

UWL REPOSITORY

repository.uwl.ac.uk

Investigation of metabolic kinetics in different brain regions of awake rats using the [1H-13C]-NMR technique

Guo, Meimei, Fang, Yuanyuan, Zhu, Jinpiao, Chen, Chang, Zhang, Zongze, Tian, Xuebi, Xiang, Hongbing, Manyande, Anne ORCID: https://orcid.org/0000-0002-8257-0722, Ehsanifar, Mojtaba, Jafari, Ahmad Jonidi, Xu, Fuqiang, Wang, Jie and Peng, Mian (2021) Investigation of metabolic kinetics in different brain regions of awake rats using the [1H-13C]-NMR technique. Journal of Pharmaceutical and Biomedical Analysis, 204. p. 114240. ISSN 0731-7085

http://dx.doi.org/10.1016/j.jpba.2021.114240

This is the Accepted Version of the final output.

UWL repository link: https://repository.uwl.ac.uk/id/eprint/8190/

Alternative formats: If you require this document in an alternative format, please contact: <u>open.research@uwl.ac.uk</u>

Copyright: Creative Commons: Attribution-Noncommercial-No Derivative Works 4.0

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy: If you believe that this document breaches copyright, please contact us at <u>open.research@uwl.ac.uk</u> providing details, and we will remove access to the work immediately and investigate your claim.

1	Investigation of metabolic kinetics in different brain regions of awake rats using the [¹ H- ¹³ C]-
2	NMR technique
3	Meimei Guo ^{1,2} ; Yuanyuan Fang ^{1,2} ; Jinpiao Zhu ^{1,2} ; Chang Chen ¹ ; Zongze Zhang ¹ ; Xuebi Tian ³ ; Hongbing
4	Xiang ³ , Anne Manyande ⁴ ; Mojtaba Ehsanifar ⁵ ; Ahmad Jonidi Jafari ⁵ ; Fuqiang Xu ^{2,6} ; Jie Wang ^{2,6,7*} ; Mian
5	Peng ^{1*}
6	¹ Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, P.R.
7	China
8	² Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic
9	Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan,
10	Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science
11	and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics,
12	430071 Wuhan, People's Republic of China;
13	³ Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of
14	Science and Technology, Wuhan 430070, P.R. China;
15	⁴ School of Human and Social Sciences, University of West London, London, UK
16	⁵ Department of Environmental Health Engineering, School of Public Health, Iran University of Medical
17	Sciences, Tehran, Iran.
18	⁶ University of Chinese
19	Academy of Sciences, Beijing, 100049, P.R. China;
20	⁷ Hebei Provincial Key Laboratory of Basic Medicine for Diabetes, 2nd Hospital of Shijiazhuang,
21	Shijiazhuang, Hebei, 050051, P.R. China.
22	
23	Corresponding Author:
24	Mian Peng, Tel: +86-18607151101; Email: mianpeng@whu.edu.cn
25	Jie Wang, Tel: +86-27-87197653; E-mail: jie.wang@wipm.ac.cn
26	1

27 Abstract: Energy metabolism and neurotransmission are necessary for sustaining normal life activities. 28 Hence, neurological or psychiatric disorders are always associated with changes in neurotransmitters and 29 energy metabolic states in the brain. Most studies have only focused on the most important 30 neurotransmitters, particularly GABA and Glu, however, other metabolites such as NAA and aspartate 31 which are also very important for cerebral function are rarely investigated, ... In this study, most of the 32 metabolic kinetics information of different brain regions was investigated in awake rats using the [¹H-33 ¹³C]-NMR technique. Briefly, rats (n=8) were infused [1-¹³C] glucose through the tail vein for two 34 minutes. After 20 minutes of glucose metabolism, the animals were sacrificed and the brain tissue was 35 extracted and treated. Utilizing the ¹H observed/¹³C-edited nuclear magnetic resonance (POCE-NMR), 36 the enrichment of neurochemicals was detected which reflected the metabolic changes in different brain 37 regions and the metabolic connections between neurons and glial cells in the brain. The results suggest 38 that the distribution of every metabolite differed from every brain region and the metabolic rate of NAA 39 was relatively low at 8.64 \pm 2.37 μ mol/g/h. In addition, there were some correlations between several 40 13 C enriched metabolites, such as Glu₄-Gln₄ (*p*=0.062), Glu₄-GABA₂ (*p*<0.01), Glx₂-Glx₃ (*p*<0.001), 41 Asp_3-NAA_3 (p<0.001). This correlativity reflects the signal transmission between astrocytes and neurons, 42 as well as the potential interaction between energy metabolism and neurotransmission. In conclusion, the 43 current study systematically demonstrated the metabolic kinetics in the brain which shed light on brain 44 functions and the mechanisms of various pathophysiological states. 45 Key words: Brain, ¹H observed/¹³C-edited, Metabolic kinetics, N-acetylaspartate, Nuclear magnetic

46 resonance.

47 **1. Introduction**

48 Energy metabolism is considered the basis of life which plays an essential role in maintaining 49 normal life activities and metabolic processes[1]. As a high-energy consuming organ, the brain accounts 50 for 20% of glucose consumption, although it comprises only 2% of body weight in adults[2]. The 51 restoration and maintenance of various ionic gradients, as well as the uptake and circulation of 52 neurotransmitters have been gradually regarded as the main reasons for the high energy demand in the 53 brain. In the 1970s, Sokoloff and his partners speculated that the synapse-rich areas of the nervous system 54 consume most of the glucose[2]. Pellerin and his colleagues found close coupling between the 55 glutamatergic neuron activity and glucose metabolism in the cerebral cortex with a stoichiometric ratio 56 of nearly 1:1[3]. These studies indicate that the most generated energy in the brain is used to maintain 57 the functional activity of neurons. Accordingly, the occurrence of various neuropsychiatric diseases is 58 closely related to the state of neurotransmitters and energy metabolism in the brain, in this sense, a bird's 59 eye view of various metabolic kinetics in different brain regions is very important particularly for brain 60 researchers.

There are many techniques available to reflect the level of energy metabolism coupled with neuronal activity, such as magnetic resonance imaging spectroscopy (MRS)[4], positron emission tomography (PET)[5] and autoradiography[6]. These methods not only provide information about macroscopic cerebral metabolic changes, but also distinguish the changes in markers involved in different metabolic responses and reflect the real-time changes in metabolites. However, the signal to noise ratio is much lower. In contrast with these techniques, the nuclear magnetic resonance spectroscopy 67 (NMR) approach is not only a noninvasive and stable method, but also provides higher resolution and 68 various information for different chemicals with multiple methods, including ¹H-NMR, ¹³C-NMR, ³¹P-69 NMR, *etc.* ¹H-NMR is mainly used for mixture analysis and metabolomics studies; ³¹P-NMR plays a 70 vital role in detecting ATP generation and pH homeostasis; ¹³C-NMR is always regarded as a unique 71 technique to reflect the brain metabolic fluxes *in vivo*[7]. Additionally, the chemical shift in all spectra 72 could be used to discriminate specific metabolites.

