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A Critical Review of Real-Time Modelling of Flood Forecasting in Urban Drainage Systems 1 

Farzad Piadeh a, Kourosh Behzadian a,1, Amir Alani a 2 

a School of Computing and Engineering, University of West London, St Mary’s Rd, London, W5 5RF, UK 3 

Abstract 4 

There has been a strong tendency in recent decades to develop real-time urban flood prediction models for 5 

early warning to the public due to a large number of worldwide urban flood occurrences and their disastrous 6 

consequences. While a significant breakthrough has been made so far, there are still some potential knowledge 7 

gaps that need further investigation. This paper presents a comprehensive review of the current state-of-the-8 

art and future trends of real-time modelling of flood forecasting in urban drainage systems. Findings showed 9 

that the combination of various real-time sources of rainfall measurement and the inclusion of other real-time 10 

data such as soil moisture, wind flow patterns, evaporation, fluvial flow and infiltration should be more 11 

investigated in real-time flood forecasting models. Additionally, artificial intelligence is also present in most 12 

of the new real-time flood forecasting models in UDS and consequently further developments of this 13 

technique are expected to appear in future works. 14 

Keywords: Artificial intelligence-based models; Data-driven models; Real-time flood forecasting; Urban 15 

drainage systems; Urban flood 16 
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1 Introduction 18 

Climate change has likely consequences in hydrology including extreme rainfall and changing precipitation 19 

patterns that both result in more urban floods and adverse effects on existing urban infrastructure (Rubinato 20 

et al., 2019; Balistrocchi et al., 2020). These effects result in loss of property particularly utility 21 

infrastructure and household assets, human and economy especially income in industries and transport 22 

interruption in trades (Miller and Hutchins, 2017; Konami et al., 2021). Figure 1 shows the geographical 23 

spread of flood occurrences and associated losses by country over the recent 30 years based on the data 24 

collected from CRED (2021). The figure shows developing countries especially in Asia and Africa have 25 

been dealing mainly with social damages i.e. human losses and affected populations while developed 26 

countries in Europe and North America have been mainly suffering from economic loss. For example, 27 

China and India as countries mainly affected by flood events in Asia are ranked first in the world for the 28 

average affected people per event whereas the top ranking of average human loss and economic loss are 29 

reported for Venezuela and Denmark, respectively. This unequal distribution shows the diverse effects of 30 

flood occurrence. Besides, in recent 30 years, floods have caused more than US$1,280 billion for the world 31 

economy, affect nearly 2 billion people around the world and kill about 214,000 (UNDRR, 2019). 32 

Therefore, it is of paramount importance for all involved parties including stakeholders, communities, and 33 

researchers to take proper actions and mitigate the risk of flood occurrence. Furthermore, the increasing 34 

need for new developments and urbanisation will probably exacerbate these consequences as natural 35 

drainage and open spaces in urban areas are routinely being modified or replaced with impervious drainage 36 

channels, paved and impermeable areas (Han and He, 2021). 37 

 38 
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 39 

(a)         (b) 40 

 41 

(c)         (d) 42 

Figure 1. Geographical occurrences of flood events (1990-2021): a) number of flood events, b) average human loss, c) 43 

average affected people, d) average economic loss  44 

Numerous structural measures have been developed such as blue-green infrastructure and stormwater 45 

management facilities to decline the adverse effects of floods (Li et al., 2020). However, non-structural 46 

approaches especially early flood warning systems have attracted more attention in recent decades due 47 

mainly to the time saving for development and operation, cost-effectiveness and no extra space or facilities 48 

required for new construction or physical modification (Berndtsson et al., 2019; Hadi pour et al., 2020). 49 

Early flood warning systems have been widely used for real-time forecasting of flood in the case of river 50 

basins, reservoirs, lakes, stream flows, mountainous areas, prairies, urban surface runoff and urban flooding 51 

in coastal cities (Hadid et al., 2020; Meyers et al., 2021). However, unique features of floods in urban and 52 

non-urban areas as listed in Table 1 need to be realised for any planning of real-time forecasting. These 53 

features can be used to determine the requirements for spatial and temporal data, types of flood modelling, 54 

the inclusion of potential flood impacts and key performance indicators. More specifically, real-time flood 55 

forecasting (RTFF) in urban drainage systems (UDS) typically requires modelling of distributed systems 56 
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with high spatial and temporal complexity, which is overstressed by spatial limitation as well as short 57 

preparation time (Zhao et al., 2019a; Mullapudi et al., 2020).  58 

Table 1. Main features of flood in urban and non-urban areas* 59 

Characteristics 
 Drainage systems 

 Urban areas  Non-urban areas 

Flood description  - Overflow of urban drainage infrastructures due to 

lack of proper drainage in an urban area 

 - Overflow or rise of water bodies such 

as rivers, streams, sea level and 

reservoirs 

Flood causalities  - Mainly fast surface runoff generated by rainfall  - Mainly high intensity of rainfall or 

accumulation of surface runoff 

Flood duration  - Between a few minutes to a couple of days  - Part of days to a week 

Spatial flood impacts  - Small areas i.e. streets to neighbourhoods, can be 

extended to all urban areas, but highly distributed 

 - Large scale such as vulnerable zones, 

and river riparian zones 

Spatial restrictions for 

flood management 

 - No flexibility in land surfaces or underground 

modification as previously occupied. 

- Fast variation in land use 

 - High flexibility in non-urban areas  

Main types of impacts  - Economic loss and business interruption 

- Human loss, 

- Mental and social problems 

- Urban structure and infrastructure damages 

 - Soil erosion 

- Wasting crops and livestock 

- Natural habitat loss 

- Water pollution 

- Reservoir or water infrastructure 

damages 
*: Inspired by Cools et al. (2016), Zhao et al. (2019b), Dao et al. (2020a) 

A significant breakthrough has been made over the recent decades to overcome some major challenges in 60 

the main steps of RTFF meaning “data collection and preparation”, “model development” and 61 

“performance assessment”. Multiple attempts have been made in the research works that focused on at least 62 

one of these three main areas of RTFF modelling. However, there are still some potential knowledge gaps 63 

that need further investigation. To address this, a few recent reviews given in Table 2 show thorough 64 

literature from various perspectives of concepts, models and tools for real-time forecasting of urban 65 

flooding. Data collection and preparation have been critically analysed by several researchers in recent 66 

years. McKee and Binns (2015) suggested some applicable data merging methods within the scope of 67 

hydrological models of urban flooding. Furthermore, Ochoa‐ Rodriguez et al. (2018) evaluated the 68 

capability of different data merging methods in the context of data resolution only. Daal et al. (2017) and 69 

Thorndahl et al. (2017) linked the data resources to “performance assessment” of urban flood forecasting 70 

without supporting model development. Daal et al. (2017) argued high demand for the model performance 71 

assessment is heavily affected by the lack of uncertainty analysis of input data. Thorndahl et al. (2017) 72 
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pointed out the accuracy of radar data through numerous examples of only hydrological models. Salvadore 73 

et al. (2015) critically analysed various modelling of urban hydrological processes and mapped the future 74 

trends of model development based on only data resolutions. García et al. (2015) and Nkwunonwo et al. 75 

(2020) reviewed several real-time control strategies and listed relevant models and software tools and 76 

finally more recently, Kourtis and Tsihrintzis (2021) analysed the impacts of climate change on UDS design 77 

and reviews the associated challenges. In summary, these reviews have mainly focused on urban flood 78 

forecasting with the aid of describing data requirements, developing models and measuring model 79 

performance, rather than discussing real-time forecasting models in the context of urban drainage systems. 80 

As a result, to the best of our knowledge, there is a lack of a critical and comprehensive review to provide 81 

knowledge on this context to enable the field of research and provide the articulation of current and future 82 

directions.  83 

Hence, extending the aforementioned works,  the overall objective of this paper is to review all advances 84 

of the real-time data-driven forecasting models of urban flooding and thereby demonstrating a 85 

comprehensive picture of the present approaches and highlighting future directions of real-time control of 86 

urban flooding. The current review is organised in the following four sections. The research design structure 87 

with the relevant bibliometric analysis used to select the peer-reviewed papers is first described. Data types 88 

and available data sources for developing RTFF models in UDS is then presented along with reviewing 89 

data merging techniques. Hydrological and hydraulic models for RTFF in UDS and their performance 90 

assessment are then analysed in the next section. Finally, conclusions are drawn by summarising key 91 

findings and making recommendations for future studies on RTFF in UDS. 92 
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Table 2. Recent literature reviews of urban flood forecasting and modelling  93 

Review topic 

 Covered issues based on main steps of urban flood forecasting models   

Reference 

 
 

 
 

 
   

   

 Specifying required data, providing recorded 

data, preparing the model input from collected 

data 

 Developing the model, 

training/setting up, and testing 

 Model validation and evaluating the 

efficacy of the model performance 

 

Identifying urbanised 

catchments’ hydrological 

modelling to map future 

modelling development. 

