting 
method (full counting). The findings of this analysis can support re-
searchers to appraise close relationships between the frequency of co- 
occurred keywords in the publications and determine the directions of 
future studies by highlighting the core content of specific subjects (Goh 
and See, 2021). More specifically, three types of analysis were carried 
out here based on the methodologies introduced by Ding et al. (2014) 
and Perianes-Rodriguez et al. (2016): (1) cluster analysis in Fig. 2b: 
grouping a collection of keywords into multiple classes in which node 
size representing the frequency of co-occurrence, links representing co- 
reference and colours representing different clusters, (2) density anal-
ysis in Fig. 2c: extraction of the number of times that keywords appear in 
the publications; (3) timeline analysis in Fig. 2d: mapping keywords 
onto the colour coded timespan of studies within the last decade. 

The three major clusters (green, blue and red) identified in Fig. 2b 
show strong connections of keywords in those publications. More spe-
cifically, the green cluster mainly represented by “rainfall” is strongly 
connected with “radar” in the same cluster and is also related to data 
sources, data quality and data preparation techniques. The blue cluster 
recognised by “data” is connected with “time steps” and the main 
characteristics of “system“ such as UDS, combined sewer systems. Both 
clusters are strongly connected to the ”model“ in the red cluster as the 
major focus of all papers. In other words, ”Model“ as the largest keyword 
represents the leading research area for RTFF in UDS. Similarly, the 
density of keywords in Fig. 2c also confirms the majority of research 
topics in the last decade are mainly scattered around ”data“ and 
”model“. This is also in line with the two main steps of modelling in 
Tables 2 (”data collection and preparation“ and ”model development“). 
The colour coded visualisation of the keywords in the studies in Figurer 
2d shows how the research focus of frontiers of knowledge has changed 
over the past decade. More specifically, the research works were mainly 
dealing with rainfall data sources such as radar data at the beginning of 
the decade while exploring model and system were the primary focus in 
the middle of the decade and finally the studies were concentrated on 
specific issues such as climate change and urban flooding and the role of 

urbanisation in recent years. 

3. Data collection and preparation 

RTFF models heavily rely on the types and quality of data collection 
and preparation for model development and performance assessment. 
Therefore, available data and measurements have a major impact on 
RTFF models in UDS. These data may be unavailable or inaccessible 
mainly due to the restriction in both temporal ad spatial gaps. The 
typical data required in RTFF modelling include “rainfall data”, “flow 
measurement of UDS” and “catchment and weather characteristics” 
(Thrysøe et al., 2019; Li, 2020). Rainfall depth and chamber water depth 
in UDS are the main data required whereas others are alternatively used 
for modelling when needed to enhance the model performance. These 
data are not necessarily the same as used in flood forecasting models that 
are applied for designing UDS. For example, some conventional pa-
rameters like land use, slops angles, catchment area, vegetation ratio, 
installed sustainable urban drainage systems and surface roughness 
which are routinely used for modelling UDS (Hamil, 2011), may not be 
required to capture as real-time data. Otherwise, some other variables 
need to be recorded and used in the real-time flood forecasting models 
which are the focus of this section. 

3.1. Real-time rainfall data sources 

Three main sources of real-time rainfall data widely used in hydro-
logical science include telemetry ground rain gauges, rainfall radar data, 
and weather satellites, with the key features shown in Table 4. Rain 
gauge data are the most applicable and primary source of rainfall esti-
mation and installed rainfall stations are currently spread all over the 
world (Fig. 3). Rain gauges measure the accumulative depth of rainfall 
over a specific period (e.g. 15 min) for a given location to obtain 
representative rainfall measurements over the area. While rain gauge 
stations can provide an accurate point of measurement, they are subject 
to numerous sources of uncertainty that can limit their exclusive 

(a)             (b) 

(c)             (d) 

0% 4% 2% 4% 

25% 

66% 

Africa Oceania South
America

North
America

Asia Europe

Fig. 2. Bibliometric analysis for the collected papers based on a) geographical distribution, b) cluster of keywords, c) density of keywords, d) timeline of keywords.  
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application in RTFF. Two main limitations of rain gauge data are: (1) the 
inability of point measurements to accurately characterise the spatial 
distribution of rainfall, and (2) high systematic and calibration errors 
(Dao et al., 2020a; Wu et al., 2020). To overcome this, a network of 
gauges constituting a series of gauges distributed throughout the area is 
recommended to provide a spatial distribution and approximate rainfall 
accumulations at ungauged areas (Jiang and Tung, 2013; Wu et al., 
2020). However, there may be UDS with multiple sub-catchments 
covered by just a few rain gauges which are not sufficient enough to 
provide accurate forecasting (Borup et al. 2016). 

In addition, the combination of more than one source of rainfall data 
can also be helpful to overcome the weaknesses and enhance the accu-
racy and confidence level of rainfall estimations. For example, rainfall 

radar estimates with the advantage of capturing the spatial distribution 
of rainfall and their variation in time were used to improve the accuracy 
of the data collected in rain gauge stations (Paz et al., 2017). Even with 
such a combination, they may still fail to satisfy the accuracy and res-
olution requirements for modelling urban hydrology (Wang et al., 
2015). This is mainly because they are heavily dependent on radar en-
vironments such as visibility effects and variability in time and space 
(Pulkkinen et al., 2016; Cecinati et al., 2017). This situation can be 
improved by calibrating rain gauge stations through other sources 
especially the historic records of rainfall radar stations, which is known 
as merging techniques (McKee and Binns, 2015; Boudevillain et al., 
2016). 

Three basic techniques used for merging rain gauge and radar data 
are bias adjustment, interpolation and integration. Bias adjustment 
techniques are based on the correction of rain gauge data accumulations 
using radar data accumulations while interpolation techniques minimise 
the variance between the two measurement types. Furthermore, inte-
gration techniques proportionally combine rain gauge and radar data 
based on their relative uncertainty to minimise the overall estimation 
uncertainty. Table 5 lists recent applications of merging techniques with 
a dashboard summarised in Fig. 4. As can be seen, interpolation tech-
niques were used in almost 68% of relevant studies in which the ma-
jority of cases (59%) applied kriging techniques followed by the 
conditional merging technique (18%). 

