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A Decision Support System for Coagulation and Flocculation Processes Using the Adaptive 1 

Neuro-fuzzy Inference System  2 

 3 

Abstract 4 

Decision Support System (DSS) is an approach to have a smart and sustainable management of 5 

facilities for monitoring, predicting and controlling sections. The mentioned platform can be useful 6 

in operation of complex facilities like the Water Treatment Plant (WTP). This study proposes an 7 

Adaptive Neuro-fuzzy Inference System (ANFIS) for prediction of energy consumption and outlet 8 

turbidity according to inlet turbidity and ferric chloride as coagulant in coagulation and 9 

flocculation unit process of WTP. The outcomes of ANFIS model are used in the Petri Net 10 

modelling as a smart conceptual control system. Therefore, the main purpose of this research is 11 

the development of a DSS model for coagulation and flocculation processes in WTP. The results 12 

of quantitative data analysis showed that the correlation coefficients of ANFIS model are more 13 

than 80% meaning that it can reliably predict the outlet turbidity and energy consumption’s 14 

variables. With regards to our findings, the first one is to provide a smart and sustainable control 15 

system to be implemented in operations of coagulation and flocculation process in WTPs. It goes 16 

without saying that, our DSS model confirms that the variation of 15±5% for turbidity values and 17 

the additive coagulant materials (ferric chloride) should be set, on 60-85 and 40-60 kg/day, 18 

respectively for controlling energy consumption and outlet turbidity. At last but not least, the main 19 

benefit from our DSS model is to manage the operation of WTP with a high efficiency and low 20 

human-based errors.  21 

Keywords: Coagulation and Flocculation, Turbidity, Energy Consumption, Coagulant Material, 22 

ANFIS 23 

1. Introduction  24 

Nowadays, the research on sustainability and resiliency aspects of water supply systems are an 25 

active research topic (Mosallanezhad et al., 2021; Fasihi et al., 2021). One of the main uses of 26 

water supply systems is to provide drinking water considering proper related qualitative standards. 27 

As a result, water resources, whether surface or groundwater, must undergo certain treatments 28 

based on their contamination levels (Lu et al., 2017). Results of previous research has shown that 29 

groundwater water resources contain high amounts of chemical or microbial contaminations. 30 

Blinded Manuscript Click here to view linked References
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Therefore, to handle this issue, chlorination disinfection is usually performed on these water 31 

samples before inserting them into the water distribution network in order to prevent secondary 32 

microbiological infections (Berger et al., 2017; Gheibi et al., 2021; Alizadeh et al., 2021; Eftekhari 33 

et al., 2020). However, it should be mentioned that since surface water resources have high 34 

contamination levels, they must be purified through other processes. For the treatment of surface 35 

water, a number of different units are used such as screening, primary disinfection, aeration tank, 36 

active carbon injection, coagulation and flocculation in rapid mixing ponds, rapid sand filtration, 37 

and final disinfection (Eftekhari et al., 2021; Gerhard et al., 2017; McGivney and Kawamura, 38 

2008; Doulabian et al., 2021; Zhang et al., 2020).  39 

It goes without saying that the quality of surface water resources in various temporal and 40 

situational conditions may vary due to a set of factors like the concentration of organic material 41 

and minerals, temperature, and pH (Jalali et al., 2021; Shahsavar et al., 2021; Khorrami et al., 42 

2020; Alipour et al., 2020). Through a classic categorization, the financial expenses of any 43 

treatment plant are separated into two general clusters of investment and operational costs. 44 

Construction costs include expenses for buildings, infrastructures, and facilities, which cannot be 45 

controlled or optimized by the stakeholders. Operation costs of water treatment plants include 46 

annual expenses concerning operation, maintenance, material, energy, amortization, and chemicals 47 

(Zhou et al., 2011). In fact, in situations where the cost of the required chemicals can be predicted, 48 

the costs of water treatment plants can be managed optimally. Predicting the amount of changes 49 

in chemical consumption is a function of management of costs in treatment plants. 50 