 

 NF1  Presenting urban hydrological 

processes, models based on only 

temporal and special resolutions of 

data  

 NF  Salvadore et 

al., (2015) 

Reviewing approaches of real-

time control and flood 

modelling in UDS 

 NF  Presenting several real-time control 

strategies, common relevant models 

and software tools  

 NF  García et al., 

(2015) 

Describing diverse methods 

for merging data, recorded by 

rain gauges and radar stations 

in the case of urban flooding 

 

 Reviewing available data types and data 

merging for hydrological models 

 NF  NF  McKee and 

Binns, (2015) 

Inspecting impact of 

removing uncertainty analysis 

and limited size of data in 

evaluation periods for the 

performance of real-time 

control in UDS 

 

 Interpreting uncertainty analysis of input data 

and their role in model performance  

 NF  Demonstrating demands for model 

performance assessment dealing with 

long-term historical data in one case study 

 Daal et al., 

(2017) 

Explaining the application of 

radar data for the 

enhancement of rainfall 

estimation in the concept of 

urban hydrology   

 Describing characteristics of radar data, in 

numerous UDS modelling examples 

 NF  Presenting the accuracy of radar data as 

the input data of urban hydrological 

models demonstrated on some specific 

models 

 Thorndahl et 

al., (2017) 

Discussing challenges and 

potential of different merging 

strategies in the concept of 

urban hydrology 

 Describing both rain gauge and radar data and 

evaluating merging methods based on data 

resolution only.  

 NF  NF  Ochoa‐
Rodriguez et 

al., (2018) 

Model development Performance assessment Data collection and preparation 
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Review topic 

 Covered issues based on main steps of urban flood forecasting models   

Reference 

 
 

 
 

 
   

   

 Specifying required data, providing recorded 

data, preparing the model input from collected 

data 

 Developing the model, 

training/setting up, and testing 

 Model validation and evaluating the 

efficacy of the model performance 

 

Discussing urban flood risk 

management for developing 

countries 

 NF  Providing significant materials in 

flood modelling, their status, as well 

as their strengths and weaknesses, 

Discussing uncertainties and their 

role in the model calibration 

 NF  Nkwunonwo et 

al., (2020) 

Challenge aspects of adapting 

UDS to climate change were 

defined, including hydrologic-

hydraulic design. 

 Investigating the impact of climate change on 

data sources  

 Reporting modelling approaches and 

applied software statistically 

 NF  Kourtis and 

Tsihrintzis, 

(2021) 

NF: Not focused 

94 

Model development Performance assessment Data collection and preparation 
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2 Research design and bibliometric tracking 95 

RTFF in UDS can be used for a wide range of assessments and applications such as risk assessment, deep-96 

learning visual assessment and GIS-based flood monitoring. The current review mainly focuses on 97 

scientific peer-reviewed papers studying real-time forecasting of water depth/ discharge in the urban sewer 98 

chambers over the last decade between 2011 and 2021. This is because this area of research has been 99 

advancing in recent years and is now placed as a central concern in many mitigation flood hazard attempts. 100 

Appropriate research works were collected from the Scopus search engine according to the guideline 101 

suggested by Moher et al. (2009). They were refined by a set of six search and screen strategies (S1-S6) 102 

demonstrated in Table 3. The search results started from 913 publications in S1 and were gradually 103 

narrowed down through the following steps S2-S3 and finally limited to a total of 67 studies that were then 104 

classified under three categories of studies as 48 for data collection (S4), 49 for model development (S5) 105 

and 62 for performance assessment (S6). Note that although the main focus of this review is flood 106 

forecasting in urbanised areas, non-urbanised flood forecasting is also reviewed to capture recently 107 

developed concepts in the field that can be used for future directions.  108 

Table 3. Flowchart of the search strategies in the study  109 
  Code  Search and screen strategy  Keywords 

 

 S1  Finding publications studying 

flooding in urban drainage 

systems 

 (Urban OR city OR Domestic) AND 

(flood OR pluvial OR fluvial OR 

storm) AND (runoff OR overflow OR 

discharge OR inundation) AND 

(drainage AND system OR network 

OR sewage OR wastewater OR 

separate OR combined OR Catchment) 

 S2  the results were limited to the 

last decade, English language 

articles, and journal papers 

only with searching under 

titles, keywords, and 

abstracts. 

 - 

   

   

   

 S3  The results were screened for 

RTFF papers 

 (Forecast OR predict OR estimate OR 

assess OR real-time OR monitor OR 

susceptibility OR analysis) 

 S4  The results were screened for 

rainfall data sources, and 

rainfall-runoff parameters 

and key variables. 

 (Rainfall OR rain OR storm OR 

precipitation) AND (satellite OR 

gauge OR radar OR station) OR 

(merge OR integration OR 

assimilation OR interpolation OR bias 

adjustment) OR (land AND use) OR 

(evaporation OR evapotranspiration) 
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OR (soil AND condition OR moisture 

OR layer) OR (infiltration OR leakage 

OR dry AND weather AND flow) OR 

(data AND missing OR filling Or 

cleaning OR imputation OR 

completion OR event AND 

identification) 

 S5  The results were divided and 

screened for modelling types 

 (Physical OR empirical OR 

conceptual) AND (lump OR semi-

distribute OR distribute) AND (model 

OR method OR data-driven OR 

algorithm) AND (hydrological OR 

Hydraulic) OR (water AND level 

AND depth) OR (discharge OR flow 

OR quantity) 

 S6  The results were screened for 

performance assessment 

approaches 

 (Performance OR Sensitivity OR 

efficiency OR indicator) AND (assess 

OR test OR coefficient) 

2.1 Bibliometric analysis 110 

Bibliometric analysis (BA) was first conducted for the collected publications as shown in Figure 2 for the 111 

geographical distribution of case studies and clustering analysis, density and timeline of keywords. The BA 112 

shows most of the relevant studies RTFF are from Europe (66%) and the three highest countries for these 113 

publications are the UK (17.5%), China (15.5%) and Denmark (10.5%). By comparing this with Figure 1, 114 

it relatively agrees with geographical locations of flood events generally for countries in Europe and 115 

America although it is only 7% in Asia mainly from China. Evidently, more studies related to RTFF in 116 