While most of the studies used merging techniques for a single type 
of data source, only a few studies discussed a comparison of different 
merging methods. When using the Kriging method, Berndt et al. (2014) 
reported the measurement accuracy was increased by at least 14% and 
Nanding et al. (2016) showed measurement errors were cut down by 
half. However, Berndt et al., (2014) and Rabiei and Haberlandt (2015) 
proved conditional merging techniques outperformed other interpola-
tion techniques. Besides, Delrieu et al. (2014) and Boudevillain et al. 
(2016) showed interpolation techniques can effectively increase the 
measurement accuracy when compared to bias adjustment for adjusting 
rain gauge precipitation estimates by radar data. Jewell and Gaussiat 
(2015) showed Kriging methods have more accuracy than Bias adjust-
ment especially when long-term data are predicted. Finally, Wang et al. 
(2015) argued that while integration techniques have more capability to 
increase the model accuracy than interpolation and Bias adjustment 
techniques, their applications have no much interest due mainly to the 
requirements for more model complexity, data records and higher 
computational efforts. 

While early flood warning systems need proper lead time (i.e. the 
time required for rain falling inside the catchment boundary to flow over 
the surface and discharge into the first entrance of UDS) to take the 
desired actions (Brunner et al., 2021), rain gauge and rainfall radar data 
may have limited special resolution of rainfall data, which results in the 
inability of models to provide accurate predictions for long-term ahead. 
To overcome this challenge, other studies on non-urban hydrology 
suggested exploiting new data sources especially weather satellites 
(Belete et al., 2020; Chen et al., 2021). The use of satellite products in 
urban rainfall estimates can support RTFF in UDS particularly in poorly 
gauged or radar areas and provide data with a higher range of spatial 
resolution (Islam et al., 2020; Kim et al., 2020). However, these data 
may suffer from a lack of high resolution for small watersheds such as 
urban areas, which may result in decreasing the accuracy of prediction 
(Azim et al., 2020; Brunner et al., 2021). This can be mitigated by 
merging satellite products with rainfall data sources for future works on 
RTFF in UDS. 

Other key factors of the rainfall data influencing the RTFF accuracy 
are temporal and spatial resolutions and historical duration/period of 
available data. Note that temporal resolution refers to the time between 
two subsequent data and spatial resolution particularly in rainfall radar 
refers to one side length of a single pixel in network data. Table 6 lists a 
summary of temporal and spatial resolutions for the two rainfall mea-
surement sources including rain gauge and rainfall radar. It shows most 

Table 4 
Key features of main rainfall data sources for RTFF*.  

Characteristics Rainfall data source 

Rain gauge 
station 

Rainfall radar 
station 

Weather 
satellite 

Definition A meteorological 
collection 
instrument 
positioned in an 
open space area. 
The precipitation 
is measured as the 
height of 
accumulated 
water per given 
time typically 
expressed in 
millimetres. 

An echo-sounding 
system using the 
same arial 
transmitting signal 
and receiving the 
returned eco. The 
output is the pixeled 
image of a specific 
location with 
various indicated 
precipitation range. 

Orbiting 
platforms with 
onboard 
instruments 
sensing data from 
the atmosphere 
and underlying 
surfaces 

Common types Weighing bucket, 
tipping bucket, 
floating or natural 
syphon, optical 
and acoustic 
gauge 

Different maximum 
quantitative ranges 
of radars 
particularly X-band, 
C-band, and S-band 

Geostationary 
and low earth 
orbiting 

Strength  - Measuring 
accepted ground 
data  

- Providing real- 
time data  

- Strong ability to 
show the location 
of precipitation  

- Providing near 
real-time areal 
rainfall estimates 
over a wide area  

- Desirable 
spatial and 
temporal 
coverage 

Weakness  - Inability to 
characterise the 
spatial 
distribution of 
rainfall  

- High systematic 
and calibration 
errors such as 
more sensitivity 
to strong winds, 
evaporation, 
splash-out, val-
ley effect, tree 
cover, building 
cover  

- Required 
relatively 
opened flat area  

- Fail to satisfy the 
accuracy and 
resolution 
requirements, 
especially for 
displaying rainfall 
at the surface  

- Risen errors from 
technical and 
meteorological 
related causalities 
such as weather 
shadowing or 
terrain barriers  

- Inability to 
provide high- 
resolution data 
in small 
watersheds 

Optimal 
practice 

Points positioned 
near the stations 
or in the network 
of rain gauges 

Areas on where 
there are no 
sufficient rain gauge 
stations to provide 
appropriate data 

When there is a 
high demand to 
obtain data in 
high coverage 
areas which can 
be used for 
suitable rainfall 
prediction with 
enough lead time 

*: Inspired by Acharya (2017), Maggioni and Massari (2018), AMS (2020), Met 
Office (2020), DEFRA (2021). 
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rainfall radar data (73%) were used with a short (high) temporal reso-
lution of fewer than 5 min for each timestep whereas various time steps 
were used for rain gauge data although 15-minute timesteps were 
slightly predominant (40%). As expected, many of the studies using 
radar data often take advantage of high temporal resolution due to more 
advanced technologies used in radar stations. Despite the availability of 
high-tech rain gauge stations to capture rainfall with high resolution, 
many countries are still using relatively old rain gauge stations (NCAR, 
2012; Wu et al., 2020). Furthermore, the majority of the rainfall radar 
data (60%) had a spatial resolution of 1Km while 34% of radar data also 
had a finer resolution of less than 1 Km. A few studies recommended the 
most appropriate data resolutions for obtaining a satisfactory perfor-
mance as temporal resolution of smaller than 15 min (Ochoa-Rodriguez 
et al., 2015) and spatial resolution of less than 1 Km (Ochoa-Rodriguez 
et al., 2015). Wang et al. (2019) also confirmed spatial resolutions 
greater than 1 Km can be unsuitable for urban flooding simulation. 