In 2011, Zhou et al. examined the impact of some effective economical parameters such as 51 

water flow, concentration of contaminants in inlet water, and operation aspects on reverse 52 

osmosing (RO) method in water treatment. The assessments in this study were carried out using 53 

statistical analysis and correlation (through SPSS software) of effective parameters such as water 54 

flow, concentration of contaminants in inlet water, and operation aspects (Zhou et al., 2011). 55 

Likewise, Vouk et al. performed economic scrutinizing on wastewater gathering and treatment 56 

systems using the Artificial Neural Network (ANN) method. In present investigation, an ANN was 57 

programmed to estimate a set of expenses including construction, action, and upkeep of wastewater 58 

gathering and treatment schemes in rural and urban regions (Vouk et al., 2011). Similarly, in 2012, 59 

Arzate et al., also attempted to implement an innovative model (using GAMS environment) in the 60 
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area of economical optimization in water treatment and transportation in industrial environments 61 

(Arzate et al., 2012). Through an administrative assessment, in 2013, Igos et al., conducted a cost-62 

performance analysis on water treatment processes of two treatment plants in Paris, France. To 63 

perform economic and financial analyses (with focus on the water quality), this study employed 64 

an integration of three types of Life Cycle Assessment (LCA) methods including the recipe, step-65 

wise, and eco-cost ones (Igos et al., 2013). Kislo and Skoczko performed an economic analysis on 66 

a water treatment system in one of the largest cities of Poland during a two-year period 2010-2012. 67 

The capacity of the treatment plant is 600 m3 per hour and remove parameters such as heavy 68 

metals and turbidity. It is worth mentioning that this treatment plant is fed by 19 wells and carries 69 

out the disinfection operation using the ultra violet disinfection system (Kislo and Skoczko, 2015). 70 

Having a look at the recent studies, Marzouk and Elkadi estimated the costs of water 71 

decontamination plant construction utilizing the ANN method. The results of ANN were assessed 72 

and compared to statistics ranking models. It must be noted that the database was provided from 73 

the construction reports of 160 treatment plants in Egypt (Marzouk and Elkadi, 2016). Eggimann 74 

et al. calculated and assessed the financial costs in terms of unit of surface in on-site wastewater 75 

treatment systems using soft computing such as heuristic algorithms. In this study, among the costs 76 

of investment and operation, more emphasis was placed on transportation sections. The main 77 

pointof this study was to compare the cost of Centralized and Decentralized Wastewater 78 

Management Systems (CWMS & DWMS) (Eggimann et al., 2016). In another study, Djukic et al. 79 

analyzed the cost-benefits of infrastructures and cost return rates in wastewater projects in Serbia. 80 

In this study, the EU (European Union) recommended methods were used to carry out financial 81 

research and analyses (Djukic et al., 2016). Elazzouzi et al. studied an economical electronic 82 

coagulation and flocculation process for removal of contaminants. This efficiently-economic 83 

method was used for removal of parameters including Chemical Oxygen Demand, Biological 84 

Oxygen Demand, Total Suspended Solids, Nitrates (NO3-), Nitrogen (N), Phosphorus (P) and 85 

fecal coliform (Elazzouzi et al., 2017). As per the reviewed investigations, application of smart 86 

decision-making system is assumed as a research gap which is studied in present research.  87 

All in all, based on what was mentioned above, the purpose of the current research was to first 88 

extract, categorize and verify all types of coagulants (for turbidity removal), telemetry data about 89 

turbidity and energy consumption (for turbidity removal in coagulation and flocculation process) 90 
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in water treatment plants and second to predict, do sensitivity analysis and design a pattern for the 91 

outlet turbidity and energy consumption with respect to ferric chloride and the turbidity of raw 92 

water. In a nutshell, the purpose of this research is to design energy use and residual turbidity soft 93 

sensors in the outlet of water treatment plants by application of Adaptive Neuro-Fuzzy Inference 94 