73 In metabolic flux studies, the infusion of ¹³C labeled substrates, such as glucose, acetate or ketone 74 bodies is always used in investigations [8]. After the infusion of 13 C enriched substrates, the 13 C labeled 75 substrates were gradually oxidized to the other ¹³C labeled metabolites, which could be accurately 76 detected with the NMR method and directly reflect the cerebral metabolic kinetics information[8]. Here, 77 [¹H-¹³C] (¹H observed/¹³C-edited) the nuclear magnetic resonance (POCE-NMR) technique is one of the 78 most frequently-used NMR techniques which is an attractive approach for detecting metabolic kinetics. 79 POCE-NMR can help to measure the composition of metabolites, detect changes in the metabolic rate of 80 energy sources and reflect the dynamics of neurotransmitter transmission[8]. By applying this technique, 81 we can detect the ¹H signal which has higher sensitivity than the normal ¹³C-NMR method, as well as 82 separate hydrogens attached to ¹³C from those attached to ¹²C. It has been reported in other studies that 83 there was a 14-fold improvement in sensitivity to detect the CH₃ signal in the rabbit brain using the 84 proton spectroscopy compared to the direct carbon spectroscopy[9]. Thus, the POCE-NMR was applied 85 in the present study.

86	Furthermore, in the field of brain metabolic dynamics, many studies have focused on examining
87	the neurotransmitter circulation between neurons and astrocytes in maintaining neurotransmitter
88	homeostasis, such as Glu-Gln (glutamate-glutamine) cycle and GABA-Glu (γ -aminobutyric acid-
89	glutamate) cycle[10]. However, there are few studies that have investigated the dynamics of other small
90	molecular metabolisms, which may also play a crucial role in brain function. For example, N-
91	acetylaspartate (NAA) has been used as a neuronal biomarker to reflect neuronal function and density
92	[11] and it is implicated in many metabolic processes, such as myelination and oxidative metabolism[12].
93	Thus, the metabolic kinetic information of the NMR detectable metabolites was investigated in the
94	current study.
95	Here, [1- ¹³ C] glucose was infused in the rats and various metabolites were detected with [¹ H- ¹³ C]
96	NMR technology. The aims of this study were (i) to explore the metabolic kinetics of different brain
97	regions and (ii) to reflect the metabolic cross-talk between neurons and astrocytes through correlations
98	between neurochemicals. This study could provide various metabolic information for various brain
99	regions, which is very important for neuroscience research.
100	
101	2. Material and methods
102	2.1 Animal preparation
103	The experiment was carried out according to protocols approved by the Animal Ethics Committee
104	of Zhongnan Hospital of Wuhan University (Ethics approval number: WP2020-08087). All operations
105	were performed according to the National Institutes of Health Guidelines for the Care and Use of

106 Laboratory Animals. Adult male Sprague-Dawley rats (2 months old, weighing 230-300g, n=8) used in

- 107 the current study were obtained from Hubei Center for Disease Control and Prevention (Wuhan, China).
- 108 The rats were placed in a 12h light-dark cycle with a temperature-controlled environment and food and
- 109 water available. Every effort was made to reduce any pain in animals and the number of rats used.
- 110 2.2 Animal experiment
- 111 The ¹³C enrichment of different carbon positions of metabolites was detected to reflect the 112 metabolic kinetics[13,14] through infusing [1-¹³C] glucose (Qingdao Tenglong Weibo Technology co.,
- 113 LTD, Qingdao, P.R. China). To obtain higher enrichment of ¹³C glucose, it is necessary to minimize the
- endogenous unlabeled glucose. Therefore, all animals were fasted overnight and only had free access to
- 115 water (16-18 hours) before the experiment.
- 116 On the experimental day, animals were anesthetized with 1.5%-2.5% isoflurane mixed with 30% 117 O2. When rats had no response to a foot pinch under appropriate anesthetic depth, two drops of blood 118 were collected from a needle prick to the tip of the tail to test the blood glucose level using glucose test 119 strips (Yuyue, China) before infusion. Then, PE50 tubing (Instech PA USA) was inserted into the lateral 120 tail vein with a 24-gauge needle to infuse ¹³C labeled glucose and secured with adhesive tape. After that, 121 the rats were allowed to recover for about 15 minutes until they could move freely. The infusion tube 122 was then connected to a swivel (Instech, PA, USA) and the other side of the swivel was connected to the 123 pump (Fusion 100, Chemyx, TX, USA) using PE50 tubing. Finally, [1-¹³C] glucose was pumped at 400-124 600μL/min (dependent on the animal weight) through the lateral tail vein for two minutes (The dosage 125 was based on the previous infusion protocol[14]), while the rats could move freely in cages.