UDS may be required from Southeast Asia and South America to have a better balance between 117 

geographical locations of flood events and relevant publications.  118 

Analysis of knowledge domain bibliometric track (Figures 2b-d) was conducted by VOSviewer software 119 

for the collected publications based on co-occurrence of key terms for a specific unit of analysis (keywords, 120 

titles and abstracts), type of analysis (co-occurrence) and counting method (full counting). The findings of 121 

this analysis can support researchers to appraise close relationships between the frequency of co-occurred 122 

keywords in the publications and determine the directions of future studies by highlighting the core content 123 

of specific subjects (Goh and See, 2021). More specifically, three types of analysis were carried out here 124 

based on methodologies introduced by Ding et al. (2014) and Perianes-Rodriguez et al. (2016): (1) cluster 125 

analysis in Figure 2b: grouping a collection of keywords into multiple classes in which node size 126 
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representing the frequency of co-occurrence, links representing co-reference and colours representing 127 

different clusters, (2) density analysis in Figure 2c: extraction of the number of times that keywords appear 128 

in the publications; (3) timeline analysis in Figure 2d: mapping keywords onto the colour coded timespan 129 

of studies within the last decade.  130 

The three major clusters (green, blue and red) identified in Figure 2b show strong connections of keywords 131 

in those publications. More specifically, the green cluster mainly represented by "rainfall" is strongly 132 

connected with "radar" in the same cluster and is also related to data sources, data quality and data 133 

preparation techniques. The blue cluster recognised by "data" is connected with "time steps" and the main 134 

characteristics of “system" such as UDS, combined sewers. Both clusters are strongly connected to the 135 

"model" in the red cluster as the major focus of all papers. In other words, "Model" as the largest keyword 136 

represents the leading research area for RTFF in UDS. Similarly, the density of keywords in Figure 2c also 137 

confirms the majority of research topics in the last decade are mainly scattered around "data" and "model". 138 

This is also in line with the two main steps of the main steps of modelling in Tables 2 ("data collection and 139 

preparation" and "model development"). The colour coded visualization of the keywords in the studies in 140 

Figurer 2d shows how the research focus of frontiers of knowledge has changed over the past decade. More 141 

specifically, the research works were mainly dealing with rainfall data sources such as radar data at the 142 

beginning of the decade while exploring model and system were the primary focus in the middle of the 143 

decade and finally the studies were concentrated on specific issues such as climate change and urban 144 

flooding and the role of urbanisation in recent years.145 



 

11 

  146 

(a)             (b) 147 

                               148 

(c)             (d) 149 

Figure 2. Bibliometric analysis for the collected papers based on a) geographical distribution, b) cluster of keywords, c) density of keywords, d) timeline of keywords 150 
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3 Data collection and preparation 151 

RTFF models heavily rely on the types and quality of data collection and preparation for model 152 

development and performance assessment. Therefore, available data and measurements have a major 153 

impact on RTFF models in UDS. These data may be unavailable or inaccessible mainly due to the restriction 154 

in both temporal ad spatial gaps. The typical data required in RTFF modelling include “rainfall data”, “flow 155 

measurement of UDS” and “catchment and weather characteristics” (Thrysøe et al., 2019; Li, 2020). 156 

Rainfall depth and chamber water depth in UDS are the main data required whereas others are alternatively 157 

used for modelling when needed to enhance the model performance. These data are not necessarily the 158 

same as used in flood forecasting models that are applied for designing UDS. For example, some 159 

conventional parameters like land use, slops angles, catchment area, vegetation ratio, installed sustainable 160 

urban drainage systems and surface roughness which are routinely used for modelling UDS (Hamil, 2011), 161 

may not be required to capture as real-time data. Otherwise, some other variables need to be recorded and 162 

used in the real-time flood forecasting models which are the focus of this section.  163 

3.1 Real-time rainfall data sources 164 

Three main sources of real-time rainfall data widely used in hydrological science include telemetry ground 165 

rain gauges, rainfall radar data, and weather satellites, with the key features shown in Table 4. Rain gauge 166 

data are the most applicable and primary source of rainfall estimation and installed rainfall stations are 167 

currently spread all over the world (Figure 3). Rain gauges measure the accumulative depth of rainfall over 168 

a specific period (e.g. 15 minutes) for a given location to obtain representative rainfall measurements over 169 

the area. While rain gauge stations can provide an accurate point of measurement, they are subject to 170 

numerous sources of uncertainty that can limit their exclusive application in RTFF. Two main limitations 171 

of rain gauge data are: (1) the inability of point measurements to accurately characterise the spatial 172 

distribution of rainfall, and (2) high systematic and calibration errors (Dao et al., 2020a; Wu et al., 2020). 173 

To overcome this, a network of gauges constituting a series of gauges distributed throughout the area is 174 

recommended to provide a spatial distribution and approximate rainfall accumulations at ungauged areas 175 

(Jiang and Tung, 2013; Wu et al., 2020). However, there may be UDS with multiple sub-catchments 176 
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covered by just a few rain gauges which are not sufficient enough to provide accurate forecasting (Borup 177 

et al. 2016).  178 

Table 4. Key features of main rainfall data sources for RTFF*  179 

Characteristics 
 Rainfall data source 

 Rain gauge station  Rainfall radar station  Weather satellite 

Definition  A meteorological collection 

instrument positioned in an open 

space area. The precipitation is 

measured as the height of 

accumulated water per given time 

typically expressed in millimetres.  

 An echo-sounding system using the 

same arial transmitting signal and 

receiving the returned eco. The 

output is the pixeled image of a 

specific location with various 

indicated precipitation range. 

 Orbiting platforms with 

onboard instruments 

sensing data from the 

atmosphere and 

underlying surfaces 

Common types  Weighing bucket, tipping bucket, 

floating or natural syphon, optical 

and acoustic gauge 

 Different maximum quantitative 

ranges of radars particularly X-

band, C-band, and S-band 

 Geostationary and low 

earth orbiting 

Strength  - Measuring accepted ground data 

- Providing real-time data 

 - Strong ability to show the location 

of precipitation 

- Providing near real-time areal 

rainfall estimates over a wide area 

 - Desirable spatial and 

temporal coverage 

Weakness  - Inability to characterise the spatial 

distribution of rainfall 

- High systematic and calibration 

errors such as more sensitivity to 

strong winds, evaporation, splash-

out, valley effect, tree cover, 

building cover   

- Required relatively opened flat area 

 - Fail to satisfy the accuracy and 

resolution requirements, especially 

for displaying rainfall at the 

surface 

- Risen errors from technical and 

meteorological related causalities 

such as weather shadowing or 

terrain barriers 

 - Inability to provide 

high-resolution data in 

small watersheds 

Optimal practice  Points positioned near the stations or 

in the network of rain gauges  

 - Areas on where there are no 

sufficient rain gauge stations to 

provide appropriate data  

 When there is a high 

demand to obtain data in 

high coverage areas 

which can be used for 

suitable rainfall 

prediction with enough 

lead time 

*: Inspired by Acharya (2017), Maggioni and Massari (2018), AMS (2020), Met Office (2020), DEFRA (2021) 

 180 

 181 

Figure 3. Global distribution of installed rain gauge stations (NCAR, 2012) 182 
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In addition, the combination of more than one source of rainfall data can also be helpful to overcome the 183 

weaknesses and enhance the accuracy and confidence level of rainfall estimations. For example, rainfall 184 

radar estimates with the advantage of capturing the spatial distribution of rainfall and their variation in time 185 

were used to improve the accuracy of the data collected in rain gauge stations (Paz et al., 2017). Even with 186 

such a combination, they may still fail to satisfy the accuracy and resolution requirements for modelling 187 

urban hydrology (Wang et al., 2015). This is mainly because they are heavily dependent on radar 188 

environments such as visibility effects and variability in time and space (Pulkkinen et al., 2016; Cecinati et 189 

al., 2017). This situation can be improved by calibrating rain gauge stations through other sources especially 190 

the historic records of rainfall radar stations, which is known as merging techniques (McKee and Binns, 191 