System (ANFIS) among the first studies. Finally, soft sensor model is implemented as a Decision 95 

Support System (DSS) using the Petri Net modelling. 96 

The rest of this paper is structured as follows: Section 2 studies the materials and methods of 97 

this research to provide our case study with its details. Section 3 is the results along with the 98 

discussion. Finally, the findings and conclusion along with future research recommendations are 99 

addressed in Section 4.   100 

2. Materials and methods 101 

2.1. Case Study 102 

Water resources of Mashhad are supplied by groundwater and surface, the former includes Toroq, 103 

Kardeh, Ardak, and Doosti dams. Regarding the treatment processes, groundwater water resources 104 

have much fewer contaminants due to self-purification of the water by nature. Therefore, the costs 105 

of decontamination are not comparable in this case to that of surface water. The mentioned water 106 

resources are standardized, and treating in three treatment plants (No. 1, 2 and 3) prior to providing 107 

the urban water distribution network. The Kardeh and Ardak water resources are refined in 108 

treatment plant No.1, while Toroq and Doosti water resources are treated in treatment plants No. 109 

2 and 3, respectively. In this study, the coagulation and flocculation process behavior of treatment 110 

plant No.1 was supplied by the Kardeh dam. This treatment plant is located in Ab-o-bargh district 111 

and have started working since June, 1992on June, 1992. The nominal capacity of the plant is 112 

96000 m3 per day and is fed by Kardeh dam located in a distance of 40 km from the North-East 113 

of Mashhad. Water is transferred from dam to the treatment plant gravitationally, using 800-114 

millimeter cast iron ductile pipes with an overall length of 46 km. Treatment process in this plant 115 

includes primary disinfection, aeration for gas outlet, addition of active carbon to remove organic 116 

materials, second step of multistage chlorination, injection of ferric chloride for coagulation and 117 

flocculation, removal of the produced flocs using Super pulsator process, passing through rapid 118 

sand filters, and final chlorination (Figure 1). The location of water treatment plant No. 1, Mashhad 119 

City, Iran is illustrated as per Figure 2.  120 
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 121 

 122 

Figure 1. Treatment process of inlet raw water from Kardeh dam in treatment plant No.1, Mashhad, Iran. 123 

 124 

Figure 2. The location of water treatment plant No.1, Mashhad, Iran. 125 

2.2. Research roadmap 126 

The research roadmap of present research is presented in Figure. 3. Also, the mentioned study is divided to 127 

three main sections including data gathering and statistical evaluation, ANFIS computations and Petri Net 128 

modelling. With regards to this research roadmap, first, available data should be collected from water 129 

treatment plant (No. 1) of Mashhad city with the cooperation of Water Management Company. Then, the 130 

collected data are categorized in inlet/outlet turbidity amounts, energy and coagulant consumption. In the 131 

Primary disinfection, 
aeration and active carbon 

injection in pond 
600 (Initial chlorine less 

than 0.5 mg L-1 in 30 
minutes)

The second step of 
multistage chlorination 

(0.5-1 mg L-1)

Ferric chloride injection for 
coagulation and 
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Removal of flocs in the 
sludge blanket clarification 

pulsatorRapid sand filter
Final chlorination (0.5- 1.2 
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following, the categorized data is evaluated by ANFIS model and finally, the outcomes are utilized for 132 

implementation in water facilities and controlled by Petri Net conceptual system.  133 

 134 

Figure 3. Research roadmap in present study. 135 

2.3. Statistical Data Gathering  136 

In this part of the study, all the records including coagulant (ferric chloride) consumption, 137 

consumed energy and automation system outlets (turbidity unit) in treatment plant No. 1 were 138 

investigated from the year 2019 until the first half of 2020. During this task, all the statistics results 139 

were extracted, categorized, and verified. It is worth mentioning that in treatment plant No.1, in 140 

addition to Kardeh dam water supply, Sooran wells water was also chlorinated and following the 141 

mixture of these two surface and groundwater water supplies, it was fed into the distribution 142 

network. Meanwhile, ferric chloride and active carbon consumption only occurred for the inlet 143 
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surface water in the treatment plant. As seen in Figure 4, the extent of surface and groundwater 144 

water supplies annual consumption (in 2019) in treatment plant No. 1 is illustrated. All statistical 145 

evaluations of present study are done in Excel 2016 software. 146 

 147 

Figure 4. The amount of water resources’ shares in water treatment No.1, Mashhad, 2019. 148 