126	After 20min, the animals were deeply anesthetized with isoflurane. All rats were euthanized with
127	the head-focused microwave irradiation (1 KW, Tangshan Nanosource Microwave Thermal Instrument
128	Manufacturing Co. Ltd., Heibei, PR China). Then about 1mL volume of blood was collected to test the
129	level of blood glucose after infusion and the ¹³ C enrichment of glucose in the plasma. Meanwhile, the
130	brain was divided into 11 regions as described in previous studies[13,14]: frontal cortex (FC), occipital
131	cortex (OC), parietal cortex (PC), temporal cortex (TC), striatum (STR), hippocampus (HP), thalamus
132	(THA), midbrain (MID), hypothalamus (HYP), medulla-pons (MED-PONs) and cerebellum (CE). Blood
133	samples were centrifuged at 10000 g for 1 min and 30-40 μ L supernatant was collected to detect the ¹³ C
134	enrichment in the plasma glucose. The brain tissue was weighed and immediately frozen at -80 $^\circ\!C$ for
135	further processing.
136	2.3 Tissue extraction
136 137	2.3 Tissue extraction The treatment of brain samples adopted the methanol-ethanol extraction method as previously
136 137 138	2.3 Tissue extraction The treatment of brain samples adopted the methanol-ethanol extraction method as previously described. [13] HCl/methanol (80μL, 0.1M) and 400μL of ethanol (60%, <i>vol/vol</i>) were added to the tissue
136 137 138 139	2.3 Tissue extraction The treatment of brain samples adopted the methanol-ethanol extraction method as previously described. [13] HCl/methanol (80µL, 0.1M) and 400µL of ethanol (60%, <i>vol/vol</i>) were added to the tissue and the mixtures were homogenized using Tissuelyser (Tissuelyser II, QIAGEN, German) at a
136 137 138 139 140	2.3 Tissue extraction The treatment of brain samples adopted the methanol-ethanol extraction method as previously described. [13] HCl/methanol (80µL, 0.1M) and 400µL of ethanol (60%, <i>vol/vol</i>) were added to the tissue and the mixtures were homogenized using Tissuelyser (Tissuelyser II, QIAGEN, German) at a frequency of 20Hz lasting 90s. Then, the mixtures were collected by centrifugation at 14000 g for 15
136 137 138 139 140 141	2.3 Tissue extraction The treatment of brain samples adopted the methanol-ethanol extraction method as previously described. [13] HCl/methanol (80µL, 0.1M) and 400µL of ethanol (60%, <i>vol/vol</i>) were added to the tissue and the mixtures were homogenized using Tissuelyser (Tissuelyser II, QIAGEN, German) at a frequency of 20Hz lasting 90s. Then, the mixtures were collected by centrifugation at 14000 g for 15 minutes and the supernatant was retained. The above process was repeated twice with 1200 µL of 60%
136 137 138 139 140 141 142	2.3 Tissue extraction The treatment of brain samples adopted the methanol-ethanol extraction method as previously described. [13] HCl/methanol (80µL, 0.1M) and 400µL of ethanol (60%, <i>vol/vol</i>) were added to the tissue and the mixtures were homogenized using Tissuelyser (Tissuelyser II, QIAGEN, German) at a frequency of 20Hz lasting 90s. Then, the mixtures were collected by centrifugation at 14000 g for 15 minutes and the supernatant was retained. The above process was repeated twice with 1200 µL of 60% ethanol for adequate extraction. The collected supernatants were lyophilized using the centrifugal drying
136 137 138 139 140 141 142 143	2.3 Tissue extraction The treatment of brain samples adopted the methanol-ethanol extraction method as previously described. [13] HCl/methanol (80µL, 0.1M) and 400µL of ethanol (60%, vol/vol) were added to the tissue and the mixtures were homogenized using Tissuelyser (Tissuelyser II, QIAGEN, German) at a frequency of 20Hz lasting 90s. Then, the mixtures were collected by centrifugation at 14000 g for 15 minutes and the supernatant was retained. The above process was repeated twice with 1200 µL of 60% ethanol for adequate extraction. The collected supernatants were lyophilized using the centrifugal drying apparatus (Thermo Scientific 2010, Germany) after removal of organic solvents (methanol and ethanol)
136 137 138 139 140 141 142 143 144	2.3 Tissue extraction The treatment of brain samples adopted the methanol-ethanol extraction method as previously described. [13] HCl/methanol (80µL, 0.1M) and 400µL of ethanol (60%, <i>vol/vol</i>) were added to the tissue and the mixtures were homogenized using Tissuelyser (Tissuelyser II, QIAGEN, German) at a frequency of 20Hz lasting 90s. Then, the mixtures were collected by centrifugation at 14000 g for 15 minutes and the supernatant was retained. The above process was repeated twice with 1200 µL of 60% ethanol for adequate extraction. The collected supernatants were lyophilized using the centrifugal drying apparatus (Thermo Scientific 2010, Germany) after removal of organic solvents (methanol and ethanol) in the vacuum environment at 45°C. When the lyophilization was completed, the products were dissolved

(Trimethylsilyl) propionic-2,2,3,3-d4 acid sodium salt, 5mM) was selected as the inner standard chemical
in the buffer. A high-speed vortex was used to mix the solution fully. The mixtures were then centrifuged
at 14000 g for 15 minutes and the supernatant (about 500µL) collected to an NMR tube for further
analysis.

150

2.4 Acquisition of NMR spectrum

151 All NMR spectra were acquired randomly at 298 K with a BrukerAvance III 500 MHz NMR 152 spectrometer (BrukerBiospin, Germany) and were generated with POCE ([1H-13C]-NMR) pulse 153 sequence which is widely used to detect the ¹³C enrichment in the cerebral extraction [8,13]. The method 154 includes two spin-echo detections, one without a wideband reverse pulse applied at the ¹³C frequency 155 (total metabolites concentrations, ${}^{12}C+{}^{13}C$) and another with a reverse pulse (the difference in the proton 156 signals connected to ¹²C and ¹³C of the metabolite concentrations, ¹²C-¹³C). Therefore, the subtraction 157 between the two measurements acquires the ¹³C-labeled metabolites of the spectrum. The whole process 158 used the following parameters: echo time-8 ms; sweep width-20 ppm; repetition time-20s; the number 159 of scans-64; acquisition data-64 K.

160 2.5 NMR spectra processing

161 The NMR data were processed with the commercial software Topspin 2.1 (Bruker Biospin, GmbH, 162 Rheinstetten, Germany) and a homemade software NMRSpec [15], and the steps have been described in 163 detail in our previous study [16]. Here, only a brief description is provided. The FID signals were 164 converted to spectra and the baseline and phase were manually adjusted in Topspin 2.1. Then, the spectral 165 data were automatically loaded to NMRSpec, further pre-processed and analyzed. In NMRSpec, there