Martens et al. (2013) also showed using the data with higher tem-
poral resolution outperforms the data with the finer spatial resolution 
for obtaining more accurate estimates. However, Schaller et al. (2020) 
argued that using data with either higher temporal resolution or finer 
spatial resolution cannot necessarily result in more accurate flood pre-
dictions in comparison to when the resolution of different data resources 
are overridden. They argued that attempts to provide data resources 
with the same resolution may result in more achievement rather than 
trying to find data with better resolution. 

3.2. Flow measurement of UDS 

The flow of the surface runoff discharged into UDS is usually 
measured at gauging stations and expressed as either flow or chamber 
water depth. This measurement at multiple points of UDS is an essential 
variable used for RTFF (Swain et al., 2018). The chamber water depth/ 
flow measured in a conduit of UDS comprise various flows listed in 
Table 7. It can include surface runoff collected from the catchment and 
discharged into the UDS, sanitary sewage (if the sewer is combined), 
infiltration into the conduit, leakage/exfiltration into the ground and 
evaporation (Met Office, 2020; DEFRA, 2021). 

Sanitary sewage typically with a diurnal pattern adds an extra load in 
combined sewer systems and reduces the capacity of UDS for carrying 
surface runoff during a flood (Troutman et al., 2017). This issue is 
suitably covered in CSO cases, especially in data-driven models. Fluvial 
flooding occurs when UDS’s water flow spills onto the urban surfaces. 

These excessed flows have different hydrodynamic characteristics 
including (1) usually appearing earlier than surface runoff (pluvial 
flood) in UDS, and (2) failure in draining can happen everywhere of UDS 
length, whereas usually, UDS’s drainage points are more vulnerable in 
surface runoff (Hamill, 2011; Tanaka et al., 2020). Selected studies have 
been focused on the prediction of pluvial flood in UDS and fluvial flood 
is indexed in the inundated urban flood maps or risk assessment of urban 
catchments (Shih et al., 2019; Geravand et al., 2020). Other flows such 
as leakage from conduits, evaporation from the water surface of open 
conduits and infiltration into conduits contribute to the total flow of 
conduits. These parameters are practised in physical models very well 
but are not focused on the data-driven models. However, While they can 
add noise on chamber water depth data without any uniform recognis-
able pattern and reduce the model accuracy, they have been not 
captured completely in the data-driven models (Ravazzani et al., 2016; 
Courdent et al., 2018; Fidal and Kjeldsen, 2020). 

3.3. Catchment and weather characteristics 

There are some key features in the catchment and weather such as 
soil moisture, evaporation of surface runoff, air temperature and mois-
ture, and wind characteristics that have a key role on RTFF modelling in 
UDS. They are summarised in Table 8 and described below. 

Soil moisture and its effects on soil infiltration is an important 
parameter required for the estimation of surface runoff (Li et al., 2018; 
Dao et al. 2020a). In the concept of data-driven models, only a few 
studies focus on this parameter. Courdent et al. (2018) argued that the 
soil moisture in rainfall-runoff modelling can be considered in two parts 
of fast and slow. While the fast part directly enters UDS, the slow one 
infiltrates with a considerable lag time. Fidal and Kjeldsen (2020) also 
showed the accuracy of rainfall-runoff simulation increases by 12% 
when the soil moisture is included. 

Weather characteristics such as wind flow pattern (speed and di-
rection), air temperature and air moisture regularly reported by weather 
stations (DEFRA, 2021) are considered as main weather parameters in 
RTFF. wind flow patterns can also affect the speed of rainfall movement 
and the direction pattern of rain (Figueroa et al., 2020; KC et al., 2021). 
Besides, high air temperature and low air moisture can prevent rainfall 
from reaching UDS by evaporation (Rubinato et al., 2019). The use of 
wind flow patterns for the estimation of surface runoff has almost been 
overlooked in RTFF modelling. Similarly, evaporation was not precisely 
be used for RTFF models although some studies used simple statical 

Fig. 3. Global distribution of installed rain gauge stations (NCAR, 2012).  
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equations for calculating daily evaporation (Olsson et al., 2017; Cour-
dent et al., 2018; Fidal and Kjeldsen, 2020). 

3.4. Missing data 

While the performance of the RTFF models depends on data avail-
ability, missing data that are a common occurrence can affect the 
model’s performance significantly (Sharifi et al., 2016). Missing data 
occur when part of the data is not available mainly due to equipment 

failures, database loss, no data accessibility and no allowance to publi-
cise (Kamwaga et al., 2018; Brunner et al., 2021). Aissia et al. (2017) 
recommended three approaches when dealing with incomplete or 
missing data as (1) selecting only continuous data records and neglect-
ing events with missing data, (2) removing minor gaps from the dataset 
and considering the remaining data as a continuous dataset, (3) infilling 
gaps with suitable imputation techniques such as linear regression, 
double mass curve technique and subsidiary rainfall-runoff modelling. 
The first two approaches may either remove a large part of the dataset or 
be impossible when dealing with time-series data. However, the third 
one seems more efficient despite skewing the existing patterns recog-
nised by original data (Aieb et al., 2019). 

While there are no clear guidelines for data imputation in the context 
of UDS’s missing data, infilling gaps have been widely used for rainfall 
prediction or non-urbanised flood forecasting (Aires, 2020; Kamkhad 
et al., 2020). Specific methods used for infilling missing data include the 
simple mean value of available data (Anbarasan et al. 2020), data 
mining techniques such as the K-Nearest Neighbours method (Motta 
et al. (2021) and empirical regression methods (Kamwaga et al. 2018). 
Dumedah et al. (2014) also applied 14 different artificial neural net-
works (ANN) and statistical methods for infilling missing soil moisture 
records in flood forecasting and showed ANN is the best suited infilling 
method. However, this issue needs to be more focused on RTFF in the 
UDS context. 