2.4. The Prediction model and design operational pattern 149 

The concept of fuzzy cliques was presented and classified by Zadeh (Zadeh, 1997; Zadeh, 2015; 150 

Ghadami et al., 2021; Mojtahedi, et al., 2021; Fathollahi-Fard et al., 2021a; Ali et al., 2021). Fuzzy 151 

computation is a valuable technique for the systems complicated in difficult subjects which may 152 

lead to a set of challenges for various studies such as decision making, assessment and prediction. 153 

The fuzzy system is capable of implementing human’s language as well as using individual’s 154 

experiences to progress. Fuzzy logic uses the experiences to develop a prediction of calculations. 155 

There are many algorithms such as learning reinforcements which develop fuzzy sets to be learned 156 

in various situations (Fathollahi-Fard et al., 2021; Akbarpour et al., 2021). Plus, ANN are achieved 157 

through test, train, validation, calibration and verification. The ANN was introduced by 158 

McCulloch-Pitts in the 1940s as per compute logical functions (Fathollahi-Fard et al., 2020a). The 159 

ANN method makes this conceivable through numerical computing the influences of human brain 160 

neurons. The ability to realize the relationships between inputs and outputs along with establishing 161 

a complicated model are of significance. Nevertheless, ANN is a black box model and therefore 162 

incapable of displaying an organized formula between entered and purposed data (Fathollahi-Fard 163 
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et al., 2021b; Fathollahi-Fard et al., 2020b; Zhang et al., 2020). Integration of fuzzy computation 164 

and ANN was a means to overawed the constraints of both methods. In 1993, Jang presented the 165 

self-learning competence of fuzzy systems and neural networks instantaneously as a novel soft 166 

computing algorithm (Jang, 1993; Fathollahi-Fard et al., 2020c). The mentioned structures are 167 

recognized as the ANFIS. In present part, an ANFIS technique is used to forecast the output. In 168 

the following Figure 5 demonstrates the ANFIS construction. In the middle layers, the rules have 169 

been constructed by the neural network. It should be noted that all computations for machine 170 

learning methods include fuzzification, normalization, defuzzification, and output layer are done 171 

in MATLAB 2013b software.   172 

 173 

 174 

Figure 5. General ANFIS structure (Çaydaş, et al., 2009). 175 

As stated previously, the aim of this research was to predict and design the pattern between inlet 176 

turbidity and ferric chloride with respect to outlet turbidity and energy consumption (Figure 6). 177 

The designed model can determine the amount of coagulant and energy consumption in normal 178 

and abnormal quality situations. On the other hand, operators can evaluate their decisions (before 179 

applying them) about coagulant dosage through considering outlet turbidity and energy 180 

consumption. In the study, first the largest part of data is considered for training the patterns and 181 

rules. Then, based on outputs of trained data, validation of model is discussed by testing procedure 182 

through ANFIS computation. Finally, the outcomes of model are used for sensitive analysis of 183 

effective factors.  184 
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 185 

Figure 6. Conceptual model of machine learning in present issue. 186 

2.5. Petri Net modelling 187 

After sensitive analysis by ANFIS model, for creating smart controlling models Petri Net (Amini 188 

et al., 2021; Gheibi et al., 2019) concept is utilized. In the declared model, each adjustable factor 189 

and conditional values are put in place and transition functions, correspondingly. The algorithm of 190 