166	were several functional blocks, such as spectral alignment, peak picking and peak area integration[15].
167	Each of the functional blocks was automatically completed within a few seconds. Here, the specific
168	regions δ 1.8-4.0 ppm were collected and analyzed. Furthermore, some metabolites were always
169	represented by several peaks, thus it was better to choose a pure signal to avoid the overlap of multiplets,
170	such as Asp ₃ , Tau ₂ . However, there were also some specific metabolites without pure signals, such as
171	Glu ₃ , Gln ₄ , NAA ₂ and so on. Table S1 demonstrates the signal assignment of various metabolites.
172	Therefore, the metabolite concentrations were obtained from the areas of the relative pure signal region,
173	which only represent a part of protons signal in a special position[16]. The selected areas of involved
174	metabolites are listed in Table 1.
175	2.6 Statistical analysis
176	Data analysis was performed with the GraphPad Prism 8.0 (GraphPad, New York, USA),
177	
±11	homemade NMRSpec in MATLAB (R2017b, Mathworks, Inc. 2017) and SPSS 21.0 (IBM, New York,
178	homemade NMRSpec in MATLAB (R2017b, Mathworks, Inc. 2017) and SPSS 21.0 (IBM, New York, USA). In order to determine the normality of data, the Kolmogorov-Smirnov test was used. We found
178 179	homemade NMRSpec in MATLAB (R2017b, Mathworks, Inc. 2017) and SPSS 21.0 (IBM, New York, USA). In order to determine the normality of data, the Kolmogorov-Smirnov test was used. We found that the data satisfied the assumption of normal distribution. Most images were obtained in the GraphPad
178 179 180	homemade NMRSpec in MATLAB (R2017b, Mathworks, Inc. 2017) and SPSS 21.0 (IBM, New York, USA). In order to determine the normality of data, the Kolmogorov-Smirnov test was used. We found that the data satisfied the assumption of normal distribution. Most images were obtained in the GraphPad Prism, except for the heat map which was acquired in MATLAB. One-way analysis of variance (ANOVA)
178 179 180 181	homemade NMRSpec in MATLAB (R2017b, Mathworks, Inc. 2017) and SPSS 21.0 (IBM, New York, USA). In order to determine the normality of data, the Kolmogorov-Smirnov test was used. We found that the data satisfied the assumption of normal distribution. Most images were obtained in the GraphPad Prism, except for the heat map which was acquired in MATLAB. One-way analysis of variance (ANOVA) was used for comparing the enrichment of types of neurochemicals between 11 brain regions.
178 179 180 181 182	homemade NMRSpec in MATLAB (R2017b, Mathworks, Inc. 2017) and SPSS 21.0 (IBM, New York, USA). In order to determine the normality of data, the Kolmogorov-Smirnov test was used. We found that the data satisfied the assumption of normal distribution. Most images were obtained in the GraphPad Prism, except for the heat map which was acquired in MATLAB. One-way analysis of variance (ANOVA) was used for comparing the enrichment of types of neurochemicals between 11 brain regions. Correlations between several metabolites were acquired using Pearson's correlation analysis in SPSS
178 179 180 181 182 183	homemade NMRSpec in MATLAB (R2017b, Mathworks, Inc. 2017) and SPSS 21.0 (IBM, New York, USA). In order to determine the normality of data, the Kolmogorov-Smirnov test was used. We found that the data satisfied the assumption of normal distribution. Most images were obtained in the GraphPad Prism, except for the heat map which was acquired in MATLAB. One-way analysis of variance (ANOVA) was used for comparing the enrichment of types of neurochemicals between 11 brain regions. Correlations between several metabolites were acquired using Pearson's correlation analysis in SPSS 21.0. p <0.05 is regarded as statistically significant. All results are shown as mean ± SEM.

185 **3. Results**

186 3.1 Evaluation of ¹³C ratio in TMSP

187 In the current study, the metabolic kinetics of different types of metabolites were detected with the 188 POCE NMR pulse sequence. This method has been widely used to measure changes in cerebral metabolic 189 kinetics of different types of animal models[12,17]. However, it was very important to evaluate the 190 accuracy of this detection method in the current study. As the internal standard chemical, the calculated 191 ¹³C ratio of TMSP should approach the natural abundance of ¹³C- 1.1%. The ¹³C ratio of the CH₃ group (δ =0) in different types of samples was measured and collected (Fig. 1A). A group of TMSP spectra for 192 193 the total chemical signal (${}^{12}C+{}^{13}C$, the upper one) and ${}^{13}C$ -labeled (2* ${}^{13}C$, the lower one) which were 194 derived from the POCE study are illustrated in Fig. 1A. The 13 C ratio for all the samples is 1.09% $\pm 0.01\%$ 195 (n=88). Furthermore, the ¹³C ratios for the samples in different brain regions are shown in Fig. 1B, which 196 is also almost consistent with the theoretical value. Thus, the current protocol could be used to detect the 197 ¹³C enrichment in different types of metabolites.

198 3.2 Metabolic pathway of metabolites in different types of cells

In astrocytes, GABAergic neurons and glutamatergic neurons, in different positions of each metabolite were gradually labeled with the infusion of $[1-^{13}C]$ glucose. There were two cycles between different types of cells, including the Glu-Gln cycle and the Glu-GABA cycle. Briefly, in the first TCA cycle in cells as illustrated in Fig 2, $[1-^{13}C]$ glucose was carried into cells. It was oxidized to pyruvate and the pyruvate decarboxylated to form acetyl CoA₂. The latter went into the TCA cycle. 2-OG₄ which was formed in the TCA cycle initially interconverted with Glu₄. Glu₄ passed the label to Gln₄ in astrocytes. Then, Gln₄ was transported to GABAergic neurons and glutamatergic neurons to produce GABA₂ and

- 206 Glu₄. In addition, neurotransmitters, GABA and glutamate were taken up by astrocytes which made up
- 207 the complete Glu-Gln cycle and Glu-GABA cycle. Notably, after several metabolic reactions, NAA₃ was
- 208 produced by astrocytes, GABAergic neurons and glutamatergic neurons with Asp₃ as the precursor. In
- 209 the following TCA cycles, Glu₄, Gln₄ and GABA₂ passed through the ¹³C label into the other different
- 210 carbon positions of these metabolites.

211 3.3 NMR detection of ¹³C signals in different carbon positions of metabolites

- After 16-18 hours of fasting, the blood glucose levels were almost similar at 5.03 ± 0.19 mmol/L
- 213 (n=8). After the infusion was completed, the plasma glucose increased to $13.43 \pm 0.65 \text{ mmol/L}$ (n=8).
- 214 Consistent with the blood glucose test results, the enrichment of plasma [1-¹³C] glucose was detected
- 215 with the NMR method, which was around $54.65\% \pm 3.52\%$ (n=8).
- 216 In order to reflect the concentrations of different metabolites and metabolic kinetics in the brain,
- 217 the POCE pulse sequence was used to detect the enrichment of ¹³C in different positions of metabolites
- 218 in different brain regions. Fig 3 shows a typical POCE NMR spectrum including the total concentrations
- of the metabolites (${}^{12}C+{}^{13}C$, the red one) and the ${}^{13}C$ -related metabolites ($2^{*13}C$, the black one). Clearly,
- 220 the ¹³C-NMR provided additional information of various metabolites, such as aspartate (Asp), creatine,
- 221 GABA, Gln, Glu, Glx (Glu+Gln), glycine (Gly), myo-inositol (Myo), N-acetylaspartate (NAA) and
- 222 Taurine (Tau). The specific signal assignment of each metabolite was collected in Supplement materials
- (Table S1).