3.5. Data cleaning 

Data cleaning is defined as the process of identification and removal 
of irrelevant and outlier data to increase the accuracy of data-driven 
modelling (Brunner et al., 2021). Although hydrological data are usu-
ally collected continuously for both dry and wet weather (Fig. 5, rainfall 
and runoff data may only be needed during wet weather. Chamber water 
depth in the UDS conduits can change as a result of several reasons 
including (1) sanitary sewage discharged into combined UDS, (2) 
leakage/exfiltration or infiltration, and (3) flood from the UDS catch-
ments. (Rahmati et al., 2020; Brunner et al., 2021). Hence, the time- 
series data during dry weather (i.e. 1 and 2 in Fig. 5) or wet weather 
with no changes on chamber water depth (i.e. 3 in Fig. 5) can be 
removed from the analysing period. Removal of irrelevant data can 
improve the computational time of building data-driven models and 
enhance the accuracy of estimations. Such data cleaning techniques 
have been considered in a few studies such as the warehouse method 
such as a data mining technique used to classify data in urban flood 
databases (Wu et al. 2020) and the surrogate model for data assimilation 
(Lund et al. 2019). While there is no general guideline for flood event 
identification specifically in urban areas (Darabi et al., 2019; Rahmati 
et al., 2020), classification techniques such as data mining methods and 
their application in event identification can be promising for future 
works. 

When using flood events in the RTFF in UDS, other important factors 
for the prediction accuracy are the numbers of rainfall events and their 
return periods. Obviously, the more the number of rainfall events and 
the longer return periods in the dataset, the better model performance 
and accuracy we can expect. Analysis of the RTFF in UDS in Fig. 6 shows 
only a small proportion of studies (19%) benefited from a large number 
of events (i.e. over 1000 events) whereas the majority (73%) used less 
than 100 events in the RTFF. Furthermore, a similar proportion of the 
studies (17%) used rainfall with maximum return periods of over 10 
years while almost half of the studies (48%) employed rainfall events 
with less than a one-year return period. While storms with a return 
period of over 5 years are used for UDS design (Hamil, 2011; DEFRA, 
2021), the existing data-driven models for RTFF have mainly relied on 
events with short return periods as they may suffer from the lack of 
sufficient accessible or reliable data or alternatively prefer to focus on 
more frequent events. 

Table 5 
Recent Merging techniques of rain gauge and radar station data in recent studies.  

Case study Merging techniques Reference 

Bias 
adjustment 

Interpolation Integration 

Hong Kong – Plausible 
probability 
distribution 

– Jiang and 
Tung, (2013) 

Flanders, 
Belgium 

Multiquadric 
surface fitting 

– – Martens 
et al., (2013) 

Lower 
Saxony, 
Germany 

– Kriging with 
external drift, 
Conditional 
merging 

– Berndt et al., 
(2014) 

Cévennes- 
Vivarais, 
France 

Quantitative 
precipitation 
estimates 

Ordinary 
Kriging, Kriging 
with external 
drift 

– Delrieu et al., 
(2014) 

Copenhagen, 
Denmark 

Time- 
dynamic 
adjustment 

– – Lowe et al., 
(2014) 

UK Multiquadric 
surface fitting 

Kriging – Jewell and 
Gaussiat, 
(2015) 

North of 
England 

– Ordinary 
Kriging, 
Kriging, Kriging 
with external 
drift 

– Nanding 
et al., (2015) 

Lower 
Saxony, 
Germany 

– Kriging with 
external drift, 
Conditional 
merging 

– Rabiei and 
Haberlandt, 
(2015) 

North of 
England 

Exponential 
correlations 

– – Rico-Ramirez 
et al., (2015) 

London, UK – – Bayesian 
data 
merging 

Wang et al., 
(2015) 

Odense, 
Denmark 

– Static and 
dynamic 

– Borup et al., 
(2016) 

Cévennes- 
Vivarais, 
France 

Quantitative 
precipitation 
estimates 

Ordinary 
Kriging, Kriging 
with external 
drift 

– Boudevillain 
et al., (2016) 

Sydney, 
Australia 

– Nonparametric 
and Dynamic 
combinatorial 

– Hasan et al., 
(2016) 

Northern 
Finland 

– Kriging – Pulkkinen 
et al., (2016) 

Bethlehem, 
Jerusalem 

– Combination 
and Multiday 
aggregation 

– Bárdossy and 
Pegram, 
(2017) 

Northern 
England 

– Kriging – Cecinati 
et al., (2017) 

Helsinki, 
Finland 

Mean-field 
bias 

Advection – Niemi et al., 
(2017) 

Catchment in 
Paris 

– Classical 
statistical 
analysis 

– Paz et al., 
(2017) 

Busan, Korea – Conditional 
merging 

– Dao et al., 
(2020a) 

Seoul, Korea – Ordinary 
Kriging 

– Dao et al., 
(2020b) 

Zhengzhou, 
China 

– Kriging – Wu et al., 
(2020)  

F. Piadeh et al.                                                                                                                                                                                                                                  



Journal of Hydrology 607 (2022) 127476

9

4. Model development 

Models developed for urban flood forecasting are mostly classified 
based on the model structure and spatial extension (Salvadore et al., 

2015; Sitterson et al., 2017). The three typical structures of urban flood 
forecasting models are physical, conceptual and empirical as defined 
and compared in Table 9. Physical models are basically hydraulic 
models that simulate flood events based on physical laws and theoretical 
principles with hydrological and hydraulic data (Muller and Haberlandt, 
2018; Wang et al., 2019). Although these models have significant ad-
vantages, their disadvantages are known as requiring extreme detail and 
various data (Macchione et al., 2019; Li, 2020). 