2015; Boudevillain et al., 2016).  192 

Three basic techniques used for merging rain gauge and radar data are bias adjustment, interpolation and 193 

integration. Bias adjustment techniques are based on the correction of rain gauge data accumulations using 194 

radar data accumulations while interpolation techniques minimise the variance between the two 195 

measurement types. Furthermore, integration techniques proportionally combine rain gauge and radar data 196 

based on their relative uncertainty to minimise the overall estimation uncertainty. Table 5 lists recent 197 

applications of merging techniques with a dashboard summarised in Figure 4. As can be seen, interpolation 198 

techniques were used in almost 68% of relevant studies in which the majority of cases (59%) applied kriging 199 

techniques followed by the conditional merging technique (18%).  200 

While most of the studies used merging techniques for a single type of data source, only a few studies 201 

discussed a comparison of different merging methods. When using the Kriging method, Berndt et al. (2014) 202 

reported the measurement accuracy was increased by at least 14% and Nanding et al. (2016) showed 203 

measurement errors were cut down by half. However, Berndt et al., (2014) and Rabiei and Haberlandt 204 

(2015) proved conditional merging techniques outperformed other interpolation techniques. Besides, 205 

Delrieu et al. (2014) and Boudevillain et al. (2016) showed interpolation techniques can effectively increase 206 

the measurement accuracy when compared to bias adjustment for adjusting rain gauge precipitation 207 

estimates by radar data. Jewell and Gaussiat (2015) showed Kriging methods have more accuracy than Bias 208 
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adjustment especially when long-term data are predicted. Finally, Wang et al. (2015) argued that while 209 

integration techniques have more capability to increase the model accuracy than interpolation and Bias 210 

adjustment techniques, their applications have not much interest due mainly to the requirements for more 211 

model complexity, data records and higher computational efforts.  212 

Table 5. Recent Merging techniques of rain gauge and radar station data in recent studies 213 

Case study 
 Merging techniques   

Reference  Bias adjustment  Interpolation  Integration  

Hong Kong 
 

- 
 

Plausible probability distribution 
 -  Jiang and Tung, 

(2013) 

Flanders, Belgium 
 Multiquadric surface 

fitting 

 
- 

 -  
Martens et al., (2013) 

Lower Saxony, 

Germany 

 
- 

 Kriging with external drift, 

Conditional merging 

 -  
Berndt et al., (2014) 

Cévennes-Vivarais, 

France 

 Quantitative 

precipitation estimates 

 Ordinary Kriging, Kriging with 

external drift 

 -  
Delrieu et al., (2014) 

Copenhagen, 

Denmark 

 Time-dynamic 

adjustment 

 
- 

 -  
Lowe et al., (2014) 

UK 
 Multiquadric surface 

fitting 

 
Kriging 

 -  Jewell and Gaussiat, 

(2015) 

North of England 
 

- 
 Ordinary Kriging, Kriging, 

Kriging with external drift 

 -  Nanding et al., 

(2015) 

Lower Saxony, 

Germany 

 
- 

 Kriging with external drift, 

Conditional merging 

 -  Rabiei and 

Haberlandt, (2015) 

North of England 
 Exponential 

correlations 

 
- 

 -  Rico-Ramirez et al., 

(2015) 

London, UK 
 

- 
 -  Bayesian data 

merging 

 
Wang et al., (2015) 

Odense, Denmark  -  Static and dynamic  -  Borup et al., (2016) 

Cévennes-Vivarais, 

France 

 Quantitative 

precipitation estimates 

 Ordinary Kriging, Kriging with 

external drift 

 -  Boudevillain et al., 

(2016) 

Sydney, Australia 
 

- 
 Nonparametric and Dynamic 

combinatorial 

 -  
Hasan et al., (2016) 

Northern Finland 
 

- 
 

Kriging 
 -  Pulkkinen et al., 

(2016) 

Bethlehem, Jerusalem 
 

- 
 Combination and Multiday 

aggregation 

 -  Bárdossy and 

Pegram, (2017) 

Northern England 
 

- 
 

Kriging 
 -  Cecinati et al., 

(2017) 

Helsinki, Finland  Mean-field bias  Advection  -  Niemi et al., (2017) 

Catchment in Paris  -  Classical statistical analysis  -  Paz et al., (2017) 

Busan, Korea  -  Conditional merging  -  Dao et al., (2020a) 

Seoul, Korea  -  Ordinary Kriging  -  Dao et al., (2020b) 

Zhengzhou, China  -  Kriging  -  Wu et al., (2020) 
 214 
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 215 

Figure 4. Dashboard of techniques to merge rain gauge-radar data (out of 21 papers) 216 

While early flood warning systems need proper lead time (i.e. the time required for rain falling inside the 217 

catchment boundary to flow over the surface and discharge into the first entrance of UDS) to take the desired 218 

actions (Brunner et al., 2021), rain gauge and rainfall radar data may have limited special resolution of rainfall 219 

data, which results in the inability of models to provide accurate predictions for long-term ahead. To overcome 220 

this challenge, other studies on non-urban hydrology suggest exploiting new data sources especially weather 221 

satellites (Belete et al., 2020; Chen et al., 2021). The use of satellite products in urban rainfall estimates can 222 

support RTFF in UDS particularly in poorly gauged or radar areas and provide data with a higher range of 223 

spatial resolution (Islam et al., 2020; Kim et al., 2020). However, these data may suffer from a lack of high 224 

resolution for small watersheds such as urban areas, which may result in decreasing the accuracy of prediction 225 

(Azim et al., 2020; Brunner et al., 2021). This can be mitigated by merging satellite products with rainfall 226 

data sources for future works on RTFF in UDS. 227 

Other key factors of the rainfall data influencing the RTFF accuracy are temporal and spatial resolutions 228 

and historical duration/period of available data. Note that temporal resolution refers to the time between 229 

two subsequent data and spatial resolution particularly in rainfall radar refers to one side length of a single 230 

pixel in network data. Table 6 lists a summary of temporal and spatial resolutions for the two rainfall 231 

measurement sources including rain gauge and rainfall radar. It shows most rainfall radar data (73%) were 232 

used with a short (high) temporal resolution of fewer than 5 minutes for each timestep whereas various time 233 
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steps were used for rain gauge data although 15-minute timesteps were slightly predominant (40%). As 234 

expected, many of the studies using radar data often take advantage of high temporal resolution due to more 235 

advanced technologies used in radar stations. Despite the availability of high-tech rain gauge stations to 236 

capture rainfall with high resolution, many countries are still using relatively old rain gauge stations 237 

(NCAR, 2012; Wu et al., 2020). Furthermore, the majority of the rainfall radar data (60%) had a spatial 238 

resolution of 1Km while 34% of radar data also had a finer resolution of less than 1 Km. A few studies 239 

recommended the most appropriate data resolutions for obtaining a satisfactory performance as temporal 240 

resolution of smaller than 15 minutes (Ochoa-Rodriguez et al., 2015) and spatial resolution of less than 1 241 

Km (Ochoa-Rodriguez et al., 2015). Wang et al. (2019) also confirmed spatial resolutions greater than 1 242 

Km can be unsuitable for urban flooding simulation.  243 

Table 6. Temporal and spatial resolutions of rainfall data in the collected studies (out of 48 papers)  244 

Resolution 

classification 

 Rainfall source  

 Rain gauge  Rainfall radar 

a) Temporal (minutes)     

< 15   29%  73% 

15  40%  17% 

15 <  31%  10% 

b) Spatial (Km) 

   
 

< 1   -  34% 

1   -  60% 

1 <  -  6% 

Martens et al. (2013) also showed using the data with higher temporal resolution outperforms the data with 245 

the finer spatial resolution for obtaining more accurate estimates. However, Schaller et al. (2020) argued 246 

that using data with either higher temporal resolution or finer spatial resolution cannot necessarily result in 247 

more accurate flood predictions in comparison to when the resolution of different data resources are 248 

overridden. They argued that attempts to provide data resources with the same resolution may result in 249 

more achievement rather than trying to find data with better resolution.  250 

3.2 Flow measurement of UDS 251 

The flow of the surface runoff discharged into UDS is usually measured at gauging stations and expressed 252 

as either flow or chamber water depth. This measurement at multiple points of UDS is an essential variable 253 

used for RTFF (Swain et al., 2018). The chamber water depth/flow measured in a conduit of UDS comprise 254 
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various flows listed in Table 7. It can include surface runoff collected from the catchment and discharged 255 

into the UDS, sanitary sewage (if the sewer is combined), infiltration into the conduit, leakage/exfiltration 256 

into the ground and evaporation (Met Office, 2020; DEFRA, 2021).  257 

Table 7. Description and role of main elements of UDS’s chamber water depth fluctuation* 258 

Element  Definition   Effects on RTFF in UDS 

Surface runoff  Flow, running off the land surfaces and finally is 

discharged into UDS. 