224 3.4¹³C enrichment of metabolites in different brain regions

225	There were several important neurochemical metabolites as shown in Fig 4. ¹³ C enrichment in
226	different ¹³ C positions of metabolites differed among regions of the rat brain. Interestingly, there were
227	consistent trends in 11 brain regions in different ¹³ C positions of most metabolites (Glu, Glx, GABA and
228	Asp). The ¹³ C enrichment of Glu ₃ and Glu ₄ , as well as Glx ₂ and Glx ₃ , were at a relatively low level in
229	OC, MID and CE which are depicted in Fig. 4A and Fig. 4B. In addition, Glu ₄ was the most stable
230	molecule as its distribution in every brain region was almost at a similar level, except for PC and MID
231	(p <0.05). Fig 4C illustrates ¹³ C enrichment in different carbon positions of GABA. Perceptibly, in OC,
232	THA and CE, the labeled carbon enrichment of GABA2 and GABA3 was at a low level. Fig. 4D shows
233	the ¹³ C enrichment of Gln ₄ in different brain regions. In Fig 4E, the line graph demonstrates few related
234	trends between the fractional ¹³ C enrichment of NAA ₂ and NAA ₃ . In addition, the average enrichment
235	of NAA ₃ was 2.88% \pm 0.79% (n=8). In Fig 4F, the enrichment of labeled Asp ₂ and Asp ₃ indicates a lower
236	enrichment in OC and CE compared to others.
237	3.5 Correlation between neurochemicals
238	Pearson correlation coefficient (r) was analyzed to examine possible relations in detected

239 metabolites. The critical correlation coefficient was the minimum correlation coefficient required to

240 describe the correlation of the variables to be statistically significant. The white dot represents the

significant correlation (*p*<0.05).

242 **3.6** Correlativity of several metabolites

- 243 The linear correlations of different metabolites were calculated among various brain regions. Fig.
- 5A displays the correlativity of Glu_4 and NAA₃ in 11 brain regions (y=0.2053x-2.406, R=0.7193, p<0.01).

245	Linear fit of Asp ₃ to NAA ₃ enrichment across the different 10 brain regions without MID led to a
246	significant correlation coefficient as portrayed in Fig. 6B (y=0.097x+0.01, R=0.9445, p<0.001). Glx ₂ was
247	significantly associated with Glx_3 in all brain regions (y=0.7894x+2.0778, R=0.942, p<0.001, Fig. 5C).
248	Fig. 5D presents the correlations between the Glu ₄ and Gln ₄ in 9 brain regions (FC, OC, PC, TC, STR,
249	HP, THA, MID, CE) without HYP (the purple) and MED-PONs (the green). Although there was no
250	significant correlation between Glu ₄ and Gln ₄ (y=0.5662x+2.6839, R =0.6366, p =0.062), there was a
251	tendency of a relationship between the two. A linear correlation between Glu ₄ and GABA ₂ is illustrated
252	in Fig. 5E (y=2.913x-44.006, <i>R</i> =0.7855, <i>p</i> <0.01) (MID was excluded).
253	
254	4. Discussion
201	
255	This study systematically reports the metabolic kinetics of neurochemicals with physiological status
255 256	This study systematically reports the metabolic kinetics of neurochemicals with physiological status in 11 regions of the entire brain, detected by the relatively high-sensitivity POCE-NMR method. In
255 256 257	This study systematically reports the metabolic kinetics of neurochemicals with physiological status in 11 regions of the entire brain, detected by the relatively high-sensitivity POCE-NMR method. In addition, the metabolic dynamics information of NAA was also calculated. Furthermore, some
255 256 257 258	This study systematically reports the metabolic kinetics of neurochemicals with physiological status in 11 regions of the entire brain, detected by the relatively high-sensitivity POCE-NMR method. In addition, the metabolic dynamics information of NAA was also calculated. Furthermore, some significant correlations between several metabolites were found which may serve as a potential indicator
255 256 257 258 259	This study systematically reports the metabolic kinetics of neurochemicals with physiological status in 11 regions of the entire brain, detected by the relatively high-sensitivity POCE-NMR method. In addition, the metabolic dynamics information of NAA was also calculated. Furthermore, some significant correlations between several metabolites were found which may serve as a potential indicator for assessing metabolic kinetics. This result should be very valuable for neuroscience research and
255 256 257 258 259 260	This study systematically reports the metabolic kinetics of neurochemicals with physiological status in 11 regions of the entire brain, detected by the relatively high-sensitivity POCE-NMR method. In addition, the metabolic dynamics information of NAA was also calculated. Furthermore, some significant correlations between several metabolites were found which may serve as a potential indicator for assessing metabolic kinetics. This result should be very valuable for neuroscience research and clinical studies.
255 256 257 258 259 260 261	This study systematically reports the metabolic kinetics of neurochemicals with physiological status in 11 regions of the entire brain, detected by the relatively high-sensitivity POCE-NMR method. In addition, the metabolic dynamics information of NAA was also calculated. Furthermore, some significant correlations between several metabolites were found which may serve as a potential indicator for assessing metabolic kinetics. This result should be very valuable for neuroscience research and clinical studies. 4.1 Selection of infusion protocol for ¹³C labeled glucose
255 256 257 258 259 260 261 262	This study systematically reports the metabolic kinetics of neurochemicals with physiological status in 11 regions of the entire brain, detected by the relatively high-sensitivity POCE-NMR method. In addition, the metabolic dynamics information of NAA was also calculated. Furthermore, some significant correlations between several metabolites were found which may serve as a potential indicator for assessing metabolic kinetics. This result should be very valuable for neuroscience research and clinical studies. <i>A1 Selection of infusion protocol for ¹³C labeled glucose</i> In the study of neurometabolic kinetics, a suitable protocol for energy substance infusion is essential.
255 256 257 258 259 260 261 262 263	This study systematically reports the metabolic kinetics of neurochemicals with physiological status in 11 regions of the entire brain, detected by the relatively high-sensitivity POCE-NMR method. In addition, the metabolic dynamics information of NAA was also calculated. Furthermore, some significant correlations between several metabolites were found which may serve as a potential indicator for assessing metabolic kinetics. This result should be very valuable for neuroscience research and clinical studies. <i>A1 Selection of infusion protocol for ¹³C labeled glucose</i> In the study of neurometabolic kinetics, a suitable protocol for energy substance infusion is essential. There are several key factors to consider when selecting a better approach for infusion. First, there are