Petri Net modelling design is shown in Figure 7. In the investigation, E-Draw Max 8.6 is utilized 191 

for Petri Net modelling. 192 

 193 

Inlet Turbidity

Coagulant 

Dosage

ANFIS - Machine Learning

Outlet 

Turbidity

Energy 

Consumption

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



10 
 

Figure 7. Algorithm of Petri Net modelling in present issue. 194 

3. Results and discussions  195 

3.1. ANFIS modeling 196 

In present investigation, a Sugeno model was applied with two types of initial data prior to using 197 

a Takagi–Sugeno type (Çaydaş et al., 2009) fuzzy IF–THEN rules Equation 1. 198 

If Input 1 is fi, input 2 is fj, input 3 is fk, and Input 4 is fl, then 199 

1 1 1 1 1f p i q j r k s l t                                                            Equation (1) 

 200 

Where p1, q1, r1, s1 and t are constant variables. The mentioned constant values are determined 201 

through the ANFIS computations and with consideration to weights of each input parameters. 202 

Also, i, j, k, and l are the input values of ANFIS model as independent variations which are related 203 

to f value as a depended variation.  204 

The first layer of present computation was comprised of two entered variable membership 205 

functions (MFs) and then it prepared them for next layer. In the declared layer, each node was 206 

completed as a compatible node with an absolute function, where were MFs. Bell-shaped MFs 207 

with a maximum value equal to 1 and a minimum value equal to 0 were calculated based on 208 

Equation 2.  209 

𝑓(𝑥 ; 𝑎 , 𝑏, 𝑐) =
1

1 + (
𝑥 − 𝑐
1 )

2𝑏
 

Equation (2) 

As given in Equation 2, x presents fuzzy variable, a and c convey feet of triangular membership 210 

function, and b is related to the tip of the curve.  211 

The proposed system for this equation is illustrated in Figure 8. The first input (ferric chlorine) 212 

and the second input (inlet turbidity) are fuzzing by three and five triangular membership 213 

functions, respectively. The mentioned functions categorize the input value in regions where 0 and 214 

1 proving this value have no and full associations, correspondingly.  215 
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(a)                                                                            (b) 216 

Figure 8. Fuzzy membership functions for inputs (a) Ferric chloride (b) Inlet turbidity. 217 

The next layer called the membership layer assigns the weights for each membership function. The 218 

declared layer multiplies the associated signals and calculates them as demonstrated in Equation 219 

3. 220 

1( ) ( )i i iw i i   Equation (3) 

Where, µ(i) and wi are triangular membership function and weight of input variation in the ANFIS 221 

model as firing strength.  222 

Rules are made by the Layer 3; hence it is called the layer of rules. Nodes in the mentioned zone 223 

normalizes weights of initial parameters and firing strengths are regularized as per Equation 4. 224 

*

1 2

i

i

w
w

w w
  

Equation (4) 

Where, wi
* presents normalized value of wi. Likewise, the denominator of the fraction represents 225 

the sum of the calculated weights. 226 

Defuzzifying is planned in the fourth zone by implication of the rules and then outcomes are 227 

calculated by Equation 5. 228 

4 *

i iQ w f   Equation (5) 

The last section merges all defuzzified inputs and then computes the outcome as the cumulate of 229 

received signals as depicted in Equation 6. 230 
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4 *
i

i

i i
i i

i

w f

Q w f
w

  

Equation (6) 

Applying present method, the learning system is hired to identify the factors in ANFIS. The policy 231 

between the inlet turbidity, ferric chloride with the outlet turbidity and the consumed energy are 232 

shown in Figure 9 and Figure 10. According to Figure 9, the efficiency of removal is not always 233 

improved by increasing the amount of ferric chloride. Actually, in high levels of turbidity, 234 

coagulants can reduce zeta potential between colloid materials better than in low levels of turbidity 235 

status. As seen in the upper right corner of the image, in the high level of contamination, ferric 236 

chloride removed the pollutant with suitable efficiency. According to other researches, in 237 

conditions of low water contaminations, synthetic turbidity with bentonite (Pan et al., 1999) or 238 

kaolin (Muyibi and Evison, 1995) is used to increase the contact surface between the coagulant 239 

and colloidal compounds (Ndabigengesere et al., 1995).  240 

 241 

Figure 9. Outlet turbidity vs the injected ferric chloride and inlet turbidity. 242 
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 243 