 The main cause of urban flooding 

Diurnal pattern of 

sewage 

 A pattern of generated domestic wastewater, 

which recurs during day or month. 

 Plays a vital role in combined system 

overflow (CSO) by loading water during 

rainfall occurrence. 

Fluvial flow  Flow, Transferred from direct raining over the 

UDS 

 Chamber water depth response to fluvial 

flow faster than surface runoff 

Leakage  UDS flow transmitted to neighbouring soil layers 

due to structural failures. 

 Make noise on chamber water depth data 

because are completely variable and 

usually hardly can be captured.  

Evaporation from the 

water surface of open 

conduits 

 The proportion of UDS’s water turning into 

water vapour 

 

Infiltration  Slow response and lateral groundwater flow, 

infiltrated by neighbouring soil layers, loads to 

UDS, suffering from structural failures. 

 

*: Inspired from Lund et al. (2019), Fidal and Kjeldsen (2020), Wu et al. (2020), AMS (2020), Met Office (2020) and DEFRA (2021) 

 259 

Sanitary sewage typically with a diurnal pattern adds an extra load in combined sewer systems and reduces 260 

the capacity of UDS for carrying surface runoff during a flood (Troutman et al., 2017). This issue is suitably 261 

covered in CSO cases, especially in data-driven models. Fluvial flooding has occurred when UDS’s water 262 

spills onto the urban surfaces. These excessed flows have different hydrodynamic characteristics including 263 

(1) usually appearing earlier than surface runoff (pluvial flood) in UDS, and  (2) failure in draining can 264 

happen everywhere of UDS length, whereas usually, UDS’s drainage points are more vulnerable in surface 265 

runoff (Hamill, 2011; Tanaka et al., 2020). Selected studies have been focused on the prediction of pluvial 266 

flood in the UDS and fluvial flood is indexed in the inundated urban flood maps or risk assessment of urban 267 

catchments (Shih et al., 2019; Geravand et al., 2020). Other flows such as leakage from conduits, 268 

evaporation from the water surface of open conduits and infiltration into conduits contribute to the total 269 

flow of conduits. These parameters are practised in physical models very well but are not focused on the 270 

data-driven models. However, While they can add noise on chamber water depth data without any uniform 271 
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recognisable pattern and reduce the model accuracy, they have been not captured completely in the data-272 

driven models (Ravazzani et al., 2016; Courdent et al., 2018; Fidal and Kjeldsen, 2020). 273 

3.3 Catchment and weather characteristics 274 

There are some key features in the catchment and weather such as soil moisture, evaporation of surface 275 

runoff, air temperature and moisture, and wind characteristics that have a key role on RTFF modelling in 276 

UDS. They are summarised in Table 8 and described below.  277 

Table 8. Key features of catchment and weather characteristics in RTFF in UDS* 278 

Parameters  Definition in flood forecasting community  Impact on RTFF 

Soil moisture   

The water content of the soil before flood occurrence 

 Conversion rate to 

surface runoff and lag 

time to reach the entry 

of UDS 

Wind flow patterns  Speed and direction of the wind during rainfall  Influence rainfall 

estimates by specifying 

the direction and speed 

of raining 

Air temperature, air 

moisture and 

Evaporation of surface 

runoff 

 The amount of water vapour in the air and the kinetic energy of 

air, which results in the specification of the proportion of surface 

runoff turning into water vapour before reaching UDS. It mainly 

depends on air temperature, air moisture and previous rainfall 

 Disappearing surface 

runoff before reaching 

UDS 

  

*: Inspired by Hamil (2011), Yao et al. (2016), Zhu et al. (2016), Birkinshaw et al. (2020) and Liu et al. (2020) 

Soil moisture and its effects on soil infiltration is an important parameter required for the estimation of 279 

surface runoff (Li et al., 2018; Dao et al. 2020a). In the concept of data-driven models, only a few studies 280 

focus on this parameter. Courdent et al. (2018) argued that the soil moisture in rainfall-runoff modelling 281 

can be considered in two parts of fast and slow. While the fast part directly enters UDS, the slow one 282 

infiltrates with a considerable lag time. Fidal and Kjeldsen (2020) also showed the accuracy of rainfall-283 

runoff simulation increases by 12% when the soil moisture is included.  284 

Weather characteristics such as wind flow pattern (speed and direction), air temperature and air moisture 285 

regularly reported by weather stations (DEFRA, 2021) are considered as main weather parameters in RTFF. 286 

wind flow patterns can also affect the speed of rainfall movement and the direction pattern of rain (Figueroa 287 

et al., 2020; KC et al., 2021). Besides, high air temperature and low air moisture can prevent rainfall from 288 

reaching UDS by evaporation (Rubinato et al., 2019). The use of wind flow patterns for the estimation of 289 

surface runoff has been almost overlooked in RTFF modelling. Similarly, evaporation was not precisely be 290 
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used for RTFF models although some studies used simple statical equations for calculating daily 291 

evaporation (Olsson et al., 2017; Courdent et al., 2018; Fidal and Kjeldsen, 2020).  292 

3.4 Missing data 293 

While the performance of the RTFF models depends on data availability, missing data that are a common 294 

occurrence can affect the model's performance significantly (Sharifi et al., 2016). Missing data occur when 295 

part of the data is not available mainly due to equipment failures, database loss, no data accessibility and 296 

no allowance to publicise (Kamwaga et al., 2018; Brunner et al., 2021). Aissia et al. (2017) recommended 297 

three approaches when dealing with incomplete or missing data as (1) selecting only continuous data 298 

records and neglecting events with missing data, (2) removing minor gaps from the dataset and considering 299 

the remaining data as a continuous dataset, (3) infilling gaps with suitable imputation techniques such as 300 

linear regression, double mass curve technique and subsidiary rainfall-runoff modelling. The first two 301 

approaches may either remove a large part of the dataset or be impossible when dealing with time-series 302 

data. However, the third one seems more efficient despite skewing the existing patterns recognised by the 303 

original data (Aieb et al., 2019). 304 

While there are no clear guidelines for data imputation in the context of UDS’s missing data, infilling gaps 305 

have been vastly used for rainfall prediction or non-urbanised flood forecasting (Aires, 2020; Kamkhad et 306 

al., 2020). Specific methods used for infilling missing data include the simple mean value of available data 307 

(Anbarasan et al. 2020), data mining techniques such as the K-Nearest Neighbours method (Motta et al. 308 

(2021) and empirical regression methods (Kamwaga et al. 2018). Dumedah et al. (2014) also applied 14 309 

different artificial neural networks (ANN) and statistical methods for infilling missing soil moisture records 310 

in flood forecasting and showed ANN is the best suited infilling method. However, this issue needs to be 311 

more focused on RTFF in the UDS context. 312 

3.5 Data cleaning 313 

Data cleaning is defined as the process of identification and removal of irrelevant and outlier data to increase 314 

the accuracy of data-driven modelling (Brunner et al., 2021). Although hydrological data are usually 315 
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collected continuously for both dry and wet weather (Figure 5), rainfall and runoff data may only be needed 316 

during wet weather. Chamber water depth in the UDS conduits can change as a result of several reasons 317 

including (1) sanitary sewage discharged into combined UDS, (2) leakage/exfiltration or infiltration, and 318 