265	dynamics, including femoral vein[18], jugular vein[19] and tail vein catheterization[14]. Through tail
266	vein catheterization, animals suffer minimum damage compared to the other methods. Thus, we chose a
267	tail vein to infuse the labeled substance. Second, the animals can be anesthetized or be awake when the
268	labeled energy substance is infused. Some studies choose intravenous infusion while the animals are
269	under anesthesia[10], however, the anesthetic state could influence the metabolic dynamics of
270	experimental animals[20]. Therefore, we chose to infuse the animals while they were awake. There is
271	also another problem with the infusion process. Some studies prefer to infuse ¹³ C glucose into the tail
272	vein slowly for a relatively long period while the rats are awake[13]. However, when the animals can
273	move freely, a longtime infusion can easily cause the needle to drop from the tail vein, which is
274	inconvenient and can result in the loss of animal lives. In this study, the caudal veins of rats were
275	catheterized under the anesthesia state and after recovery to freely move for about 15min. Then, [1- ¹³ C]
276	glucose was infused through the caudal vein in two minutes with different rates based on the animal's
277	weight. During the whole procedure of infusion, there was no interference and the operation which ran
278	concurrently, was completed over a short period of time (2min). This method also reflects the metabolic
279	state of the animals in their normal physiological state. Moreover, the rats were quiet and calm without
280	showing any discomfort during the infusion process. If an animal showed pain or struggled, it would
281	immediately be treated with euthanasia. The results of plasma glucose measurements also confirmed the
282	advantages of using this method. Thus, this infusion protocol provides an ideal and effective method for
283	NMR research.

284 4.2 The distribution of different carbon position of various neurochemicals in the brain

285	There was a similar trend in the distribution of the enrichment levels among different ¹³ C positions
286	of metabolites in different regions as shown in Fig 4. The various labeled carbon positions of Glu, Glx,
287	GABA and Asp manifested this distribution trend in brain regions, except for NAA2 and NAA3.
288	Additionally, Fig 4 also indicates that the enrichment of the metabolites differed among the 11 regions
289	of the rat brain. Previous research has shown that glutamine is the most stably distributed neurochemical
290	in different brain regions, excluding the medulla[21]. However, in this study, Glu4 was the most
291	homogeneously distributed metabolite of the compounds across regions. Furthermore, it was interesting
292	that Glu _{3/4} , Glx _{2/3} and Gln ₄ were all at a lower level in the occipital cortex (OC), midbrain (MID) and
293	cerebellum (CE) which illustrates that the number of glutamatergic neurons in these regions maybe
294	relatively less than the others. Additionally, most neurochemicals were at lower levels in the cerebellum,
295	although Sosamma et.al[22] found GABA to be high in the grey layers of the cerebellum. Nevertheless,
296	Wang[14] and Palmi[23] both found lower concentrations of GABA in the cerebellum which is
297	consistent with our result.

298 4.3 NAA metabolism

NAA has been regarded as a potential neuronal marker and may reflect the volume of neuron cells[24]. Thus, only when there is little or no NAA metabolic activity, the concentration of NAA does not vary thus, enabling it to perform its function. Tyson and Sutherland found that the metabolism of NAA is extremely slow compared to glucose and oxygen metabolism in the brain[25]. In this study, we found a similar characteristic of NAA metabolism. The average enrichment of NAA₃ was 2.88% \pm 0.79% after 20 minutes of glucose metabolism. As an abundant amino acid in the adult brain, the concentration

305 of NAA was approximately 10 μ mol/g[26]. Thus, the metabolic rate of NAA₃ was 0.86 ± 0.23 μ mol/g/h. 306 Young and Wolf [26] previously concluded that NAA is produced extremely slowly at 0.6-0.7 µmol/g/h 307 than its precursors lasting longer than 17 hours under anesthesia state. Thus, the metabolic rate of NAA 308 is relatively higher under the free moving state than the anesthesia state. The current study supports the 309 notion that NAA should not be regarded as an energy-buffering store metabolite in the brain because of 310 the slow metabolism. however, it is very important to investigate the changes in NAA for cerebral 311 function. 312 Although NAA metabolism is slow in the brain, it is crucial to assess the NAA metabolism in order 313 to provide some information about neuronal and mitochondrial functions in neurological disorders[27]. 314 The generation steps of NAA₃ is demonstrated in Fig. 2. In simple terms, $[1^{-13}C]$ glucose leads to acetyl-

315 CoA₂ in glucose metabolism which passes into the TCA cycle. Then OAA₃ passes the label into Asp₃

316 which is the precursor of NAA_{3.} This is consistent with the current findings about the significant

relationship between Asp₃ and NAA₃ among ten different brain regions without MID (Fig. 6B).

318

319 4.4 Correlation of Glu₄ and Gln₄

320 In a previous study, it was accepted that glutamatergic neurons depend on glutamine which is 321 synthesized by astrocytes and is regarded as the precursor of glutamate in supplying glutamate[28].

- 322 Furthermore, Rae[29] reported that through the inhibition of glutamine transport in animal brain tissue,
- 323 the glutamate neurotransmitter pools were depleted, which showed that the glutamate-glutamine cycle is

- 324 essential in maintaining neurotransmitter homeostasis. Therefore, it is important to study the metabolic
- 325 kinetics of glutamate and glutamine in order to assess energy metabolism and neurotransmission.
- 326 In the current study, via specific ¹³C labeling patterns, substrate flows between astrocyte and 327 neurons in the glutamate/GABA-glutamine cycle and cell-characteristic metabolism are illustrated in Fig 328 2. The balanced cycle between the Glu and Gln which accounts for at least 80% of the glucose 329 consumption in the brain[30] is essential for neuronal function. In the first TCA cycle, Glu₄ is the fastest 330 to be labeled and then 13 C is transferred to Gln₄ which is exclusively produced in glial cells. The labeled 331 Gln₄ was sent back to supplement the neurotransmitter pool in glutamate neurons. Then, the released 332 neurotransmitter glutamate was taken in by the synapse of glial cells to reproduce glutamine. These 333 processes form a complete Glu-Gln cycle. The exploration of the relationship between glutamate and 334 glutamine may provide a potential marker to illustrate the metabolic cross-talk between neurons and 335 astrocytes, considering that glutamate serves in neurons but glutamine is located in astrocytes. For 336 example, the accumulation of glutamate in neuronal cells and Glu-Gln cycle disorder play important 337 roles in some diseases related to mental symptoms[31,32]. As depicted in Fig. 6D, the association 338 between Gln₄ and Glu₄ corresponds to the metabolic contact of the Glu-Gln metabolism between 339 glutamatergic neurons and astrocytes in the brain. Therefore, the relationship of Gln₄ and Glu₄ may in 340 part reflect Glu-Gln cycle variation between astrocytes and neurons. However, although there was some 341 correlation between Gln₄ and Glu₄ (R=0.6366 >0.5), the p value was higher than 0.05. The reason was 342 probably due to the density of different neurons among brain regions, moreover, Glu4 is not only involved 343 in the Gln-Glu cycle but is the direct precursor of GABA₂ which may also weakens the association

- 344 between the two. Garik et al found a significant relationship between Glu and Gln in the cortex and
- 345 cerebellum[33] which is consistent with our result.

