

UWL REPOSITORY

repository.uwl.ac.uk

Investigation of the diversity and safety of the predominant Bacillus pumilus sensu lato and other Bacillus species involved in the alkaline fermentation of cassava leaves for the production of Ntoba Mbodi

Vouidibio Mbozo, Alain B., Kobawila, Simon C., Anyogu, Amarachukwu ORCID logoORCID: https://orcid.org/0000-0001-9652-7728, Awamaria, Brigitte, Louembe, Delphin, Sutherland, Jane P. and Ouoba, L. Irene I. (2017) Investigation of the diversity and safety of the predominant Bacillus pumilus sensu lato and other Bacillus species involved in the alkaline fermentation of cassava leaves for the production of Ntoba Mbodi. Food Control, 82. pp. 154-162. ISSN 0956-7135

http://dx.doi.org/10.1016/j.foodcont.2017.06.018

This is the Accepted Version of the final output.

UWL repository link: https://repository.uwl.ac.uk/id/eprint/8237/

Alternative formats: If you require this document in an alternative format, please contact: open.research@uwl.ac.uk

Copyright: Creative Commons: Attribution-Noncommercial-No Derivative Works 4.0

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy: If you believe that this document breaches copyright, please contact us at open.research@uwl.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

Investigation of the diversity and safety of the predominant Bacillus pumilus sensu lato 1 and other Bacillus species involved in the alkaline fermentation of cassava leaves for 2 the production of Ntoba Mbodi 3 4 Alain B. Vouidibio Mbozo^a, Simon C. Kobawila^a, Amarachukwu Anyogu^b, Brigitte 5 Awamaria^b, Delphin Louembe^a, Jane P. Sutherland^b, L. Irene I. Ouoba^{b,c,*} 6 7 ^a Faculté des Sciences, Université Marien N'Gouabi, Brazzaville, Congo 8 ^b Microbiology Research Unit, School of Human Sciences, London Metropolitan 9 University London N7 8DB, UK 10 ^c Ouoba-Consulting, London, UK 11 12 *Corresponding author 13 Dr L. Irene I. Ouoba 14 Tel.: +44 (0) 20 71334154 15

Email: ouobairene@hotmail.com

Abstract

The objective of the study was to investigate the identity, diversity, and safety of the *Bacillus* population involved in the fermentation of cassava (*Manihot esculenta* Crantz) leaves for the production of Ntoba Mbodi, a Congolese food. Ninety bacteria were identified by phenotyping and genotyping using ITS-PCR, rep-PCR, and sequencing of the 16S rRNA, *gyrA*, *gyrB* and *rpoB* genes. Moreover, the isolates were screened for the presence of genes coding for haemolytic (*HbIC*, *HbID*) and non-haemolytic enterotoxins (*NheA*, *NheB* and *NheC*), cytotoxin K (*CytK*) and emetic toxin (*EM1*) as well as their ability to produce haemolysin.

The investigations revealed the predominance (72.21 %) of species of the Bacillus pumilus group i.e. B. safensis (48), B. pumilus (7), and B. pumilus sensu lato (10). Other species of Bacillus including B. cereus sensu lato (11), B. megaterium (4), B. subtilis (4), B. amyloliquefaciens (2), B. siamensis (2), B. licheniformis (1) and Lysinibacillus louembei were also identified. Haemolytic, non-haemolytic and cytokin toxin genes were detected in the B. cereus strains which were also able to produce haemolysin. The emetic toxin gene was not detected in any isolates. The toxin genes screened were not detected in any of the non B. cereus species.

Key words: Cassava leaves (*Manihot esculenta* Crantz), fermentation, Ntoba Mbodi, *Bacillus*, identification, food safety

1. Introduction

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

Ntoba Mbodi is a popular fermented food in the Republic of the Congo where it constitutes a significant source of protein in the diet of the consumers. It is obtained by fermenting cassava leaves as follows: the leaves are harvested, allowed to wilt for 2-3 days, cleaned, cut into small pieces, washed with water, distributed into small portions and wrapped in large leaves such as those of the Carica papaya or Cyrtosperma senegalense plants, and allowed to ferment at ambient temperature for 2-4 days. It is essential to ferment cassava leaves, as the process eliminates or decreases significantly the presence of toxic components such cyanogenic compounds found in the raw material (Louembe et al., 2003; Kobawila, Louembé, Kéléké, Hounhouigan, & Gamba, 2005). Moreover, the fermentation process allows the release of nutritious elements such as essential amino and fatty acids as well as vitamins. During the process, a rise of pH to a value up to 10 is observed; thus the product is classified as an alkaline fermented food. In such types of product, the main microorganisms responsible for the fermentation are Bacillus species, such as B. subtilis, B. licheniformis, B. amyloliquefaciens, B. pumulis, B. sphaericus, B. cereus, B. xylanilyticus, with B. subtilis commonly reported as the predominant species (Sanni, Ayermor, Sakyi-dawson, & Sefa-dedeh, 2000; Louembe et al., 2003; Azokpota, Hounhouigan, & Nago, 2006; Ouoba, Parkouda, Diawara, Scotti, & Varnam, 2000a; Mohamadou, Mbofung,& Thouvenot, 2009; Parkouda et al., 2009; Parkouda et al., 2010; Ahaotu et al., 2013). Bacteria belonging to the genus Bacillus are Gram positive, catalase positive endospore-forming, rod-shaped, aerobic and facultatively anaerobic. They are widely distributed in the environment and have been commonly isolated from acidic and

alcoholic, but mainly alkaline fermented foods, as well as various unprocessed and 61 processed foods. An important characteristic of the genus is the ability of the isolates to 62 sporulate and withstand adverse conditions. In alkaline fermented foods, secondary 63 microorganisms such as lactic acid bacteria and Staphylococcus spp. have been also 64 reported and play a lesser role than Bacillus species during the fermentation (Parkouda 65 et al., 2009). 66 Unlike other alkaline fermented products such as Ugba, Natto, Soumbala, Maari, 67 Bikalga, and Kinema that are obtained from seed based raw materials (Parkouda et al., 68 2009), Ntoba Mbodi is made of leaves and the production technology does not include a 69 heating step. This may induce more differences in the microbial population as compared 70 to the seed based alkaline fermented products. Similarly to most traditional fermented 71 foods, the fermentation of cassava leaves is uncontrolled and this favours the 72 occurrence of undesirable Gram-positive and Gram-negative pathogenic bacteria, 73 leading to safety issues. Potential spore formers among pathogenic bacteria such as B. 74 cereus are of great concern because of their capacity to survive different processing 75 conditions, including heat treatment. The spores have high adhesion capability to 76 various materials and may accumulate in the processing equipment, constituting 77 thereby a serious hazard (Nicholson, Munakata, Horneck, Melosh, & Setlow, 2000). 78 Also, uncontrolled fermentations induce variable nutritional and sensorial attributes. 79 80 Thus, it is important to select well-defined starters and initiate controlled fermentations that will provide products with high nutritional quality and also good hygienic attributes 81 and stability. 82

In the process of selecting starter cultures, identification of the microorganisms using well defined methods including both phenotypic and genotypic approaches is crucial (Holzapfel, 2002). It is also essential to use safe bacteria (e.g. absence of toxin production and antimicrobial resistance determinants) to protect the health of the consumers. Earlier studies (Louembé, Kobawila, Bouanga, & kéléké, 2003; Kobawila, Louembé, Kéléké, Hounhouigan, & Gamba, 2005) tried to characterize the microbial population of Ntoba Mbodi using only phenotypic methods, which are known to be of limited value when used for estimation of microbial diversity in an ecosystem (Sessitsch, Reiter, Pfeifer, & Wilhelm, 2002). Therefore, the aim of the study herein reported was to use both phenotypic and genotypic methods to screen the diversity and safety of the main microorganisms involved in the alkaline fermentation of cassava leaves. This constitutes an initial step in the selection process of multifunctional starter cultures for a controlled production Ntoba Mbodi.