Despite the physical models that are used mostly for UDS design, 
empirical models are mostly applied to RTFF in UDS. Using physical 
models in RTFF can be challenging due mainly to (1) high demand for 
geospatial data such as sewer networks and high-resolution topography 
for developing a numerical urban flood model which is constantly 
altered by intense human activities, (2) inability to simulate urban flood 
forecasting in a real-time or near real-time, and (3) poor performance in 
ungauged areas because the model parameters may not be well- 
calibrated or the calibration can be sophisticated when physical condi-
tions change (Yin et al., 2017; Abou Rajeily et al., 2018; Yin et al., 2020) 
(4) lack of proper sampling design or strategy for collecting measure-
ment data to be used for model calibration (Behzadian et al., 2009). 
Hence, the physical models have been mainly used for UDS design 
purposes under specific return periods of rainfall or certain predicted or 
historic rainfall data rather than real-time flood predictions based on 
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Fig. 4. Dashboard of techniques to merge rain gauge-radar data (out of 21 papers).  

Table 6 
Temporal and spatial resolutions of rainfall data in the collected studies (out of 
48 papers).  

Resolution classification  Rainfall source  

Rain gauge  Rainfall radar 

a) Temporal (minutes) 
<15  29%  73% 
15  40%  17% 
15 < 31%  10%  

b) Spatial (Km) 
<1  –  34% 
1  –  60% 
1 < –  6%  

Table 7 
Description and role of main elements of UDS’s chamber water depth 
fluctuation*  

Element Definition Effects on RTFF in UDS 

Surface runoff Flow, running off the land 
surfaces and finally is 
discharged into UDS. 

The main cause of urban 
flooding 

Diurnal pattern of 
sewage 

A pattern of generated 
domestic wastewater, which 
recurs during day or month. 

Plays a vital role in 
combined system overflow 
(CSO) by loading water 
during rainfall occurrence. 

Fluvial flow Flow, Transferred from direct 
raining over the UDS 

Chamber water depth 
response to fluvial flow 
faster than surface runoff 

Leakage UDS flow transmitted to 
neighbouring soil layers due 
to structural failures. 

Make noise on chamber 
water depth data because 
are completely variable 
and usually hardly can be 
captured. 

Evaporation from 
the water surface 
of open conduits 

The proportion of UDS’s 
water turning into water 
vapour 

Infiltration Slow response and lateral 
groundwater flow, infiltrated 
by neighbouring soil layers, 
loads to UDS, suffering from 
structural failures. 

*: Inspired from Lund et al. (2019), Fidal and Kjeldsen (2020), Wu et al. (2020), 
AMS (2020), Met Office (2020) and DEFRA (2021). 

Table 8 
Key features of catchment and weather characteristics in RTFF in UDS*  

Parameters Definition in flood 
forecasting community 

Impact on RTFF 

Soil moisture The water content of the soil 
before flood occurrence 

Conversion rate to surface 
runoff and lag time to 
reach the entry of UDS 

Wind flow patterns Speed and direction of the 
wind during rainfall 

Influence rainfall 
estimates by specifying 
the direction and speed of 
raining 

Air temperature, air 
moisture and 
Evaporation of 
surface runoff 

The amount of water vapour 
in the air and the kinetic 
energy of air, which results 
in the specification of the 
proportion of surface runoff 
turning into water vapour 
before reaching UDS. It 
mainly depends on air 
temperature, air moisture 
and previous rainfall 

Disappearing surface 
runoff before reaching 
UDS 

*: Inspired by Hamil (2011), Yao et al. (2016), Zhu et al. (2016), Birkinshaw 
et al. (2020) and Liu et al. (2020). 
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rainfall data records (García et al., 2015; Garofalo et al., 2017; Nkwu-
nonwo et al., 2020). To overcome this, advanced empirical models with 
interconnected time-series data were developed (Tian et al., 2019; Xu 
et al., 2020). These models can be made by training through several 
observed input and output data without any restrictions of prior 
knowledge about hydrological processes and can be adapted by real- 
time data frequently (Ravazzani et al., 2016). However, the accuracy 
of these data-driven models heavily relies on the accuracy of input data 
(Zhang et al., 2018; Xu et al., 2020). Furthermore, estimations may be 
highly inaccurate for extrapolated events that were not used within the 
scope of input data of the model development (Zhao et al., 2019; Wu 
et al., 2020). Finally, as a trade-off between physical and empirical 
models, conceptual models were defined based on the knowledge and 
relationships of the hydrological processes without using physical data 
(Ben et al., 2019; KC et al., 2021). 

Three main approaches found in the literature to improve the quality 
of the RTFF in UDS (A list of recently developed models used in real case 
studies of flood forecasting in UDS is shown in Table 10 with a dash-
board summary in Fig. 7) are as follows: 1) optimisation methods for 
calibration of model parameters, 2) hybridisation approach by adding 
AI-based methods to existing physical models, and 3) alternative con-
ventional or dynamic ANN models to predict longer steps ahead 
compared to physical models. 

The vast majority of the optimisation models have been introduced 

recently such as Evolutionary Algorithms e.g. Memetic Algorithms and 
Particle Swarms Optimisation for calibration of model parameters in the 
other contexts rather than RTFF in UDS (Rajput and Datta, 2020; Raut 
et al., 2021). However, a few of them were used to advance physically 
based models in UDS. Genetic Algorithm and Particle Swarm Optimi-
sation have been the most popular approaches that were used for 
optimal calibration, design and operation of UDS that were mainly 
simulated by Storm Water Management Model (SWMM). 