346 4.5 Correlation of Glx₂ and Glx₃

- 347 The molecular structure of Glu is similar to that of Gln which results in a similar magnetic 348 resonance spectrum. In order to avoid the spectral assignment confusion of Glu and Gln, the term 'Glx' 349 has been used to represent the superposition of Glu and Gln enrichment (Glx=Glu+Gln). It has been 350 widely reported that the increase or decrease in levels of Glx was found in some cerebral tumors[34,35]. 351 For example, the level of Glx in oligodendrogliomas was higher compared with white matter which can 352 differentiate these tumors from others[34]. Thus, it may be regarded as a metabolic marker for diagnosing 353 and differentiating different types of brain tumors. Starting with the following TCA cycle proceeding, 354 Glu₂ and Gln₂, as well as Glu₃ and Gln₃, almost had the equal probability of being ¹³C labeled, 355 respectively. In the present study, there was a significant correlation between Glx2 and Glx3 which is in 356 line with the actual metabolic process. Furthermore, the ¹³C enrichment for these two metabolites was 357 almost similar, which also supports their generation pathways.
- 358 **5.** Conclusion
- In conclusion, we detected the enrichment of various metabolic molecules to reflect the metabolic kinetics of different metabolites among brain regions. We also found a slow metabolic rate of NAA, implying that NAA is not considered to provide energy buffering for energy metabolism in the brain. Furthermore, the significant correlations between some metabolites reflect the possible cross-talk between astrocytes and neuron cells, indicating the close connection between energy metabolism and

- 364 neurotransmission. This study provided some explanations of neurological or psychiatric disorders and
- 365 systematically explored the metabolic kinetics of some neurochemicals, which plays an important role
- 366 in the study of brain function and the mechanisms of some neurological or psychiatric disorders.
- 367

368 6. Acknowledgements

- 369 This research was supported by the grants from the National Natural Science Foundation of China
- 370 (81870851, 82071208 and 31771193), the Outstanding Talented Young Doctor Program of Hubei
- 371 Province (HB20200407), the Strategic Priority Research Program of the Chinese Academy of Sciences
- 372 (XDB32030200) and the Youth Innovation Promotion Association of the Chinese Academy of Sciences,
- 373 China (Y6Y0021004).
- 374

375 **7. Author contribution statement**

- 376 Meimei Guo: Conceptualization, Methodology, Data curation, Writing-original draft; Yuanyuan Fang:
- 377 Methodology, Formal analysis; Jinpiao Zhu: Methodology, Formal analysis; Chang chen: Investigation;
- 378 Zongze Zhang: Investigation, Visualization; Xuebi Tian:Software, Investigation; Hongbing Xiang:
- 379 Visualization, Software; Anne Manyande, Mojtaba Ehsanifar and Ahmad Jonidi Jafari: Writing-review
- 380 & editing; Jie Wang: Software, Data curation, Writing-review & editing; Mian Peng: Visualization,
- 381 Project administration, Funding acquisition.
- 382

383 8. References

384 [1] J.W. Błaszczyk, Energy Metabolism Decline in the Aging Brain-Pathogenesis of 385 Neurodegenerative Disorders, Metabolites. 10 (2020) 450. 386 L. Sokoloff, M. Reivich, C. Kennedy, M.H. Des Rosiers, C.S. Patlak, K.D. Pettigrew, O. [2] 387 Sakurada, M. Shinohara, The [14C]deoxyglucose method for the measurement of local cerebral 388 glucose utilization: theory, procedure, and normal values in the conscious and anesthetized 389 albino rat., J. Neurochem. 28 (1977) 897-916. 390 L. Pellerin, P.J. Magistretti, Glutamate uptake into astrocytes stimulates aerobic glycolysis: a [3] 391 mechanism coupling neuronal activity to glucose utilization., Proc. Natl. Acad. Sci. U. S. A. 91 392 (1994) 10625-10629. 393 [4] E. Dhamala, I. Abdelkefi, M. Nguyen, T.J. Hennessy, H. Nadeau, J. Near, Validation of in vivo 394 MRS measures of metabolite concentrations in the human brain., NMR Biomed. 32 (2019) 395 e4058. 396 E. Shokri-Kojori, D. Tomasi, B. Alipanahi, C.E. Wiers, G.-J. Wang, N.D. Volkow, [5] 397 Correspondence between cerebral glucose metabolism and BOLD reveals relative power and 398 cost in human brain., Nat. Commun. 10 (2019) 690. 399 L. Sokoloff, Localization of functional activity in the central nervous system by measurement [6] 400 of glucose utilization with radioactive deoxyglucose., J. Cereb. Blood Flow Metab. 1 (1981) 7-401 36. 402 [7] J.H.F. Bothwell, J.L. Griffin, An introduction to biological nuclear magnetic resonance 403 spectroscopy, Biol. Rev. 44 (2011) 493-510. 404 [8] R.A. de Graaf, G.F. Mason, A.B. Patel, K.L. Behar, D.L. Rothman, In vivo 1H-[13 C]-NMR 405 spectroscopy of cerebral metabolism, NMR Biomed. 16 (2003) 339-357. 406 [9] E.J.J. Novotny, T. Ogino, D.L. Rothman, O.A. Petroff, J.W. Prichard, R.G. Shulman, Direct 407 carbon versus proton heteronuclear editing of 2-13C ethanol in rabbit brain in vivo: a 408 sensitivity comparison., Magn. Reson. Med. 16 (1990) 431-443. 409 N. Wang, L.-C. Zhao, Y.-Q. Zheng, M.-J. Dong, Y. Su, W.-J. Chen, Z.-L. Hu, Y.-J. Yang, H.-[10] 410 C. Gao, Alteration of interaction between astrocytes and neurons in different stages of diabetes:

- 411 a nuclear magnetic resonance study using [1-(13)C]glucose and [2-(13)C]acetate., Mol.
- 412 Neurobiol. 51 (2015) 843-852.

(2014) 1660–1668.