2. Materials and methods

- 2.1. Identification of *Bacillus* isolates from Ntoba Mbodi
- 98 2.1.1. Enumeration, isolation and phenotypic characterization of the microorganisms
 - A total of 90 bacteria were isolated from unfermented cassava leaves, fermenting samples and Ntoba Mbodi collected at different markets and production places in two towns of the Republic of the Congo. The total aerobic mesophilic bacteria were enumerated on nutrient agar (NA; Oxoid CM0003, Basingstoke, UK) and characteristic *Bacillus* colonies isolated and purified. A sample (10 g) was aseptically transferred into a stomacher bag and homogenized in 90 ml sterile Maximum Recovery Diluent (MRD, Oxoid CM0733) for 2 min using a paddle-type blender (Colworth 400, AJ Seward,

- 106 London, UK). The suspension was serially diluted and each dilution spread on NA plates incubated at 37℃ for 24-48 h. After incubation, the bacteria were enumerated. 107 and selected colonies streaked on NA and purified. The isolates were stored in nutrient 108 broth (NB, Oxoid CM0001) containing 20 % (V/V) of glycerol and frozen (-20 ℃) until 109 needed for further studies. For the phenotypic characterization, the isolates were 110 streaked on NA and examined for colony and cell morphology, as well as tested for 111 Gram, catalase, and oxidase reactions. Cell morphology was determined by light 112 microscopy (Nikon Model Eclipse, E400, Japan) and the Gram reaction was evaluated 113 114 using the KOH method (Gregersen, 1978).
- 2.1.2. Genotypic characterization and identification of the isolates
- 116 2.1.2.1. Extraction of DNA
- 117 Chromosomal DNA of a single colony of each isolate that had been grown on Tryptone
- Soya agar (TSA; Oxoid CM0131) at 37℃ for 48 h was extracted using InstaGene Matrix
- (Bio-Rad 732-6030, Hemel Hempstead, UK) according to the manufacturer's
- instructions. The extracts were stored at -20℃ until required.
- 2.1.2.2. Characterization of the isolates by 16S-23S rDNA ITS-PCR and rep-PCR
- Amplification of the 16S-23S rDNA internal transcribed spacer (ITS) was carried out
- using methods previously described (Ouoba, Parkouda, Diawara, Scotti, & Varnam,
- 2000a; Anyogu, Awamaria, Sutherland, & Ouoba, 2014) and the primers depicted in
- 125 Table 1. The PCR conditions were as follows: initial denaturation at 94℃ for 1 min
- followed by 35 cycles of denaturation at 94° C for 1 min, annealing at 55° C for 1 min and
- elongation at 72℃ for 1 min. The PCR was ended with a final extension at 72℃ for 7
- min and the amplified product cooled at 4℃. The characterization of the isolates by rep-

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

PCR was also done by applying previously described methodology (Ouoba, Parkouda, Diawara, Scotti, & Varnam, 2000a; Anyogu, Awamaria, Sutherland, & Ouoba, 2014) and using the GTG5 primer shown in Table 1. For the amplification, the following program was applied: initial denaturation at 94°C for 4 min followed by 30 cycles of denaturation at 94℃ for 30 s, annealing at 45℃ for 1 min and e longation at 65℃ for 8 min. The PCR ended with a final extension at 65°C for 16 min, and the amplified products cooled to 4℃. The DNA fragments generated from the ITS and rep-PCRs were separated by applying 10 µl of each PCR product with 2 µl of loading buffer to 2 % (w/v) agarose gel (BioRad 4736). DNA molecular marker (Direct Load TM Wide Range DNA Marker; Sigma 7058) was used as a standard. The gel was run in Tris-Borate-EDTA buffer (1x TBE; Sigma T4415) for 1h 30 min at 120 V for ITS-PCR and 2 h 30 min at 140V for rep-PCR. Further, the gel was stained with ethidium bromide and photographed using a UV transilluminator. Bacteria showing the same ITS-PCR DNA profile were clustered in the same group and further differentiation by rep-PCR of the isolates of each ITS-PCR cluster was recorded. DNA profiles were grouped by visual screening and cluster analysis using the Bionumerics system (Dice's Coefficient of similarity, UPGMA; Applied Maths, Saint-Martens-Latem, Belgium).

2.1.2.3. Sequencing of the 16S rRNA, gyrA, gyrB and rpoB genes

The bacteria were first identified by the amplification and sequencing of the 16S rRNA gene as described by Ouoba, Parkouda, Diawara, Scotti, & Varnam (2008a). The primers used for the first amplification and sequencing are shown in Table 1. The following PCR conditions were used for the first amplification: initial denaturation at 95°C for 5 min followed by 35 cycles at 94°C for 1 min, 55°C for 1 min and 72°C for 1

min. The final extension was carried out at 72° for 5 min and the products cooled to 4° . Positive PCR products were checked by electrophoresis, purified using the QIAquick PCR Purification kit (Qiagen, Crawley, UK) and sequenced. The PCR reaction was achieved by 35 PCR cycles with the following program: 95° for 2 min, then 35 cycles at 96° for 15 sec, 40° for 1 sec and 60° for 4 min.

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

In the case where closely related species could not be separated by 16S rRNA gene sequencing, sequencing of gyrA, gyrB and rpoB genes was carried out. For those genes, the same primers (Table1) were used for the first amplification and the sequencing. For the *gyrA* gene, the amplification was carried out by mixing 2 µl of each extracted DNA with a mixture containing 5 µl of 10 X PCR buffer containing 15 mM of MgCl2 (Applied Biosystems N8080160), 0.5 µl of dNTP (1.25 mM), 0.5 µl of each primer (21 pmol/µl, Table1), 0.2 µl of AmpliTaq polymerase (5 U; Applied Biosystems N808-0160, N808-0161) and 41.3 µl of sterile high purity water. The amplification was performed using the following conditions: Initial denaturation at 94°C for 3 min, 35 cycles of 94℃ for 1 min, 50℃ for 1min, 72℃ for 1 min and a final extension step at 72℃ for 10 min. For the *gyrB* gene, the reaction mixture described by Thorsen et al. (2011a) was applied with the following PCR conditions: 94℃ for 2 min, then 30 cycles at 94℃ for 1 min, 66℃ for 1 min and 72℃ for 2 mi n. The final extension was carried out at 72℃ for 7 min and the product cooled to 4℃. For the amplification of the *rpoB* gene, the method described by Anyogu, Awamaria, Sutherland, & Ouoba (2014) was used along with the following conditions: 94°C for 2 min followed by 40 cycles of 94°C for 30 s, 51°C for 45 s, 68°C for 50 s, and a final extension of 68°C for 90 s. Electrophoresis was used to check the PCR products, and positive amplicons were