Overall, urban flood forecasting Models have been developed for 
three main purposes, including flood inundation and understanding the 
surface runoff risk, design of UDS due to flood occurrence, and chamber 
water depth prediction. Most of the studies have relied on the first two 
purposes. Out of 35 studies published in the last decade, 77% were 
published in the recent five years showing great interest in urban flood 
forecasting in UDS. However, an increasing rate of studies for using 
data-driven methods indicate the special attention to these models due 
mainly to more availability of real-time data, improved computational 
efforts in the recent software and hardware and AI enhancement. This 
progress has also allowed researchers to use both data-driven and con-
ceptual/physical models as a hybrid approach. For example, Bermúdez 
et al. (2018) coupled deep learning techniques such as gradient boosting 
decision tree (GBDT) to enhance the prediction of urban floods and 
concluded that hybrid methods can perfectly cover the drawback of both 
empirical and physical models. 

Time span 
(1) (4) (2) (3) 

Rainfall intensity 
(B) (B)(A) (A) (A) 

(a) 

(b) 

(

(

C
ha

m
be

r 
w

at
er

 d
ep

th
 in

 U
D

S 
R

ainfall depth 

Key:
(A): Dry weather (1): Sanitary sewage  
(B): Wet weather (Rainfall) (2): Leakage 
(a): Normal chamber water depth (3): No chamber water depth changes due to surface runoff evaporation 
(b): Full capacity of UDS (4): Event: Flood from the UDS catchments

Fig. 5. The schematic variation of rainfall and chamber water depth in the UDS catchments.  
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Physical and empirical models account for the majority of those 
developed in the recent decade for forecasting urban flooding (Fig. 7a). 
The relatively equal usage of the three spatial resolutions (i.e. lump, 
semi-distributed and distributed models) in the developed models 
(Fig. 7b) can also indicate the importance and interest of all spatial 
resolutions for model developers. However, results show that empirical 
models are mostly developed by lumped spatial resolution, whereas 
physical models have used the distributed option. 

Furthermore, in the past, academic research has favoured the 
development of physical and empirical models over data-driven ones, 
but this trend is changing now. Among empirical models developed 

recently for urban flood modelling as shown in Fig. 7d, Curved Number 
Method (CNM) and artificial neural network (ANN) are the most used 
methods in recent years (Yin et al., 2017; Dao et al., 2020a). The CNM 
techniques have been further advanced by including spatial variability, 
more accurate data collection, and hiring finer data resolution (Yin 
et al., 2020; Birkinshaw et al., 2020). Furthermore, ANN has been used 
to upgrade the physical models (Bermúdez et al., 2018; Li, 2020). Only 
about 20% of the 37 studies reviewed here applied AI for the RTFF in 
UDS. Those studies used deep learning models to find a relationship 
between time-series rainfall data and water depth of conduits in UDS for 
predicting the water depth in the future time steps. Mounce et al. (2014) 
used conventional ANN to predict water depth in sewer chambers up to 
3h ahead using time-series of rainfall radar and gauging station data in 
UDS. Chang et al. (2014) used recurrent ANN for urban flood control and 
compared the performance of convolutional ANN with dynamic ANNs, 
particularly nonlinear autoregressive network with exogenous inputs 
(NARX). Their results showed NARX models outperform other models 
for prediction accuracy in longer periods due to the memory capability 
in processing the variable-length sequences of inputs and creating 
feedback connections enclosing several layers of the network. Abou 
rjeily et al. (2017) showed NARX model can effectively predict flood in a 
complex UDS for both minor and severe storm events. Finally, Zhange 
et al. (2018) applied a dynamic ANN method called long short-term 
memory (LSTM) for monitoring combined sewer overflow and showed 
conventional ANN models can only forecast one or two steps ahead 
accurately while LSTM has the capability for predicting multiple steps 
ahead especially for multivariate time series data. 

Despite the promising results reported for applying the AI-based 
methods (e.g. ANN, support vector machine models, adaptive neuro- 
fuzzy inference system and decision tree method) to RTFF of non- 
urbanised areas (Mosavi et al., 2018; Zounemat-Kermani et al., 2020; 
Zounemat-Kermani et al., 2021), these applications are in the early stage 
of development for urban areas. Hence, the RTFF in UDS is expected to 
improve through any of the above approaches with significant research 
modelling methods and experimentation for further improvement. 

4.1. Performance assessment 

As part of the model development, its performance needs to be 
evaluated basically by comparing the model outputs with the corre-
sponding measurements for the data not used for the model develop-
ment (Dal et al., 2017). The performance assessment can also be along 
with adjusting the model parameters that are typically called model 
calibration and validation. After the model calibration, the model per-
formance can be tested for future events and unseen data. Performance 
assessment can be carried out through key performance indicators 
(KPIs) represented as either model accuracy of predictions or compu-
tational effort (time). 

Table 11 lists typical KPIs used in the recent studies of the RTFF in 
UDS. As the main goal of the RTFF is to give time for early actions to 
reduce the flood risks, the maximum time spent by the model to process 
the data and predict the flood is an important factor for relevant au-
thorities to select the model for their operations. However, this issue is 
not focused very well in the papers. The first approach to measure is 
computational time, i.e. time spent on performing computational pro-
cesses. However, this parameter highly depends on the characteristic of 
system configuration and cannot be compared for different developed 
models that are presented all around the world. Therefore, the number 
of iterations for iterative-based models is introduced as a surrogate KPI 
for the computational time by Abou Rjeily et al. (2017). In this 
approach, correlation between the model accuracy and the number of 
iteration was investigated to specify the model performance. 

Prediction range is the other factor that shows the model perfor-
mance. As the main goal of the RTFF is to give sufficient time for early 
actions to reduce the flood risks, the maximum prediction range is an 
important factor for relevant authorities to select the model for their 

Table 9 
Classification of structure in the UDS flood forecasting models*  

Characteristics Type 

Empirical Conceptual Physical 

Definition A data-driven 
model, making a 
non-linear 
relationship 
between inputs and 
outputs 

Simplified 
equations 
interpret runoff 
processes by 
connecting 
components in 
the overall 
hydrological 
process 

hydraulic models 
translating physical 
laws and 
theoretical 
principles on real 
hydrological 
responses. 