Figure 10. Energy consumed in kilo-watt vs the injected ferric chloride and inlet turbidity. 244 

As shown in the pattern of Figure 9, it turns out that operators can predict the amounts of 245 

coagulants and evaluate the probability results with the trial and error method based on machine 246 

learning archives. This soft system functions like an assistant for operators in decision making 247 

about coagulant dosage. Using soft sensors is an effective tool for operating water and wastewater 248 

treatment plants. High technology systems use these soft sensors as decision builders in crisis 249 

management (Haimi et al., 2013; Choi and Park, 2001). 250 

As can be seen in Figure 10, the amount of consumed energy increases with increasing the turbidity 251 

of water. It is due to the reason that the amount of injectable coagulants and the speed of mixing 252 

are in a direct relationship with energy consumption. It is also worth noting that energy pattern 253 

analysis is one of the main analytical strategies used energy efficiency optimization systems in 254 

water and wastewater decontamination facilities (Singh et al., 2012). 255 

3.2. Evaluation of the models 256 

To evaluate the model discussed in the previous section, the coefficient of determination or R2 257 

was used. If a set of data consists of n members like y1: yn and the predicted data are shown by 258 

f1: fn, then, the mean of observed data is calculated by Equation 7. 259 
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𝑖=1

 
Equation 7 

Where n and yi are number of records and value of each record.  260 

Using Equation 8 and Equation 9 which show the difference of observed data with the mean and 261 

data set with the predicted data, respectively, the coefficient of determination can be calculated by 262 

Equation 10. 263 

  264 

where R2 and y  are correlation coefficient and mean value of records.    265 

The calculated coefficients of determination for the proposed models are shown in Table 1. This 266 

is clear that the earlier R2 amount becomes to 100%, the better is the produced predicted model. 267 

Accordingly, this model achieved R2>80 % for both models which are capable of considering a 268 

consistent model for predicting outlet turbidity and consumed energy. The outcomes of ANFIS 269 

performance based on regression system is illustrated in Figure 11. 270 

Table 1. Coefficient of determination (R2) for various models. 271 

R2 Model 

85% Predicting outlet turbidity 

81% Predicting energy consumption 

 272 

 273 

 274 

 275 

𝑆𝑆𝑡𝑜𝑡 =∑(𝑦𝑖 − �̅�)2

𝑖

 
Equation 8 

𝑆𝑆𝑟𝑒𝑠 =∑(𝑦𝑖 − 𝑓𝑖)
2

𝑖

 
Equation 9 

𝑅2 = 1 −
𝑆𝑆𝑟𝑒𝑠
𝑆𝑆𝑡𝑜𝑡

 
Equation 10 
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 276 

  
 277 

                                (a)                                                                               (b)                         278 
Figure 11. Regression line for all of the proposed ANFIS models (a) outlet turbidity (b) Energy 279 

consumption. 280 

The equations of regression process are illustrated in Figure 11. These formulas are useful for 281 

reproduction of smart systems for future researches. It goes without saying that the ANFIS model 282 

has some advantages and disadvantages in application of water treatment plant and prediction of 283 

essential factors for critical units. Likewise, the main advantages are: 284 

 In coagulation and flocculation process, data has high level of fluctuations and ANFIS 285 

model can present appropriate robustness and it is so beneficial (Mohammadi et al., 2021; 286 

Zahedi et al., 2021).  287 

 ANFIS has hybrid optimization tool for error reduction through train and test computations 288 

and it is useful due to estimation of parameters in water treatment systems (Shahsavar et 289 

al., 2021; Sadri et al., 2021).  290 

 The type of inputs in ANFIS model of coagulation and flocculation process is far from 291 

together and they have different origins. Therefore, with fuzzy procedure, the learning 292 

section provide outcomes with high efficiency and precision (Shakerian et al., 2021; 293 