- 175 purified as described previously. For all genes, sequencing was carried out by electrophoresis on a 3730xl DNA Analyser-Titania (Applied Biosystems) and the 176 isolates identified to genus and species level by analyzing the sequences in 177 GenBank/EMBL/DDBJ Sequence database using the Basic Local Alignment Tool 178 (BLAST) program (National Center for Biotechnology, MD, USA). Additionally, the 16S 179 rDNA sequences were analysed using the EzTaxon server (Kim et al., 2012). 180 2.2. Investigation of the potential of the *Bacillus* isolates for production of enterotoxins, 181 cytotoxin and emetic toxin 182 The isolates investigated included all B. cereus bacteria and representative isolates of 183 each rep-PCR group for all other species (Table 2). An isolate of B. cereus from 184 185 Soumbala (another alkaline fermented food) was used as a positive control (Ouoba, Thorsen, & Varnam, 2008b). 186 2.2.1. Haemolysis on blood agar 187 The Bacillus isolates were screened for their haemolytic activity on blood agar as 188 follows: Columbia agar base (Oxoid CM003) was autoclaved at 121 ℃ for 15 min and 189 horse blood (5%; Oxoid SR0050) added after cooling to 50 ℃, before distribution into 190 Petri dishes. The *Bacillus* isolates were streaked on the agar and incubated at 37 ℃ for 191 48 h. Haemolysis was recorded by appearance of a zone of clearing around the 192 colonies (Beta or complete haemolysis) or a dark and greenish coloration under the 193
- 2.2.2. Detection of toxin genes

194

colonies (Alpha or partial haemolysis).

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

Chromosomal DNA of each isolate was extracted as described previously. All isolates were tested for the presence of Hbl (HblC, HblD), Nhe (NheA, NheB, NheC), CytK and EM1 genes encoding respectively the production of haemolysin BL, non-haemolytic enterotoxin complex, cytotoxin K and cereulide, using the method described by (Ouoba, Thorsen, & Varnam (2008b). The primers used are depicted in Table 1. The cycling program for all genes except for the EM1 gene was: initial denaturation at 94°C for 2 min followed by 35 cycles of denaturation at 94°C for 1 min, annealing at the corresponding temperature (Table 1) for 1 min and elongation at 72℃ for 2 min. The PCR ended with a final extension at 72°C for 5 min and the amplified products cooled to 4℃. The DNA fragments were separated by electropho resis as described previously and the gels were run at 120 V for 1 h. Gels were stained with ethidium bromide solution and photographed using a UV transilluminator. For the detection of the emetic specific gene fragment EM1, the following cycling program was applied: initial denaturation at 95 °C for 15 min followed by 30 cycles of denaturation at 95 °C for 30 s, annealing at 60 ℃ for 30 s and elongation at 72 ℃ for 1 min. The PCR ended with a final extension at 72 ℃ for 5 min and the amplified products cooled to 4 ℃. The DNA fragments were separated as described earlier.

2.2.3. Production of haemolytic enterotoxin by the *Bacillus* isolates

Production of haemolysin BL by the isolates was screened using the *B. cereus* enterotoxin reversed passive latex agglutination (BCET-RPLA) toxin detection kit (Oxoid D0950A). The BCET-RPLA kit detects, in particular, the L2 component (encoded by *HblC*) of the Hbl enterotoxin complex (Beecher, schoeni, & Wong, 1995). All selected isolates were included in the experiment, irrespective of the results obtained from the

screening of the presence of the *Hbl C* gene. This was to confirm the absence of the gene in those isolates where positive amplicons were not observed. The bacteria were screened for their ability to produce haemolysin in broth as follows: each isolate was grown overnight in 10 ml of Brain Heart Infusion (BHI; Oxoid CM225) and 1ml of the culture centrifuged at 5000 g for 5 min. The BCET-RPLA kit was used according to manufacturer's instructions to detect the presence of enterotoxin in the supernatant.

3. Results

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

During the fermentation, the total mesophile population increased from 10⁶-10⁷ to 10¹⁰-10¹² CFU/g) after 72 h. This was associated with an increase of pH from 5-6 to 8-10 during the same time. Phenotypically, the bacteria exhibited various macroscopic and microscopic features. As expected for Bacillus isolates, all bacteria were Gram and catalase positive, rod-shaped and endospore formers. For most isolates, the position of the spore was subterminal or terminal. However, a few isolates exhibited a centrally positioned spore. Depending on the isolate, the cells were arranged as single, pairs and chains. Most were motile, with however a reduced motility for cells that were in chains. The identification experiments revealed that all bacteria belonged to the genus Bacillus except isolate NM73, which showed an affiliation with the genus Lysinibacillus. The latter genus has strong similarities with the genus Bacillus. Various species were identified (Table 2), principally those of the B. pumilus group (72.21 %) including B. safensis (53.33 %), B. pumilus (7.77 %), B. altitudinis and B. pumilus sensu lato (B. pumilus group of isolates that were not clearly differentiated, 11.11 %). Other species included B. cereus sensu lato (12.22 %), B. megaterium (4.44 %), B. amyloliquefaciens

(2.22 %), B. siamensis (2.22 %), B. subtilis (4.44 %), B. licheniformis (1.11%) and 241 Lysinibacillus louembei (1.11%). 242 Characterization of the bacteria by ITS-PCR generated seven groups of isolates that 243 were further subdivided into smaller clusters by rep-PCR. As seen in Table 2 and Fig.1., 244 8, 4, 3, 2 and 4 rep-PCR subgroups were obtained from ITS-PCR groups 1, 2, 3, 4 and 245 5 respectively. ITS-PCR group 1 included all species of the *B. pumilus* group; group 2, 246 B. cereus sensu lato; group 3, B. subtilis and B. siamensis; group 4, B. 247 amyloliquefaciens; group 5, B. megaterium; group 6, B. licheniformis and group 7, 248 Lysinibacillus louembei. With the rep-PCR, all species from the B. pumilus group, as 249 well as the B. subtilis and B. siamensis (formerly belonging to the species of B. 250 amyloliquefaciens), were clearly differentiated (Table 2, Fig.1.). Furthermore, some of 251 252 the species included different rep-PCR DNA profiles. Bacillus megaterium and B. cereus sensu lato exhibited four different rep-PCR profiles each, Bacillus safensis, B. 253 pumilus and B. subtilis three patterns each, and B. pumilus sensu lato two patterns 254 each (Table 2, Fig.1.). 255 Using 16S rDNA sequencing and EZtaxon analysis, all the B. safensis isolates were 256 clearly identified. Furthermore, their identification was confirmed by sequencing of the 257 gyrB or gyrA genes. For all other species, sequencing of the gyrB, or gyrA or rpoB 258 genes was necessary to differentiate them from closely related species. The exception 259 was with the isolates of B. cereus sensu lato that could not be differentiated. All genes 260 sequencing identified the isolates as B. cereus or B. anthracis or B. thuringiensis 261 equally, thus the isolates were referred to as B. cereus sensu lato. Also, 10 isolates of 262

the B. pumilus group could not be clearly identified irrespective of the gene seguenced

and were referred to as B. pumilus sensu lato. With regard to the safety of the isolates, it was noticed that most isolates (96.67 %) showed haemolytic activity on blood agar and the presence of toxin genes varied according to the isolate and the gene screened (Table 3). As expected, none of the genes investigated were detected in the non B. cereus species. The EM1 gene encoding the production of cereulide was not detected in any of the isolates screened. The three genes (NheA, NheB and NheC) encoding the production of the nonhaemolytic complex enterotoxin were detected in all B. cereus screened, while 91.0 % of the isolates of that species showed the HbIC gene, 72.70 % the HbID gene, 81.8 % both the HbIC and HbID genes and 72.7 % the CytK gene. A portion of 63.3 % of the isolates showed all NheA, NheB, NheC, HblC, HblD and CytK genes. No Hbl genes screened for were detected in B. cereus NM 48. Out of the 11 B. cereus isolates from Ntoba Mbodi studied for toxin production, eight tested positive for the production of the L2 component of the haemolysin BL complex encoded by *HbIC* gene (Table 3). Among the three isolates that did not produce the toxin, one (NM48) did not exhibit the HblC gene and the two other (NM78 and NM82) showed a weak amplification of the HblC None of the non B. cereus species produced the L2 component of the gene. haemolysin BL complex.