Strengths  - Easy to develop  
- A small number of 

input parameters  
- More accurate 

outputs for short- 
time forecasting  

- Usually fast run 
time and short 
computational 
efforts  

- Easy to 
calibrate  

- Simple model 
structure  

- More physical 
elements than 
empirical 
models  

- Fewer inputs 
than physical 
models  

- Avoid non- 
physical outputs  

- Able to handle 
future long-term 
forecasting  

- Use of previous 
experienced 
knowledge 

Weaknesses  - Unreasonable 
estimations for 
extrapolated 
events  

- Performance is 
highly dependent 
on the accuracy of 
input data  

- Capability limited 
to its 
development 
context  

- Need training 
process  

- Spatial 
variation is not 
considered  

- The required 
large number of 
input parameters 
for calibration 
and sometimes 
simplifying 
assumptions  

- Restricted to the 
degree of 
phenomena’s 
understanding 

Best use  - Ungagged 
locations  

- When only runoff 
output is required  

- When there is a 
lack of site- 
specific details  

- When the model 
is heavily 
independent of 
experimental data  

- -When access 
to physical 
data is limited  

- When physical 
data are 
available  

- When more 
detailed analysis 
and design are 
required  

- Where a high 
level of spatial 
resolutions is 
required 

Representation 
of event  

- Usually, black 
box1  

- Mostly grey 
box2  

- White box3 

Spatial 
processes  

- Lumped4  - Mostly semi- 
distributed5  

- Mostly 
Distributed6 

*: Inspired from Wagener et al. (2004), Gosain et al. (2009), Jajarmizadeh et al. 
(2012) and Sitterson et al. (2017). 
1: Various data are transformed into predictions without understanding features 
and transparency in modelling processes. 
2: A partial theoretical structure is combined with data for modelling. 
3: Generated output and the relationship between variables can be physically 
demonstrated. 
4: A model disregarding spatial variability and treats the entire UDS as one unit. 
5: A model considering a series of lumped and distributed parameters. 
6: A model accounting UDS with spatial resolutions. 
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operations. However, the number of time steps ahead for prediction of 
urban flood in recent studies has been limited to short-term mostly be-
tween 15 min to 90 min (See Table 11). These studies show that the 
accuracy of predictions made for periods longer than 60 min have been 
reduced significantly. Note that some physically based parameters such 
as catchment area and time of concentration can influence the perfor-
mance of model predictions. For example, the accuracy of model 

predictions for larger catchment areas can be lower than those for 
smaller catchment areas. Also note that the impact of these parameters 
are likely to be negligible temporally and spatially for small catchment 
areas or short times of concentration. As a result, this poor performance 
can be translated as the deficiency of current RTFF in UDS to provide 
accurate predictions for longer periods, which need more attention in 
future works. 

Table 10 
Recent urban flood forecasting models applied for UDS.  

Case study Rainfall-runoff modelling method Used AI models for real- 
time forecasting 

Reference 

Model structure Spatial resolution 

Empirical Conceptual Physical Lumped Semi 
distributed 

Distributed 

UK ANN – – ●   ● Mounce et al., 
(2014) 

Taipei, Taiwan ANN – – ●   ● Chang et al., (2014) 
Dongguan, China – – SWM   ●  Chen et al., (2015) 
Beijing, China – – SWMM ●    Yao et al., (2016) 
Guangzhou, 

China 
– – SWMM  ●   Zhu et al., (2016) 

Odense, Denmark  – MIKE -Mouse   ●  Borup et al., (2016) 
Milano, Italy CNM – – ●    Ravazzani et al., 

(2016) 
Espoo, Finland – – SWMM   ●  Guan et al., (2016) 
Cosenza, Italy – – SWMM   ●  Garofalo et al., 

(2017) 
Malmo, Sweden HYPE – –  ●   Olsson et al., (2017) 
Barcelona, Spain CNM – – ●    Angrill et al., (2017) 
Shanghai, China CNM – –  ●   Yin et al., (2017) 
Helsinki, Finland – – SWMM   ●  Niemi et al., (2017) 
Lille, France ANN – SWMM   ● ● Abou Rjeily et al., 

(2017) 
Brunswick, 

Germany 
– – SWMM  ●   Muller and 

Haberlandt, (2018) 
Ghent, Belgium ANN Virtual storage –   ● ● Bermúdez et al., 

(2018) 
Copenhagen, 

Denmark 
– Nash linear 

reservoir cascade 
–  ●   Courdent et al., 

(2018) 
Lille, France – – SWMM   ●  Abou Rajeily et al., 

(2018) 
Drammen, 

Norway 
LSTM, GRU – – ●   ● Zhang et al., (2018) 

Melbourne, 
Australia 

– – MIKE urban  ●   Thrysøe et al., 
(2019) 

Lafayette Parish, 
USA 

– – SWM   ●  Wang et al., (2019) 

Northern China Hebei – –  ●   Tian et al., (2019) 
Badalona, Spain – Virtual tank –  ●   Ben et al., (2019) 
Copenhagen, 

Denmark 
– – MIKE urban   ●  Lund et al., (2019) 

UK LASSO, ANN – – ●   ● Zhao et al., (2019b) 
Joao Pessoa, 

Brazil 
– – SWMM  ●   Silva and Silva, 

(2020) 
Zhuhai, China – CaDDIES SWMM, MIKE 

21  
●   Yin et al., (2020) 

Salt lake, USA – – RBC SWMM   ●  Li, (2020) 
Zhengzhou, 

China 
GBDT, Data 
warehouse 

– – ●   ● Wu et al., (2020) 

Seol, South Korea CNM – – ●    Dao et al., (2020a) 
Xiamen Island, 

China 
– – SWM   ●  Liu et al., (2020) 

Munich, 
Germany 

CNM, I-Tree 
Canopy method 

– – ●    Xu et al., (2020) 

Great London, UK URMOD – – ●    Fidal and Kjeldsen, 
(2020) 