(3) flood from the UDS catchments. (Rahmati et al., 2020; Brunner et al., 2021). Hence, the time-series 319 

data during dry weather (i.e. 1 and 2 in Figure 5) or wet weather with no changes on chamber water depth 320 

(i.e. 3 in Figure 5) can be removed from the analysing period. Removal of irrelevant data can improve the 321 

computational time of building data-driven models and enhance the accuracy of estimations. Such data 322 

cleaning techniques have been considered in a few studies such as the warehouse method such as a data 323 

mining technique used to classify data in urban flood databases (Wu et al. 2020) and the surrogate model 324 

for data assimilation (Lund et al. 2019). While there is no general guideline for flood event identification 325 

specifically in urban areas (Darabi et al., 2019; Rahmati et al., 2020), classification techniques such as data 326 

mining methods and their application in event identification can be promising for future works. 327 

 328 

Figure 5. The schematic variation of rainfall and chamber water depth in the UDS catchments 329 

When using flood events in the RTFF in UDS, other important factors for the prediction accuracy are the 330 

numbers of rainfall events and their return periods. Obviously, the more the number of rainfall events and 331 

the longer return periods in the dataset, the better model performance and accuracy we can expect. Analysis 332 
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of the RTFF in UDS in Figure 6 shows only a small proportion of studies (19%) benefited from a large 333 

number of events (i.e. over 1000 events) whereas the majority (73%) used less than 100 events in the RTFF. 334 

Furthermore, a similar proportion of the studies (17%) used rainfall with maximum return periods of over 335 

10 years while almost half of the studies (48%) employed rainfall events with less than a one-year return 336 

period. While storms with a return period of over 5 years are used for UDS design (Hamil, 2011; DEFRA, 337 

2021), the existing data-driven models for RTFF have mainly relied on events with short return periods as 338 

they may suffer from the lack of sufficient accessible or reliable data or alternatively prefer to focus on 339 

more frequent events.  340 

  
(a) (b) 

Figure 6. % of frequency our of 48 papers related to RTFF studies for a) maximum return period of rainfall events 341 
b) number of rainfall events  342 

4 Model development 343 

Models developed for urban flood forecasting are mostly classified based on model structure and spatial 344 

extension (Salvadore et al., 2015; Sitterson et al., 2017). The three typical structures of urban flood 345 

forecasting models are physical, conceptual and empirical as defined and compared in Table 9. Physical 346 

models are basically hydraulic models that simulate flood events based on physical laws and theoretical 347 

principles with hydrological and hydraulic data (Muller and Haberlandt, 2018; Wang et al., 2019). Although 348 

these models have significant advantages, their disadvantages are known as requiring extreme detail and 349 

various data (Macchione et al., 2019; Li, 2020).  350 
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Table 9. Classification of structure in the UDS flood forecasting models*  353 

Characteristics 
 Type 

 Empirical  Conceptual  Physical 

Definition  A data-driven model, making a 

non-linear relationship between 

inputs and outputs 

 Simplified equations interpret 

runoff processes by 

connecting components in the 

overall hydrological process 

 hydraulic models translating physical 

laws and theoretical principles on 

real hydrological responses. 

 

Strengths  - Easy to develop 

- A small number of input 

parameters 

- More accurate outputs for 

short-time forecasting 

- Usually fast run time and short 

computational efforts 

 

 - Easy to calibrate  

- Simple model structure 

- More physical elements than 

empirical models 

- Fewer inputs than physical 

models 

 

 - Avoid non-physical outputs 

- Able to handle future long-term 

forecasting 

- Use of previous experienced 

knowledge 

Weaknesses  - Unreasonable estimations for 

extrapolated events 

- Performance is highly 

dependent on the accuracy of 

input data  

- Capability limited to its 

development context 

 - Need training process 
- Spatial variation is not 

considered 

 - The required large number of input 

parameters for calibration and 

sometimes simplifying assumptions  
- Restricted to the degree of 

phenomena’s understanding  

 

Best use  - Ungagged locations  

- When only runoff output is 

required 

- When there is a lack of site-

specific details 

- When the model is heavily 

independent of experimental 

data 

 

 -When access to physical 

data is limited 

 - When physical data are available 

- When more detailed analysis and 

design are required  

- Where a high level of spatial 

resolutions is required 

Representation 

of event 
 

 -Usually, black box1  -Mostly grey box2  -White box3 

Spatial 

processes 

 -Lumped4   -Mostly semi-distributed5   -Mostly Distributed6 

*: Inspired from Wagener et al. (2004), Gosain et al. (2009), Jajarmizadeh et al. (2012) and Sitterson et al. (2017). 

1: Various data are transformed into predictions without understanding features and transparency in modelling processes. 

2: A partial theoretical structure is combined with data for modelling. 
3: Generated output and the relationship between variables can be physically demonstrated. 

4: A model disregarding spatial variability and treats the entire UDS as one unit. 

5: A model considering a series of lumped and distributed parameters. 
6: A model accounting UDS with spatial resolutions. 

Despite the physical models that are used mostly for UDS design, empirical models are mostly applied to 354 

RTFF in UDS. Using physical models in RTFF can be challenging due mainly to (1) high demand for 355 

geospatial data such as sewer networks and high-resolution topography for developing a numerical urban 356 

flood model which is constantly altered by intense human activities, (2) inability to simulate urban flood 357 

forecasting in a real-time or near real-time, and (3) poor performance in ungauged areas because the model 358 

parameters may not be well-calibrated or the calibration can be sophisticated when physical conditions 359 

change (Yin et al., 2017; Abou Rajeily et al., 2018; Yin et al., 2020) (4) lack of proper sampling design or 360 

strategy for collecting measurement data to be used for model calibration (Behzadian et al., 2009). Hence, 361 
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the physical models have been mainly used for UDS design purposes under specific return periods of 362 

rainfall or certain predicted or historic rainfall data rather than real-time flood predictions based on rainfall 363 

data records (García et al., 2015; Garofalo et al., 2017; Nkwunonwo et al., 2020). To overcome this, 364 

advanced empirical models with interconnected time-series data were developed (Tian et al., 2019; Xu et 365 

al., 2020). These models can be made by training through several observed input and output data without 366 

any restrictions of prior knowledge about hydrological processes and can be adapted by real-time data 367 

frequently (Ravazzani et al., 2016). However, the accuracy of these data-driven models heavily relies on 368 

the accuracy of input data (; Zhang et al., 2018; Xu et al., 2020). Furthermore, estimations may be highly 369 

inaccurate for extrapolated events that were not used within the scope of input data of the model 370 

development (Zhao et al., 2019; Wu et al., 2020). Finally, as a trade-off between physical and empirical 371 

models, conceptual models were defined based on the knowledge and relationships of the hydrological 372 

processes without using physical data (Ben et al., 2019; KC et al., 2021). 373 

Three main approaches found in the literature to improve the quality of the RTFF in UDS (A list of recently 374 

developed models used in real case studies of flood forecasting in UDS is shown in Table 10 with a 375 

dashboard summary in Figure 7) are as follows: 1) optimisation methods for calibration of model 376 

parameters, 2) hybridisation approach by adding AI-based methods to existing physical models, and 3) 377 

alternative conventional or dynamic ANN models to predict longer steps ahead compared to physical 378 

models.  379 

The vast majority of the optimisation models have been introduced recently such as Evolutionary 380 

Algorithms e.g. Memetic Algorithms and Particle Swarms Optimisation for calibration of model parameters 381 

in the other contexts rather than RTFF in UDS (Rajput and Datta, 2020; Raut et al., 2021). However, a few 382 

of them were used to advance physically based models in UDS. Genetic Algorithm and Particle Swarm 383 