4. Discussion

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

Investigations into the microbial populations associated with the alkaline fermentation of cassava leaves for Ntoba Mbodi production revealed that different species and subspecies of bacteria are responsible for the fermentation. Surprisingly, species of the

286 B. pumilus group, mainly B. safensis, were dominant in most investigated samples. This is unusual, as dominance of B. subtilis in alkaline fermented vegetables whether from 287 African or Asian origin is usually reported (Isu & Ofuya, 2000; Ouoba, Diawara, Amoa-288 Awua, Traoré, & Lange Moller, 2004; Azokpota et al., 2006; Ouoba, Parkouda, Diawara, 289 Scotti, & Varnam, 2000a; Mohamadou, Mbofung, & Thouvenot, 2009; Parkouda et al., 290 2009). The B. pumilus group of isolates includes B. pumilus, B. safensis, B. altitudinis, 291 B. stratosphericus, B. aerophilus, B. xiamenensis and B. invictae, which have close 292 phenotypic and genotypic features (Satomi, La Duc, & Venkateswaran, 2006; Liu et al., 293 2013; Branquinho, Meirinhos-Soares, Carriço, Pintado, & Peixe, 2014a; Lai, Liu, & 294 Shao, 2014). They have been detected in numerous terrestrial and marine 295 environments as well as in the air at high altitudes (Satomi, La Duc, & Venkateswaran, 296 297 2006; Shivaji et al., 2006; Liu et al., 2013; Lai, Liu, & Shao, 2014). The unexpected predominance of B. safensis in Ntoba Mbodi may be explained by the 298 absence of a heating step during the production and a raw material constituted of 299 300 leaves. In contrast with Ntoba Mbodi, most alkaline fermented food raw materials are seeds that undergo a long cooking time before fermentation (Parkouda et al., 2009). 301 The origin of the bacteria found in the raw materials and carried through the 302 fermentation is mainly from the environment. A study by Liu et al. (2013) reported that 303 B. safensis is the dominant species of the B. pumilus group found in terrestrial 304 environments, whereas B. altitudinis is more widespread in marine settings. Thus, the 305 fact that *B. safensis* is the major species of the *B. pumilus* group in Ntoba Mbodi is not 306 surprising. The predominance of species of the B. pumilus group constitutes a safety 307 308 advantage, because of their ability to use cyanogenic compounds for their nutrition

(Meyers, Gokool, Rawlings, & Woods, 1991; Mekuto, Jackson, & Ntwampe, 2014). 309 Cassava leaves contain cyanogenic compounds and the isolates probably contribute to 310 reducing the toxicity of the leaves by decreasing the concentration of the toxic 311 compounds. Louembé, Kobawila, Bouanga, & kéléké (2003) and Kobawila, Louembé, 312 Kéléké, Hounhouigan, & Gamba (2005) reported a decrease of at least 70 % of the 313 content of toxic compounds such as cyanide, cyanohydrin, and linamarine (cyanogenic 314 glucoside) during the production of Ntoba Mbodi. Also, Lateef, Adelere, & Gueguim-315 Kana (2015) reported that *B. safensis* has promising biotechnological applications, 316 especially in the production of enzymes (e.g. protease, amylase, lipase, inulase) and 317 secondary metabolites. Additionally, some isolates of B. pumilus possess probiotic 318 properties for humans and animals and the ability to eliminate plant insects (Hong, Duc, 319 320 & Cutting, 2005; Molina, Cana-Roca, Osuna, & Vilchez, 2010; Perez-Garcia, Romero, & de Vicente, 2011). 321 Louembé, Kobawila, Bouanga, & kéléké (2003) and Kobawila, Louembé, Kéléké, 322 Hounhouigan, & Gamba (2005) studied the microbiology of Ntoba Mbodi and reported 323 the presence of B. subtilis, B. amyloliquefaciens, B. megaterium, B. macerans, B. 324 cereus, B. polymixa, B. brevis and B. pumilus in the product. However, neither the 325 presence of B. safensis, B. siamensis and Lysinibacillus spp, nor the predominance of 326 B. safensis was described. The difference observed with our study may be related to 327 328 the methodology used to investigate the isolates. The latter authors used phenotypic characteristics only to identify the bacteria tentatively, whereas in the current study, both 329 phenotypic and genotypic methods were used for the first time to screen the microflora 330 331 of Ntoba Mbodi. The exclusive use of phenotyping techniques often significantly

332 underestimates bacterial diversity in a particular ecosystem (Sessitsch, Reiter, Pfeifer, & Wilhelm, 2002). In the current research, a combination of genotypic methods that have 333 been shown to be efficient in the identification of Bacillus species in other alkaline 334 fermented foods (Thorsen et al., 2011a; Ahaotu et al., 2013; Anyogu, Awamaria, 335 Sutherland, & Ouoba, 2014; Compaore et al., 2013) was used to provide an advanced 336 insight of the diversity of the Bacillus population of Ntoba Mbodi at species and 337 subspecies level. Bacillus safensis, B. pumilus, B. subtilis, B. amyloliquefaciens, B. 338 megaterium, B. cereus and Lysinibacillus species have been demonstrated in other 339 alkaline fermented products such as Soumbala, Mbuja/Bikalga, Maari, Ugba, Natto, 340 Kinema and Thua-nao (Sanni, Ayermor, Sakyi-dawson, & Sefa-dedeh. 2000: 341 Mohamadou, Mbofung, & Thouvenot, 2009; Parkouda et al., 2009; Parkouda et al., 342 2010; Ahaotu et al., 2013; Compaoré et al., 2013). The microbiological similarities of 343 these types of foods are not surprising as they share some biochemical features, such 344 as the high content of proteins (up to 40 %) whose degradation during the fermentation 345 leads to the increase in pH. This constitutes a selection factor for particular 346 microorganisms capable of withstanding alkaline conditions. 347 Except for B. safensis, which was identified by 16S rDNA sequencing/EZtaxon search, 348 the sequencing of housekeeping genes gyrB, gyrA and rpoB was necessary to identify 349 most isolates, as reported by earlier studies on Bacillus identification (Chun & Bae, 350 2000; La Duc, Satomi, Agata, & Venkateswaran, 2004; Wang, Lee, Tai, & Kasai, 2007; 351 Thorsen et al., 2011a; Ahaotu et al., 2013; Liu et al., 2013; Anyogu, Awamaria, 352 Sutherland, & Ouoba, 2014). For the isolates of *B. pumilus sensu lato* that could not be 353 354 clearly identified, the use of other types of primers for the genes screened for may

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

assist the identification. Also, the new methodologies described by Branquinho et al. (2014b) for differentiating species of the B. pumilus group may be useful. For the B. cereus sensu lato, the differentiation has been often difficult and their real difference at species level is becoming more and more questionable. Isolate NM73 initially showed 98 % of 16S rDNA sequence similarity with Lysinibacillus meyeri, but differed by 14 base pairs, which is indicative of a potential new species of bacterium. Specific studies were performed to characterise the isolate as a new species and named it as Lysinibacillus louembei (Ouoba et al., 2015). Ntoba Mbodi is produced using exclusively traditional methodologies and uncontrolled fermentation. Thus, the presence of potentially pathogenic bacteria such B. cereus is possible. Due to their ability to produce toxins that cause foodborne illnesses, the presence of B. cereus in food is of considerable concern for human health. Toxins produced by B. cereus include cereulide, cytotoxin (CytK), non-haemolytic enterotoxin (Nhe) and haemolysin BL (Hbl) (Agata et al., 1994; Granum & Lund, 1997; Stenfors, Fagerlund, & Granum, 2008). Such isolates can cause both food infections and intoxications resulting in e.g. vomiting and serious case of diarrhoea. All B. cereus investigated exhibited several toxin genes with isolates NM 54, NM59, NM79, NM80, NM81 and NM83 being the most potentially virulent and possible causes of foodborne disease as they exhibited all three Nhe genes (NheA, NheB, NheC) and Hbl genes (HbIC, HbID) as well as the CytK gene (Guinebretiere, Broussolle, & Nguyen-The, 2002). The presence of Hbl genes and especially the HblC gene was confirmed by the production of haemolysin. There were no correlations between haemolytic activity on blood agar and presence of the Hbl genes and production of the haemolytic enterotoxin.