Newcastle, UK – – Shetran  ●   Birkinshaw et al., 
(2020) 

Kathmandu, 
Nepal 

– – PCSSWMM   ●  KC et al., (2021)  

AI: Artificial intelligence ANN: Artificial Neural Network CADDIES: Cellular Automata Dual DraInagE Simulation 
CNM: Curve Number method GBDT: Gradient Boosting Decision Tree GRU: gated recurrent unit 
LASSO: least absolute shrinkage and selection operator LSTM: long short-term memory NM: Not mentioned 
SCEM-UA: Shuffled Complex Evolution Metropolis SWM: Shallow Water Model SWMM: Storm Water Management Model  

F. Piadeh et al.                                                                                                                                                                                                                                  



Journal of Hydrology 607 (2022) 127476

13

Finally, although sensitivity analysis and uncertainty analysis 
methods have been widely used as an integral part of uncertainty as-
sessments and accuracy of model calibration, their potential benefits 
have not been fully revealed in the concepts of RTFF in UDS (Razavi 
et al., 2021). Nkwunonwo et al. (2020) stated that parameterisation data 
and sensitivity analysis were usually overlooked in this concept and lack 
of uncertainty analysis is identified as the main deficiency in the per-
formance assessment of real-time urban flood forecasting methods (Daal 
et al. 2017). As a result, the particular importance of including sensi-
tivity analysis and uncertainty analysis in any RTFF in UDS should be 
incorporated in the model results. 

5. Conclusions 

This paper used a bibliometric approach to conduct a critical review 
of the recent developments of real-time flood forecasting models in 
urban drainage systems. The review evaluated all steps of the RTFF 
models in UDS including data collection and preparation, model cali-
bration and performance assessment. The results demonstrated that 
there has been a surge of interest in the RTFF in UDS and this will 
continue to receive more attention in the future. The following points 
are concluded for future directions of the RTFF in UDS: 

-Rain gauge-radar merging methods have been mainly employed in 
large scale non-urbanised applications. However, most literature 
worked on RTFF in UDS, have been used a single rainfall source for their 
modelling mainly because other rainfall sources cannot provide required 
data resolution or they are not compatible with the main rainfall data 
source which needs to be merged with. As a result, the literature on the 

performance assessment of using multiple rainfall resources is needed to 
specify the applicability of data merging in the context of RTFF in UDS. 

-The rainfall merging techniques have been highly relied on the 
application of interpolation techniques, leading by kriging techniques 
and conditional merging techniques. However, there is a high demand to 
investigate the accuracy of integration techniques for urban data 
collection due to the successful application of this method in other hy-
drological applications. 

-Using satellite products alone or by merging with a rain gauge or 
radar data should be more practised to take the opportunity of extending 
the valuable prediction range for early actions as a result of early flood 
warning. 

-The effect of rainfall both spatial and temporal resolution on the 
accuracy of urban flood forecasting is recognised as an important 
research area that can be more focussed. 

-Diurnal pattern of sewage for combined system cases, leakage, 
fluvial flow, UDS’s infiltration and leakage rate, evaporation from the 
water surface of open conduits and should be dynamically accounted for 
building more accurate RTFF models. Furthermore, the dynamic role of 
soil moisture, wind flow pattern, air temperature and evaporation of 
surface runoff should be explored effectively to be included in these 
models. 

-Providing effective imputation techniques to infill the missing data 
as a pre-processing step is significant to have reliable data for the RTFF 
models in UDS. Data cleaning especially event identification needs to be 
considered properly for developing RTFF models. More specifically, data 
classification techniques, particularly data mining techniques, should be 
used to remove unnecessary data. 

                                                b) Spatial resolution 

        c) Type/percentage of physical models d) Type/percentage of empirical models 

37 

6 

49 

9 

0
5

10
15
20
25
30
35
40
45
50

Em
pi

ric
al

C
on

ce
pt

ua
l

Ph
ys

ic
al

H
yb

rid

%
 o

f t
he

 to
ta

l s
tu

di
es

 

30 

36 
33 

0

5

10

15

20

25

30

35

40

%
 o

f t
he

 to
ta

l s
tu

di
es

 

SWM
M  
60 

MIKE 
20 SWM 

15 

Others 
5 

CNM 
35 

ANN 
35 

Others 
29 

Fig. 7. Dashboard of recently developed rainfall-runoff models for flood forecasting in UDS (out of 37 studies).  
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-Physical models have been mostly used for the UDS design and few 
cases focus on RTFF models in UDS. While AI models such as NARX and 
LSTM have been revitalised in recent years, it seems that they are taken 
into account as first steps in this context. Consequently, further progress 
in applying these models is an imperative demand as a momentous 
future direction. 

-Computational time and prediction range should be more 
spotlighted in future studies as part of the performance assessment due 
to their role in offering sufficient lead time for taking preventive de-
cisions by operators. 

-Sensitivity analysis and uncertainty analysis should be more 
discovered for RTFF in UDS in order to cover the gap of calibration of 
model parameters and the uncertainty of model results. 
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Prediction 
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Results 

Mounce 
et al., 
(2014) 

NM 15, 60, and 
180 

Acceptable performance for 
15- and 60-minute 
prediction ahead. 180-min-
ute ahead of prediction 
loses its accuracy. 

Chang et al., 
(2014) 

NM 10, 20, 30, 
40, 50 and 60 

The accuracy of the model 
for 60-minute ahead is 
significantly reduced in 
comparison to other 
prediction ranges. 

Abou Rjeily 
et al., 
(2017) 

Numbers of 
iteration 

15 Regression results show 
nearly 100% of accuracy. 

Abou Rajeily 
et al., 
(2018) 

Numbers of 
iteration 

15 Regression results show 
nearly 100% of accuracy. 

Zhang et al., 
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NM 15, 30, 45, 
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The accuracy of the model 
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ahead is significantly 
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NM: Not Mentioned. 
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