Hamdi-Asl et al., 2021).   294 

Also, the most noticeable disadvantages of ANFIS model in water treatment plant applications 295 

include: 296 

 Through high records of data, this method is so heavy computationally and it needs lots of 297 

cost, energy and time (Eftekhari et al., 2021; Fasihi et al., 2021).  298 
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 The volume of computations is high and for more than three input parameters, it cannot 299 

use as real time system and it calculate the outputs with delay (Ghadami et al., 2021).  300 

 The ANFIS model is appropriate for single objective problems and due to multi objective 301 

investigations, other systems are advised (Shakerian et al., 2021; Chouhan et al., 2021).  302 

Finally, for future researches, present study suggests to compare outcomes of ANFIS model with 303 

other classification techniques include Random Tree (RT), Random Forest (RF), and Artificial 304 

Neural Network (ANN). Therefore, with the declared comparing, the best soft-sensor calculation 305 

is determined.  306 

 307 

3.3. Petri Net modelling 308 

The pattern of Petri Net modelling is demonstrated according to Figure 12. As per the mentioned 309 

Figure, in 15±5% inlet turbidity values, with adding 60-85 kg/day ferric chloride in the coagulation 310 

and flocculation reactor, the amount of energy consumption and outlet turbidity are equal to 600 311 

kw and 0.2 as per Figures 9 and 10. Likewise, in the more than 15±5% inlet turbidity, with 50-75 312 

kg/day coagulant injection the consumed energy and outlet turbidity should control in 300 kw and 313 

0.15, correspondingly. Finally, according to DSS, the in the less than 15±5% inlet turbidity, the 314 

energy demand and outlet turbidity are 500 kw and 0.2 with adding 40-60 kg/day ferric chloride. 315 

 316 
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 317 

 318 

Figure 12. Schematic plan of Petri Net modelling for coagulation and flocculation process smart DSS. 319 

 320 

4. Conclusion and future works  321 

Two of the most common processes in surface water treatment are coagulation and flocculation 322 

for removing colloidal materials and turbidity. Operators need to adjust coagulants dosage 323 

according to logical criteria. Operators are interested in optimizing chemical materials and energy 324 

consumption with respect to high efficiency removal of turbidity. Therefore, they require reliable 325 

designed patterns and algorithms for studying coagulation and flocculation behaviors. In this 326 

paper, correlational analysis was done one the two inputs and two outputs of a water treatment 327 

process. Inputs included the inlet turbidity and the amount of ferric chloride injected into the water. 328 

The outputs included the outlet turbidity and the amount of energy spent on this procedure. The 329 

ANFIS model was employed in order to organize this practice. The high coefficient of 330 

determination value (More than 80%) shows a reliable correlation between the inputs and outputs. 331 

In the last section of present study, the Petri Net modelling is utilized for implementation of DSS 332 

in water treatment plant No. 1, Mashhad. As per the mentioned technique, every smart order is 333 

related to turbidity changes through Petri Net modelling. Based on the declared DSS, in 15±5%, 334 
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less and more than it inlet turbidity values, the additive coagulant material (ferric chloride) should 335 

be set on 60-85, 60-85 and 40-60 kg/day, respectively. All in all, the main advantages of our 336 

ANFIS model are its high accuracy and robustness, while the main disadvantage of our model is 337 

to have a high computational time.  338 

It goes without saying that there are several suggestions to improve the contributions of this 339 

research in our future works. First, more factors linking with water treatments such as the job 340 

opportunities and social justice for workers, can be studied in our model. Using optimization 341 

theory and uncertainty for our water systems is another good suggestion. Finally, other 342 

programming methods like genetic programming and adaptive search techniques can be suggested 343 

to improve the efficiency of our ANFIS model.  344 
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