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

In fact, most non B. cereus isolates and one B. cereus strain showed haemolysis on blood agar but did not exhibit the Hbl genes and did not produce the haemolysin toxin. As reported by Lindback, Fagerlund, Rodland, & Granum (2004) and Ouoba, Thorsen, & Varnam (2008b), the presence all three Nhe genes is indicative of a potential ability of the bacteria to produce non-haemolytic enterotoxin. The absence of the EM1 gene, encoding heat stable emetic toxin (cereulide) production, was also reported in previous studies on Soumbala, Bikalga, Gergoush and Ugba (Ouoba, Thorsen, & Varnam, 2008b; Thorsen et al., 2011a; Ahaotu et al., 2013). The production of cereulide by B. cereus isolates from alkaline fermented foods as reported by Thorsen et al. (2011b) for isolates from Afitin seems to be rather rare. Ntoba Mbobi is cooked before consumption, and most heat labile enterotoxins (Nhe and Hbl toxins) are likely to be destroyed before consumption if the product is well cooked. However, heat stable toxins such as cytotoxins (From, Pukall, Schumann, Hormazabal, & Granum, 2005) will not be destroyed. Furthermore, since B. cereus is a spore-former, spores ingested through the food may germinate in the large intestine and cause severe infections (Granum & Lund, 1997; From, Hormazabal, & Granum, 2007). Nevertheless, there is no official report of foodborne illnesses resulting from the consumption of alkaline traditional fermented foods such as Ntoba Mbodi. This may be related to non-availability of data and lack of statistics. None of the isolates belonging to the other species studied exhibited the toxin genes screened for, or were able to produce haemolysin. In general, non B. cereus Bacillus isolates are considered safe with regards to toxin production (Hosoi et al, 2003; Sanders, Morelli, & Tompkins, 2003), although specific strains of a few species such as B. subtlis, B. licheniformis, B. pumilus and B. fusiformis have been reported to contain

401	toxin genes and capable of producing cytotoxins, enterotoxins or ring-formed emetic
402	toxins (Salkinoja-Salonen et al.,1999; Rowan, Caldow, Gemmel, & Hunter, 2003; From
403	Pukall, Schumann, Hormazabal, & Granum, 2005; From, Hormazabal, & Granum
404	2007).
405	The research herein reported provides an extended understanding of the Bacillus
406	population of Ntoba Mbodi. This constitutes a new investigation into the microbia
407	dynamic of Ntoba Mbodi and is of great importance, as diseases originating from food
408	are a worrying and growing public health problem, whether in developed or developing
409	countries. The results of the study are important for the selection of potentia
410	multifunctional starter cultures for controlled production of Ntoba Mbodi to deliver a
411	product with improved nutritional and hygienic quality. Further studies will address the
412	technological and probiotic properties of the bacteria as well another safety issues
413	related to transferable antimicrobial resistance determinants. It is advised that the
414	selection and use of multifunctional starter cultures is supported by training of the
415	producers in good hygienic and manufacturing practices to maximize positive food
416	safety outcomes.

418	Reterences
419	Ahaotu, A., Anyogu, O.H., Njoku, N.N., Odu, J.P., Sutherland, & Ouoba, L.I.I. (2013).
420	Molecular identification and safety of Bacillus species involved in the
421	fermentation of African oil beans (Pentaclethra macrophylla Benth) for production of
422	Ugba. International Journal of Food Microbiology, 162, 95-104.
423	Anyogu, A., Awamaria, B., Sutherland, J.P. & Ouoba, L.I.I. (2014). Molecular
424	characterisation and antimicrobial activity of bacteria associated with submerged
425	lactic acid cassava fermentation. Food Control, 39, 119-127.
426	Azokpota, P., Hounhouigan, D.P, & Nago, M.C. 2006. Microbiological and chemical
427	changes during the fermentation of African locust bean (Parkia biglobosa) to
428	produce afitin, iru and sonru, three traditional condiments produced in Benin.
429	International Journal of Food Microbiology, 107, 304-309.
430	Beecher, D.J., Schoeni, J.L, & Wong, A.C. (1995). Enterotoxic activity of hemolysin BL
431	from Bacillus cereus. Infection and Immunity, 63, 4423-4428.
432	Branquinho, R., Meirinhos-Soares, L., Carriço, J., Pintado, M., & Peixe, L. (2014a).
433	Phylogenetic and clonality analysis of Bacillus pumilus isolates uncovered a
434	highly heterogeneous population of different closely related species and clones.
435	FEMS Microbiology Ecology, 90, 689-698.
436	Branquinho, R., Sousa, C., Lopes, J., Pintado, M., Peixe, L., & Osório, H. (2014b).
437	Differentiation of Bacillus pumilus and Bacillus safensis Using MALDI-TOF-MS.
438	Plos One, 9, e110127.

440	Chun, J., & Bae, K.S. 2000. Phylogenetic analysis of <i>Bacillus subtilis</i> and related taxa
441	based on partial gyrA gene sequences. Antonie Van Leeuwenhoek, 78, 123-
442	127.
443	Compaoré, C., Nielsen, D., Ouoba, L., Berner, T., Nielsen, K., & Sawadogo-Lingani, H.
444	et al. (2013). Co-production of surfactin and a novel bacteriocin by Bacillus
445	subtilis subsp. subtilis H4 isolated from Bikalga, an African alkaline Hibiscus
446	sabdariffa seed fermented condiment. International Journal of Food
447	Microbiology, 162, 297-307.
448	Ehling-Schulz, M., Fricker, M. & Scherer, S. (2004). Identification of emetic toxin
449	producing Bacillus cereus strains by a novel molecular assay. FEMS
450	Microbiology Letters, 232,189-195.
451	From, C., Pukall, R., Schumann, P., Hormazabal, V. & Granum, P.E. (2005). Toxin-
452	producing ability among Bacillus spp. Outside the Bacillus cereus group. Applied
453	and environmental Microbiology ,71,1178-1183.
454	From, C., Hormazabal, V. & Granum, P.E. (2007). Food poisoning associated with
455	pumilacidin-producing Bacillus pumilus in rice. International Journal of Food
456	Microbiology, 115, 319-324.
457	Gregersen, T. (1978). Rapid method for distinction of Gram-negative from Gram-
458	positive bacteria. European Journal of Applied Microbiology and Biotechnology,
459	5, 123-127.
460	Granum, P.E. & Lund, T. (1997). Bacillus cereus and its food poisoning toxins. FEMS
461	Microbiology Letters, 157, 223-228.