Optimisation have been the most popular approaches that were used for optimal calibration, design and 384 

operation of UDS that were mainly simulated by Storm Water Management Model (SWMM).  385 
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Overall, urban flood forecasting Models have been developed for three main purposes, including flood 386 

inundation and understanding the surface runoff risk, design of UDS due to flood occurrence, and chamber 387 

water depth prediction. Most of the studies have relied on the first two purposes. Out of 35 studies published 388 

in the last decade, 77% were published in the recent five years showing great interest in urban flood 389 

forecasting in UDS. However, an increasing rate of studies for using data-driven methods indicate the 390 

special attention to these models due mainly to more availability of real-time data, improved computational 391 

efforts in the recent software and hardware and AI enhancement. This progress has also allowed researchers 392 

to use both data-driven and conceptual/physical models as a hybrid approach. For example, Bermúdez et 393 

al. (2018) coupled deep learning techniques such as gradient boosting decision tree (GBDT) to enhance the 394 

predicting urban flooding and concluded that hybrid methods can perfectly cover the drawback of both 395 

empirical and physical models.  396 

Physical and empirical models account for the majority of those developed in the recent decade for 397 

forecasting urban flooding (Figure 7a). The relatively equal usage of the three spatial resolutions (i.e. lump, 398 

semi-distributed and distributed models) in the developed models (Figure 7b) can also indicate the 399 

importance and interest of all spatial resolutions for model developers. However, results show that empirical 400 

models are mostly developed by lumped spatial resolution, whereas physical models have used the 401 

distributed option.  402 

Furthermore, in the past, academic research has favoured the development of physical and empirical models 403 

over data-driven ones, but this trend is changing now. Among empirical models developed recently for 404 

urban flood modelling as shown in Figure 7d, Curved Number Method (CNM) and artificial neural network 405 

(ANN) are the most used methods in recent years (Yin et al., 2017; Dao et al., 2020a). The CNM techniques 406 

have been further advanced by including spatial variability, more accurate data collection, and hiring finer 407 

data resolution (Yin et al., 2020; Birkinshaw et al., 2020). Furthermore, ANN has been used to upgrade the 408 

physical models (Bermúdez et al., 2018; Li, 2020).  Only about 20% of the 37 studies reviewed here applied 409 

AI for the RTFF in UDS. Those studies used deep learning models to find a relationship between time-410 

series rainfall data and water depth of conduits in UDS for predicting the water depth in the future time 411 
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steps. Mounce et al. (2014) used conventional ANN to predict water depth in sewer chambers up to 3 hours 412 

ahead using time-series of rainfall radar and gauging station data in UDS. Chang et al. (2014) used recurrent 413 

ANN for urban flood control and compared the performance of convolutional ANN with dynamic ANNs, 414 

particularly nonlinear autoregressive network with exogenous inputs (NARX). Their results showed NARX 415 

models outperform other models for prediction accuracy in longer periods due to the memory capability in 416 

processing the variable-length sequences of inputs and creating feedback connections enclosing several 417 

layers of the network. Abou rjeily et al. (2017) showed NARX model can effectively predict flood in a 418 

complex UDS for both minor and severe storm events. Finally, Zhange et al. (2018) applied a dynamic 419 

ANN method called long short-term memory (LSTM) for monitoring combined sewer overflow and 420 

showed conventional ANN models can only forecast one or two steps ahead accurately while LSTM has 421 

the capability for predicting multiple steps ahead especially for multivariate time series data.  422 
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Table 10. Recent urban flood forecasting models applied for UDS  423 

Case study 

 Rainfall-runoff modelling method  
Used AI models 

for real-time 

forecasting  

 

Reference 
 Model structure  Spatial resolution   

 
Empirical  Conceptual  Physical  Lumped  

Semi 

distributed 
 Distributed 

  

UK  ANN  -  -  ●      ●  Mounce et al., (2014) 

Taipei, Taiwan  ANN  -  -  ●      ●  Chang et al., (2014) 

Dongguan, China  -  -  SWM      ●    Chen et al., (2015) 

Beijing, China  -  -  SWMM  ●        Yao et al., (2016) 

Guangzhou, China  -  -  SWMM    ●      Zhu et al., (2016) 

Odense, Denmark    -  MIKE -Mouse      ●    Borup et al., (2016) 

Milano, Italy  CNM  -  -  ●        Ravazzani et al., (2016) 

Espoo, Finland  -  -  SWMM      ●    Guan et al., (2016) 

Cosenza, Italy  -  -  SWMM      ●    Garofalo et al., (2017) 

Malmo, Sweden  HYPE  -  -    ●      Olsson et al., (2017) 

Barcelona, Spain  CNM  -  -  ●        Angrill et al., (2017) 

Shanghai, China  CNM  -  -    ●      Yin et al., (2017) 

Helsinki, Finland  -  -  SWMM      ●    Niemi et al., (2017) 

Lille, France  ANN  -  SWMM      ●  ●  Abou Rjeily et al., (2017) 

Brunswick, Germany  -  -  SWMM    ●      Muller and Haberlandt, 

(2018) 

Ghent, Belgium  ANN  Virtual storage  -      ●  ●  Bermúdez et al., (2018) 

Copenhagen, Denmark  -  Nash linear reservoir 

cascade 

 -    ●      Courdent et al., (2018) 

Lille, France  -  -  SWMM      ●    Abou Rajeily et al., (2018) 

Drammen, Norway  LSTM, GRU  -  -  ●      ●  Zhang et al., (2018) 

Melbourne, Australia  -  -  MIKE urban    ●      Thrysøe et al., (2019) 

Lafayette Parish, USA  -  -  SWM      ●    Wang et al., (2019) 

Northern China  Hebei  -  -    ●      Tian et al., (2019) 

Badalona, Spain  -  Virtual tank  -    ●      Ben et al., (2019) 

Copenhagen, Denmark  -  -  MIKE urban      ●    Lund et al., (2019) 

UK  LASSO, ANN  -  -  ●      ●  Zhao et al., (2019b) 

Joao Pessoa, Brazil  -  -  SWMM    ●      Silva and Silva, (2020) 

Zhuhai, China  -  CaDDIES  SWMM, MIKE 21    ●      Yin et al., (2020) 

Salt lake, USA  -  -  RBC SWMM      ●    Li, (2020) 

Zhengzhou, China  GBDT, Data warehouse  -  -  ●      ●  Wu et al., (2020) 

Seol, South Korea  CNM  -  -  ●        Dao et al., (2020a) 

Xiamen Island, China  -  -  SWM      ●    Liu et al., (2020) 

Munich, Germany  CNM, I-Tree Canopy 

method 

 -  -  ●        Xu et al., (2020) 
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Case study 

 Rainfall-runoff modelling method  
Used AI models 

for real-time 

forecasting  

 

Reference 
 Model structure  Spatial resolution   

 
Empirical  Conceptual  Physical  Lumped  

Semi 

distributed 
 Distributed 

  

Great London, UK  URMOD  -  -  ●        Fidal and Kjeldsen, (2020) 

Newcastle, UK  -  -  Shetran    ●      Birkinshaw et al., (2020) 

Kathmandu, Nepal  -  -  PCSSWMM      ●    KC et al., (2021) 
 424 

AI: Artificial intelligence ANN: Artificial Neural Network CADDIES: Cellular Automata Dual DraInagE Simulation 

CNM: Curve Number method GBDT: Gradient Boosting Decision Tree GRU: gated recurrent unit 

LASSO: least absolute shrinkage and selection operator LSTM: long short-term memory NM: Not mentioned 

SCEM-UA: Shuffled Complex Evolution Metropolis SWM: Shallow Water Model SWMM: Storm Water Management Model 

 425 
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                        a) Model structure                                                                     b) Spatial resolution 