162	Guinebretiere, M., Broussolle, H.V, & Nguyen-The, C. (2002). Enterotoxigenic profiles of						
163	food-poisoning and food-borne Bacillus cereus strains. Journal of Clinical						
164	Microbiology, 40, 3053-3056.						
165	Hansen, B.M. & Hendriksen, N.B. (2001). Detection ofenterotoxic <i>Bacillus cereus</i> and						
166	Bacillus thuringiensis strains by PCR analysis. Applied and Environmental						
167	Microbiology, 67, 185-189.						
168	Holzapfel, W.H. (2002). Appropriate starter culture technologies for small-scale						
169	fermentation in developing countries. International Journal of Food Microbiology,						
170	75, 121-197.						
171	Hong, H. A., Duc, L. H., & Cutting, S.M. (2005) The use of bacterial spore formers as						
172	probiotics. FEMS Microbiology Reviews, 29, 813-835.						
173	Hosoi, T., Hirose, R., Saegusa, S., Ametani, A., Kiuchi, K., & Kaminogawa, S.(2003).						
174	Cytokine responses of human intestinal epithelial-like Caco-2 cells to the						
175	nonpathogenic bacterium Bacillus subtilis (natto). International Journal of Food						
176	Microbiology, 82, 255-264.						
177	Isu, N.R, & Ofuva, C.O. (2000). Improvement of the traditional processing and						
178	fermentation of African oil bean (Pentaclethra macrophylla Bentham) into a food						
179	smack 'ugba'. International Journal of Food Microbiology, 59, 235-239.						
180	Kim, O., Cho, Y., Lee, K., Yoon, S., Kim, M., & Na, H. et al. (2012). Introducing						
181	EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes						
182	that represent uncultured species. International Journal of Systematic and						
183	Evolutionary Microbiology, 62, 716-721.						

- Kobawila, S.C., Louembé, D., Kéléké, S., Hounhouigan, J., & Gamba, C. (2005).
- Reduction of the cyanide content during fermentation of cassava roots and
- leaves to produce Bikedi and Ntoba Mbodi, two food products from Congo.
- 487 African Journal of Biotechnology, 4, 689-696.
- 488 La Duc, M.T., Satomi, M., Agata, N., & Venkateswaran, K. (2004). GyrB as a
- 489 phylogenetic discriminator for members of the Bacillus anthracis-cereus-
- thuringiensis group. *Journal of Microbiology Methods*, 56, 383-394.
- Lai, Q., Liu, Y., & Shao, Z. (2014). *Bacillus xiamenensis* sp. nov., isolated from intestinal
- tract contents of a flathead mullet (Mugil cephalus). Antonie Van Leeuwenhoek,
- 493 105, 99 -107.
- Lateef, A., Adelere, I.A., & Gueguim-Kana, E.B. (2015). The biology and potential
- biotechnological applications of *Bacillus safensis*. *Biologia*, 70, 411-419.
- Lindback, T., Fagerlund, A., Rodland, M.S., & Granum, P.E. (2004). Characterization of
- the Bacillus cereus Nhe enterotoxin. *Microbiology*, 150, 3959-3967.
- 498 Liu, Y., Lai, Q., Dong, C., Sun, F., Wang, L., Li, G., & Shao, Z. (2013). Phylogenetic
- Diversity of the Bacillus pumilus Group and the Marine Ecotype Revealed by
- Multilocus Seguence Analysis. Plos ONE, 8, e80097.
- Louembé, D., Kobawila, S.C., Bouanga, G., & Kéléké, S. (2003). Etude microbiologique
- des feuilles fermentées de manioc: Ntoba mbodi. *Tropicultura*, 21, 106-111.
- Mekuto, L., Jackson, V., & Ntwampe, S.K.O., (2014). Biodegradation of free cyanide
- using Bacillus Sp. consortium dominated by Bacillus safensis, lichenformis and

505	tequilensis strains: A bioprocess supported solely with whey. Journal of
506	Bioremediation and Biodegradation, S18:004.
507	Meyers, P. R., Gokool, P., Rawlings, D. E., & Woods, D. R. (1991). An efficient cyanide-
508	degrading Bacillus pumilus strain.]ournal of General Microbiology, 137, 1397-
509	1400.
510	Mohamadou, B.A., Mbofung, C.M.F., & Thouvenot, D. (2009). Microbiological and
511	organoleptic profiles of Mbuja: A traditional condiment produced by fermented
512	Hibiscus sabdariffa seeds in Cameroun. Journal of Food Technology, 7, 84-91.
513	Molina, C., Cana-Roca, J., Osuna, A., & Vilchez, S. (2010). Selection of a Bacillus
514	pumilus Strain Highly Active against Ceratitis capitata (Wiedemann) Larvae.
515	Applied and Environmental Microbiology, 76, 1320-1327.
516	Nicholson, W.J., Munakata, N., Horneck, G., Melosh, H.J., & Setlow, P. (2000).
517	Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial
518	environments. Microbiology and Molecular Biology Reviews, 64, 548-572.
519	Ouoba, L.I.I., Diawara, B., Amoa-Awua, W.K., Traoré, A.S, & Lange Moller, P. (2004).
520	Genotyping of starter cultures of Bacillus subtilis and Bacillus pumilus for
521	fermentation of African locust bean (Parkia biglobosa) to produce Soumbala.
522	International Journal of Food Microbiology, 90,197-205.
523	Ouoba, L.I.I., Parkouda, C., Diawara, B., Scotti, C., & Varnam, A.H. (2008a).
524	Identification of Bacillus spp from Bikalga, fermented seeds of Hibiscus
525	sabdariffa: phenotypic and genotypic characterization. Journal of Applied
526	Microbiology, 104, 122-131.

527	Ouoba, L.I.I., Thorsen, L., & Varnam, A.H. (2008b). Enterotoxins and emetic toxins				
528	production by Bacillus cereus and other species of Bacillus isolated from				
529	Soumbala and Bikalga, African alkaline fermented food condiments.				
530	International Journal of Food Microbiology, 124, 224-230.				
531	Ouoba, L.I.I., Vouidibio Mbozo, A.B., Thorsen, L., Anyogu, A., Nielsen, D.S., Kobawila,				
532	S.C. & Sutherland, J.P. (2015). Lysinibacillus louembei sp. nov., a novel spore-				
533	forming bacterium isolated from Ntoba Mbodi, alkaline fermented leaves of				
534	cassava from The Republic of The Congo. International Journal of Systematic				
535	and Evolutionary Microbiology, 65, 4256-4262				
536	Parkouda, C., Nielsen, D.S., Azokpota, P., Ouoba, L.I.I., Amoa-Awua, W.K., Thorsen,				
537	L., et al. (2009). The microbiology of alkaline-fermentation of indigenous seeds				
538	used as food condiments in Africa and Asia. Critical Review in Microbiology,				
539	35,139-156.				
540	Parkouda, C., Thorsen, L., Compaoré, C., Nielsen, D., Tano-Debrah, K., & Jensen, J. et				
541	al. (2010). Microorganisms associated with Maari, a Baobab seed fermented				
542	product. International Journal of Food Microbiology, 142, 292-301.				
543	Perez-Garcia, A., Romero, D., & de Vicente, A. (2011). Plant protection and growth				
544	stimulation by microorganisms: biotechnological applications of Bacilli in				
545	agriculture. Current Opinion in Biotechnology, 22, 187-193.				
546	Rowan, N.J., Caldow, G., Gemmel, C.G., & Hunter, I.S. (2003). Production of diarrheal				
547	enterotoxins and other potential virulence factors by veterinary isolates of				

548	Bacillus species associated with non-gastrointestinal infections. Applied and
549	Environmental Microbiology. 69, 2372-2376
550	Salkinoja-Salonen, M.S., Vuorio, R., Andersson, M.A., Kamfer, P., Andersson, M.C.,
551	Honkanen-Buzalski, T., & Scoging, A.C. (1999). Toxigenic strains of Bacillus
552	licheniformis related to food poisoning. Applied and Environmental Microbiology,
553	65, 4637- 4645.
554	Sanders, M.E., Morelli, L., & Tompkins, T.A. (2003). Sporeformers as human probiotics:
555	Bacillus, Sporolactobacillus, and Brevibacillus. Comprehensive Review in Food
556	Science and Food Safety, 2,101-110.
557	Sanni, A.I., Ayermor, G.S., Sakyi-dawson, E., & Sefa-dedeh, S. 2000. Aerobic spore-
558	forming bacteria and chemical composition of some Nigerian fermented soup
559	condiments. Plant Foods for Human Nutrition, 55, 111-118.
560	Satomi, M., La Duc, M.T., & Venkateswaran, K. (2006). <i>Bacillus safensis</i> sp. nov.,
561	isolated from spacecraft and assembly-facility surfaces. International Journal of
562	Systematic and Evolutionary Microbiology, 56, 1735- 1740.
563	Sessitsch, A., Reiter, B., Pfeifer, U., & Wilhelm, E. (2002). Cultivation-independent
564	population analysis of bacterial endophytes in three potato varieties based on
565	eubacterial and Actinomycetes-specific PCR of 16S rRNA genes. FEMS
566	Microbiology Ecology, 39, 23-32.
567	Shivaji, S., Chaturvedi, P., Suresh, K., Reddy, G.S., Dutt, C.B., Wainwright, M., Narlikar,
568	J.V., & Bhargava, P.M. (2006). Bacillus aerius sp. nov., Bacillus aerophilus sp.
569	nov., Bacillus stratosphericus sp. nov. and Bacillus altitudinis sp. nov., isolated

570	from cryogenic tubes used for collecting air samples from high altitudes.
571	International Journal of Systematic and Evolutionary Microbiology, 56, 1465-
572	1473.
573	Stenfors, A.L.P., Fagerlund, A., & Granum, P.E. (2008). From soil to gut: <i>Bacillus</i>
574	cereus and its food poisoning toxins. FEMS Microbiology Reviews, 32, 579-606.
575	Thorsen, L., Abdelgadir, W.S., Ronsbo, M.H., Abban, S., Hamad, S.H., Nielsen, D.S., &
576	Jakobsen, M. (2011) a. Identification and safety evaluation of Bacillus species
577	occurring in high numbers during spontenous fermentation to produce
578	Gergoush, a traditional Sudanese bread snack. International Journal of Food
579	Microbiology, 146, 244-252.
580	Thorsen, L., Azokpota, P., Munk Hansen, B., Hvillum Rønsbo, M., Fog Nielsen, K.,
581	Hounhouigan, D.J., & Jakobsen, M. (2011b). Formation of cereulide and
582	enterotoxins by Bacillus cereus in fermented African locust beans. Food
583	Microbiology, 28, 1441-1447.
584	Wang, L.T., Lee, F.L., Tai, C.J., & Kasai, H. (2007). Comparison of gyrB gene
585	sequences, 16S rRNA gene sequences and DNA-DNA hybridization in the
586	Bacillus subtilis group. International Journal of Systematic and Evolutionary
587	Microbiology, 57, 1846-1850.
588	Yamamoto, S., & Harayama, S. (1995). PCR amplification and direct sequencing of
589	gyrB genes with universal primers and their application to the detection and
590	taxonomic analysis of Pseudomonas putida strains. Applied and Environmental
591	Microbiology, 61, 1104-1109.

592	Figure caption
593	Fig.1: Cluster analysis (Bionumerics: Dice's Coefficient of similarity, UPGMA) of the
594	different rep-PCR fingerprints of the <i>Bacillus</i> species isolated from Ntoba Mbodi.
595	
596	

Table 1: Primers used in the current study

Primers	Sequence (5'-3')	Gene/Region	Annealing Temperature(℃)
S-D-Bact-1494-a-S-20-F	GTCGTAACAAGGTAGCCGTA	16-23S rRNA ^a	55
L-D-Bact-0035-a-A-15-R	CAAGGCATCCACCGT		
GTG₅	GTGGTGGT GTG		45
рА-F	AGAGTTTGATCCTGGCT	16S rRNA ^a	55
pE-R	CCGTCAATTCCTTTGAGTTT		
pD	GTATTACCGCGGCTGCTG		40
rpoB-F	AGGTCAACTAGTTCAGTATGGAC	гроВ ^b	51
rpoB-R	AAGAACCGTAACCGGCAACTT		
UP1-F	GAAGTCATCATGACCGTTCTGCAYGCNGGNGGNAA RTTYGA	gyrB ^c	66
UP2-R	AGCAGGGTACGGATGTGCGAGCCRTCNACRTCNGC RTCNGTCAT		
gyrA-F	GAYTATGCWATGTCAGTTATTGT	gyrA	50
gyrA.R	GGAATRTTRGAYGTCATACCAAC		
HC F	GATAC(T,C)AATGTGGCAACTGC	<i>HblC</i> ^d	58
HC R	TTGAGACTGCTCG(T,C)TAGTTG		
HD F	ACCGGTAACACTATTCATGC	HblD ^d	58
HD R	GAGTCCATATGCTTAGATGC		
NA F	GTTAGGATCACAATCACCGC	<i>NheA</i> ^d	56
NA R	ACGAATGTAATTTGAGTCGC		
NB F	TTTAGTAGTGGATCTGTACGC	NheB ^d	54
NB R	TTAATGTTCGTTAATCCTGC		
NC F	TGGATTCCAAGATGTAACG	NheC ^d	54
NC R	ATTACGACTTCTGCTTGTGC		
CytK F	ACAGATATCGG(G,T)CAAAATGC	cytK ^d	54
CytK R	TCCAACCCAGTTWSCAGTTCD		
EM1 F	GACAAGAGAAATTTCTACGAGCAAGTACAAT	Unknown ^f	60
EM1 R	GCAGCCTTCCAATTACTCCCTTCTGCCACAGT		
598			

598

597

Hendriksen (2001); ^fGene of unknown function, Ehling-Schulz, Fricker, & Scherer

602 (2004).