  

 
        c) Type/percentage of physical models 

  
d) Type/percentage of empirical models 

Figure 7. Dashboard of recently developed rainfall-runoff models for flood forecasting in UDS (out of 37 studies) 426 

Despite the promising results reported for applying the AI-based methods (e.g. ANN, support vector 427 

machine models, adaptive neuro-fuzzy inference system and decision tree method) to RTFF of non-428 

urbanised areas (Mosavi et al., 2018; Zounemat-Kermani et al., 2020; Zounemat-Kermani et al., 2021), 429 

these applications are in the early stage of development for urban areas. Hence, the RTFF in UDS is 430 

expected to improve through any of the above approaches with significant research modelling methods and 431 

experimentation for further improvement. 432 

4.1.Performance assessment 433 

As part of model development, its performance needs to be evaluated basically by comparing the model 434 

outputs with the corresponding measurements for the data not used for the model development (Dal et al., 435 

2017). The performance assessment can also be along with adjusting the model parameters that are typically 436 
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called model calibration and validation. After the model calibration, the model performance can be tested 437 

for future events and unseen data. Performance assessment can be carried out through key performance 438 

indicators (KPIs) represented as either model accuracy of predictions or computational effort (time).  439 

Table 11 lists typical KPIs used in the recent studies of the RTFF in UDS. As the main goal of the RTFF is 440 

to give time for early actions to reduce the flood risks, the maximum time spent by the model to process 441 

the data and predict the flood is an important factor for relevant authorities to select the model for their 442 

operations. However, this issue is not focused on very well in the papers. The first approach to measure 443 

spend time is considering computational time, i.e. time spent on performing computational processes. 444 

However, this parameter highly depends on the characteristic of system configuration and cannot be 445 

compared for different developed models that are presented all around the world. Therefore, the number of 446 

iterations for iterative-based models is introduced as a surrogate KPI for the computational time by Abou 447 

Rjeily et al. (2017). In this approach correlation between model accuracy and the number of iteration was 448 

investigated to specify the model performance. 449 

Prediction range is the other factor that shows the model performance. As the main goal of the RTFF is to 450 

give sufficient time for early actions to reduce the flood risks, the maximum prediction range is an important 451 

factor for relevant authorities to select the model for their operations. However, the number of time steps 452 

ahead for prediction of urban flood in recent studies has been limited to short-term mostly between 15 453 

minutes to 90 minutes (See Table 11). These studies show that the accuracy of predictions made for periods 454 

longer than 60 minutes have been reduced significantly. Note that some physically based parameters such 455 

as catchment area and time of concentration can influence the performance of model predictions. For 456 

example, the accuracy of model predictions for larger catchment areas can be lower than those for smaller 457 

catchment areas. Also note that the impact of these parameters are likely to be negligible temporally and 458 

spatially for small catchment areas or short times of concentration. As a result, this poor performance can 459 

be translated as the deficiency of current RTFF in UDS to provide accurate predictions for longer periods, 460 

which need more attention in future works.  461 
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Table 11. KPIs used in recent publications of the RTFF in UDS  462 

Reference 
 Computational 

time method 

 Prediction 

range (min) 

 
Results 

   

Mounce et al., 

(2014) 

 NM  15, 60, and 180   Acceptable performance for 15- and 60-minute 

prediction ahead. 180-minute ahead of prediction lose 

its accuracy. 

Chang et al., 

(2014) 

 NM  10, 20, 30, 40, 

50 and 60  

 The accuracy of the model for 60-minute ahead is 

significantly reduced in comparison to other prediction 

ranges. 

Abou Rjeily et 

al., (2017) 

 Numbers of iteration  15   Regression results show near 100% of accuracy. 

Abou Rajeily et 

al., (2018) 

 Numbers of iteration  15   Regression results show near 100% of accuracy. 

Zhang et al., 

(2018) 

 NM  15, 30, 45, 60, 

75 and 90  

 The accuracy of the model for longer than 60-minute 

ahead is significantly reduced in comparison to other 

prediction ranges. 

Zhao et al., 

(2019b) 

 NM  15, 30, 45, 60, 

75  

 The accuracy of the model for longer than 60-minute 

ahead is significantly reduced in comparison to other 

prediction ranges. 
NM: Not Mentioned 

 463 

Finally, although sensitivity analysis and uncertainty analysis methods have been widely used as an integral 464 

part of uncertainty assessments and accuracy of model calibration, their potential benefits have not been fully 465 

revealed in the concepts of RTFF in UDS (Razavi et al., 2021). Nkwunonwo et al. (2020) stated that 466 

parameterisation data and sensitivity analysis were usually overlooked in this concept and lack of 467 

uncertainty analysis is identified as the main deficiency in the performance assessment of real-time urban 468 

flood forecasting methods (Daal et al. 2017). As a result, the particular importance of including sensitivity 469 

analysis and uncertainty analysis in any RTFF in UDS should be incorporated in the model results. 470 

5 Conclusions  471 

This paper used a bibliometric approach to conduct a critical review of the recent developments of real-time 472 

flood forecasting models in urban drainage systems. The review evaluated all steps of the RTFF models in 473 

UDS including data collection and preparation, model calibration and performance assessment. The results 474 

demonstrated that there has been a surge of interest in the RTFF in UDS and this will continue to receive 475 

more attention in the future. The following points are concluded for future directions of the RTFF in UDS: 476 

- Rain gauge-radar merging methods have been mainly employed in large scale non-urbanised applications. 477 

However, most literature worked on RTFF in UDS, have been used a single rainfall source for their 478 

modelling mainly because other rainfall sources cannot provide required data resolution or they are not 479 
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compatible with the main rainfall data source which needs to be merged with. As a result, the literature 480 

on the performance assessment of using multiple rainfall resources is needed to specify the applicability 481 

of data merging in the context of RTFF in UDS. 482 

- The rainfall merging techniques have been highly relied on the application of interpolation techniques, 483 

leading by kriging techniques and conditional merging techniques. However, there is a high demand to 484 

investigate the accuracy of integration techniques for urban data collection due to the successful 485 

application of this method in other hydrological applications. 486 

- Using satellite products alone or by merging with a rain gauge or radar data should be more practised to 487 

take the opportunity of extending the valuable prediction range for early actions as a result of early flood 488 

warning. 489 

- The effect of rainfall both spatial and temporal resolution on the accuracy of urban flood forecasting is 490 

recognised as an important research area that can be more focussed. 491 

- Diurnal pattern of sewage for combined system cases, leakage, fluvial flow, UDS’s infiltration and 492 

leakage rate, evaporation from the water surface of open conduits and should be dynamically accounted 493 

for building more accurate RTFF models. Furthermore, the dynamic role of soil moisture, wind flow 494 

pattern, air temperature and evaporation of surface runoff should be explored effectively to be included 495 

in these models. 496 

- Providing effective imputation techniques to infill the missing data as a pre-processing step is significant 497 

to have reliable data for the RTFF models in UDS. Data cleaning especially event identification needs to 498 

be considered properly for developing RTFF models. More specifically, data classification techniques, 499 

particularly data mining techniques, should be used to remove unnecessary data.  500 

- Physical models have been mostly used for the UDS design and few cases focus on RTFF models in UDS. 501 

While AI models such as NARX and LSTM models has been revitalised in recent years and makes huge 502 

waves now, it seems that they are taken into account as first steps in this context. Consequently, further 503 

progress in applying these models is an imperative demand as a momentous future direction. 504 
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- Computational time and prediction range should be more spotlighted in future studies as part of 505 

performance assessment due to their role in offering sufficient lead time for taking preventive decisions 506 

by operators.  507 

- Sensitivity analysis and uncertainty analysis should be more discovered for RTFF in UDS in order to 508 

cover the gap of calibration of model parameters and the uncertainty of model results. 509 
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