603

^a Ouoba, Parkouda, Diawara, Scotti, & Varnam (2008a); ^bYamomoto and Harayama

^{600 (1995); &}lt;sup>c</sup> Thorsen et al (2011a) and Yamamoto & Harayama (1995); ^dHansen &

Table 2: Origin and identity of the Bacillus isolates from Ntoba Mbodi

Samples	Origin/Fermen- tation time	Isolates	Groups ITS-PCR	Groups Rep-PCR	Identification 16S RNA/GyrB/GyrA/RpoB gene sequencing
A0	Site1/0h	NM1	1	1.2	B. safensis
		NM3	1	1.3	B. safensis
		NM4	1	1.2	B. safensis
		NM5	1	1.1	B. safensis
		NM6	1	1.1	B. safensis
		NM7	3	3.1	B. subtilis
A1	Site1/24h	NM8	1	1.2	B. safensis
		NM9	1	1.1	B. safensis
		NM10	1	1.1	B. safensis
		NM11	1	1.1	B. safensis
		NM12	1	1.2	B. safensis
		NM13	1	1.2	B. safensis
		NM14	1	1.1	B. safensis
		NM15	1	1.1	B. safensis
A2	Site1/48h	NM16	1	1.8	B. pumilus sensu lato
		NM17	1	1.8	B. pumilus sensu lato
		NM18	1	1.2	B. safensis
		NM19	1	1.2	B. safensis
		NM20	1	1.2	B. safensis
A3	Site1/72h	NM21	1	1.4	B. pumilus
		NM22	1	1.1	B. safensis
		NM23	1	1.1	B. safensis
		NM24	1	1.8	B. pumilus sensu lato
		NM25	1	1.8	B. pumilus sensu lato
		NM26	4	4.1	B. amyloliquefaciens
		NM27		1.1	B. safensis
		NM28	1	1.6	B. pumilus
		NM29	$\frac{1}{2}$	1.4	B. pumilus
		NM30	1	1.2	B. safensis
		NM31	$\langle \cdot \rangle_1$	1.1	B. safensis
		NM32	i	1.2	B. safensis
		NM33	, i	1.5	B. pumilus
		NM34	1	1.4	B. pumilus
		NM35	3	3.2	B. subtilis
		NM36	1	1.6	B. pumilus
		NM37	1	1.1	B. safensis
		NM38	1	1.6	B. pumilus
		NM39	3	3.3	B. subtilis
		NM40	1	1.1	B. safensis
		NM41	3	3.2	B. subtilis
J0	Site 2/0h	NM42	3 1	1.2	B. safensis
30	Site 2/011	NM43	1	1.2	B. safensis
		NM44	1	1.2	
		NM45	1 1	1.3	B. safensis B. safensis
		NM47	1	1.2	B. safensis B. safensis
		NM48	2	2.2	B. cereus sensu lato
J3	Site 2/72h	NM49	∠ 1	2.2 1.1	B. safensis
JJ	SILE Z/I ZII	NM50	1	1.1	
			1	1.0	B. pumilus sensu lato B. safensis
		NM51	1	1.1	
		NM52	1		B. pumilus sensu lato
		NM53	1	1.1	B. safensis

Table 2 continued: Origin and identity of the Bacillus isolates from Ntoba Mbodi

Samples	Origin/Ferme ntation time	Isolates	Groups ITS-PCR	Groups Rep-PCR	Identification 16S RNA/ GyrB/GyrA/RpoB gene sequencing
MB	Site 3/72h	NM54	2	2.1	B. cereus sensu lato
		NM55	1	1.1	B. safensis
		NM56	5	5.1	B. megaterium
		NM57	5	5.2	B. megaterium
		NM58	1	1.2	B. safensis
		NM59	2	2.1	B. cereus sensu lato
		NM60	1	1.1	B. safensis
MP	Site 4/72h	NM61	1	1.2	B. safensis
		NM62	1	1.2	B. safensis
		NM63	1	1.1	B. safensis
		NM64	1	1.2	B. safensis
		NM65	5	5.3	B. megaterium
		NM66	5	5.4	B. megaterium
		NM67	1	1.7	B. pumilus sensu lato
		NM68	1	1.2	B. safensis
		NM70	1	1.7	B. pumilus sensu lato
		NM71	1	1.1	B. safensis
		NM72	1	1.2	B. safensis
MBb	Site 5/72h	NM73	7	7.1	Lysinibacillus louembei
		NM74	6	6.1	B. licheniformis
		NM75	4	4.1	B. amyloliquefaciens
		NM76	3	3.4	B. siamensis
		NM77	3	3.4	B. siamensis
		NM86	1	1.1	B. safensis
		NM87	1	1.1	B. safensis
		NM88	1	1.1	B. safensis
		NM89	1	1.2	B. safensis
		NM90	1	1.2	B. safensis
		NM91	1	1.2	B. safensis
		NM92	1	1.7	B. pumilus sensu lato
		NM93	1	1.7	B. pumilus sensu lato
MPb	Site 6/72h	NM78	2	2.2	B. cereus sensu lato
		NM79	2	2.1	B. cereus sensu lato
		NM80	2	2.1	B. cereus sensu lato
		NM81	2	2.3	B. cereus sensu lato
		NM82	2	2.2	B. cereus sensu lato
		NM83	2	2.3	B. cereus sensu lato
		NM84	2	2.4	B. cereus sensu lato
		NM85	2	2.4	B. cereus sensu lato

Table 3: Detection of toxins genes and production of haemolysin by the B. cereus isolates

Bacteria	Genes encoding the production of toxins							Haemolysis	Production of
	NheA	NheB	NheC	HblC	HbID	CytK	EM1	on blood Agar ^b	haemolysin
B. cereus B 13	+ ^a	+	+	+	+	+	-	+	, +
positive control									
B. cereus NM 48	+	+	+	-	-	-	-	+	-
B. cereus NM 54	+	+	+	+	+	+	-	+	+
B. cereus NM 59	+	+	+	+	+	+	- /	+	+
B. cereus NM 78	+	+	+	+/-	-	+		+	-
B. cereus NM 79	+	+	+	+	+	+		+p	+
B. cereus NM 80	+	+	+	+	+	+	_	+p	+
B. cereus NM 81	+	+	+	+	+	+		+	+
B. cereus NM 82	+	+	+	+/-	_		-	+p	_
B. cereus NM 83	+	+	+	+	+	4	ノ	+p	+
B. cereus NM 84	· .	+	+	+/-	+ /		_	. p	
B. cereus NM 85	T	+	+	+/-	+		-	+	T
	т	т	т	+ /-	Т	_	-		т
B.safensis NM1 B.safensis NM 3	-	-	-	-	-	-	-	+	-
B.safensis NM 5	_	_	_	_		_	_	+	<u>-</u>
B.safensis NM 19	- -	-	-	Ž	V -	-	_	+	_
B. pumilus NM 21	_	_	_	_/\	Y _	_	_	+	_
B. pumilus NM 33	-	-	_ /		_	-	_	+	_
B. pumilus NM 34	-	-	-	-	-	-	-	+	-
B. pumilus NM 36	-	-		-	-	-	-	+	-
B. pumilus sensu lato NM 52	-	-	-) -	-	-	-	+	-
B. pumilus sensu lato NM 67	-	- ,	-	_	-	-	-	+	-
B. subtilis NM 7	-		-	-	-	-	-	+	-
B. subtilis NM 35	-	7	-	-	-	-	-	+	-
B. subtilis NM 39	-	-	/ -	-	-	-	-	+	-
B. amyloliquefaciens NM 75	-	-	-	-	-	-	-	+	-
B. siamensis NM 76	- /) -	-	-	-	-	-	-	-
B. licheniformis NM 74		-	-	-	-	-	-	+	-
B. megaterium NM 56 B. megaterium NM 57		·	-	-	-	-	-	+	<u>-</u>
B. megaterium NM 65	A.T.	/ [-	-	-	-	-	+	-
613	(- /							•	

which exhibited an alpha hemolysis (p: partial)

^a+: presence ; - : absence; p: partial; ^b Beta hemolysis observed for all positive bacteria except for isolates NM79, NM80, NM82 and NM83

Highlights:

- Various Bacillus species identified to interspecies and intraspecies by genotyping
- Main species: Bacillus pumilus group of species and mainly B. safensis
- B. cereus isolates: contain cytotoxin, haemolytic, non-haemolytic toxin genes
- B. cereus isolates: produce haemolytic enterotoxin
- Non B. cereus isolates: do not contain toxin genes and do not produce haemolysin

Fig.1.