- 413 J.M.N. Duarte, K.Q. Do, R. Gruetter, Longitudinal neurochemical modifications in the aging [11] 414 mouse brain measured in vivo by 1H magnetic resonance spectroscopy., Neurobiol. Aging. 35 415
- 416 [12] C.J. Scavuzzo, C.J. Moulton, R.J. Larsen, The use of magnetic resonance spectroscopy for 417 assessing the effect of diet on cognition., Nutr. Neurosci. 21 (2018) 1-15.
- 418 [13] L. Wu, Z. Niu, X. Hu, H. Liu, S. Li, L. Chen, D. Zheng, Z. Liu, T. Liu, F. Xu, A. Manyande, J.
- 419 Wang, H. Xia, Regional cerebral metabolic levels and turnover in awake rats after acute or 420 chronic spinal cord injury., FASEB J. 34 (2020) 10547-10559.
- 421 J. Wang, L. Jiang, Y. Jiang, X. Ma, G.M.I. Chowdhury, G.F. Mason, Regional metabolite [14] 422 levels and turnover in the awake rat brain under the influence of nicotine., J. Neurochem. 113 423 (2010) 1447-1458.
- 424 Y. Liu, J. Cheng, H. Liu, Y. Deng, J. Wang, F. Xu, NMRSpec: An integrated software package [15] 425 for processing and analyzing one dimensional nuclear magnetic resonance spectra, Chemom. 426 Intell. Lab. Syst. 162 (2017) 142-148.
- 427 T. Liu, Z. He, X. Tian, G.M. Kamal, Z. Li, Z. Liu, H. Liu, F. Xu, J. Wang, H. Xiang, Specific [16]
- 428 patterns of spinal metabolites underlying α -Me-5-HT-evoked pruritus compared with histamine
- 429 and capsaicin assessed by proton nuclear magnetic resonance spectroscopy., Biochim. Biophys.
- 430 Acta. Mol. Basis Dis. 1863 (2017) 1222-1230.
- 431 [17] S.J. Calvert, S. Reynolds, M.N. Paley, S.J. Walters, A.A. Pacey, Probing human sperm 432 metabolism using 13C-magnetic resonance spectroscopy., Mol. Hum. Reprod. 25 (2019) 30-433 41.
- 434 L. Xin, B. Lanz, H. Lei, R. Gruetter, Assessment of metabolic fluxes in the mouse brain in vivo [18] 435 using 1H-[13C] NMR spectroscopy at 14.1 Tesla., J. Cereb. Blood Flow Metab. 35 (2015) 436 759-765.

437	[19]	H. Zheng, Y. Zheng, D. Wang, A. Cai, Q. Lin, L. Zhao, M. Chen, M. Deng, X. Ye, H. Gao,
438		Analysis of neuron-astrocyte metabolic cooperation in the brain of db/db mice with cognitive
439		decline using 13C NMR spectroscopy., J. Cereb. Blood Flow Metab. 37 (2017) 332-343.
440	[20]	SL. Peng, H. Chiu, CY. Wu, CW. Huang, YH. Chung, CT. Shih, WC. Shen, The
441		effect of caffeine on cerebral metabolism during alpha-chloralose anesthesia differs from
442		isoflurane anesthesia in the rat brain., Psychopharmacology (Berl). 236 (2019) 1749-1757.
443	[21]	K.I. Pogodaev, V. V Logunov, Dynamics of the formation and bonding of ammonia in rat brain
444		tissue under the influence of acoustic stimulation inducing convulsions., Biull. Eksp. Biol.
445		Med. 66 (1968) 46–49.
446	[22]	S.J. Berger, J.C. Carter, O.H. Lowry, The distribution of glycine, GABA, glutamate and
447		aspartate in rabbit spinal cord, cerebellum and hippocampus., J. Neurochem. 28 (1977) 149-
448		158.
449	[23]	M. Palmi, S. Brooke, A.D. Smith, J.P. Bolam, GABA-like immunoreactivity in different
450		cellular populations of cerebellar cortex of rats before and after treatment with amino-oxyacetic
451		acid., Brain Res. 543 (1991) 277–286.
452	[24]	D.J. Meyerhoff, S. MacKay, L. Bachman, N. Poole, W.P. Dillon, M.W. Weiner, G. Fein,
453		Reduced brain N-acetylaspartate suggests neuronal loss in cognitively impaired human
454		immunodeficiency virus-seropositive individuals: in vivo 1H magnetic resonance spectroscopic
455		imaging., Neurology. 43 (1993) 509-515.
456	[25]	R.L. Tyson, G.R. Sutherland, Labeling of N-acetylaspartate and N-acetylaspartylglutamate in
457		rat neocortex, hippocampus and cerebellum from [1-13C]glucose., Neurosci. Lett. 251 (1998)
458		181–184.
459	[26]	IY. Choi, R. Gruetter, Dynamic or inert metabolism? Turnover of N-acetyl aspartate and
460		glutathione from D-[1-13C]glucose in the rat brain in vivo., J. Neurochem. 91 (2004) 778–787.
461	[27]	G. Oz, C.D. Nelson, D.M. Koski, PG. Henry, M. Marjanska, D.K. Deelchand, R. Shanley,
462		L.E. Eberly, H.T. Orr, H.B. Clark, Noninvasive detection of presymptomatic and progressive

neurodegeneration in a mouse model of spinocerebellar ataxia type 1., J. Neurosci. 30 (2010)

464 3831–3838.

- 465 [28] A. Schousboe, Role of astrocytes in the maintenance and modulation of glutamatergic and
 466 GABAergic neurotransmission., Neurochem. Res. 28 (2003) 347–352.
- 467 [29] C. Rae, N. Hare, W.A. Bubb, S.R. McEwan, A. Bröer, J.A. McQuillan, V.J. Balcar, A.D.
- 468 Conigrave, S. Bröer, Inhibition of glutamine transport depletes glutamate and GABA
- 469 neurotransmitter pools: further evidence for metabolic compartmentation., J. Neurochem. 85
 470 (2003) 503–514.
- 471 [30] N.R. Sibson, A. Dhankhar, G.F. Mason, D.L. Rothman, K.L. Behar, R.G. Shulman,

472 Stoichiometric coupling of brain glucose metabolism and glutamatergic neuronal activity.,

473 Proc. Natl. Acad. Sci. U. S. A. 95 (1998) 316–321.

- 474 [31] C. Yüksel, D. Öngür, Magnetic resonance spectroscopy studies of glutamate-related
 475 abnormalities in mood disorders., Biol. Psychiatry. 68 (2010) 785–794.
- 476 [32] S. Moriguchi, A. Takamiya, Y. Noda, N. Horita, M. Wada, S. Tsugawa, E. Plitman, Y. Sano,
- 477 R. Tarumi, M. ElSalhy, N. Katayama, K. Ogyu, T. Miyazaki, T. Kishimoto, A. Graff-Guerrero,
- 478 J.H. Meyer, D.M. Blumberger, Z.J. Daskalakis, M. Mimura, S. Nakajima, Glutamatergic
- 479 neurometabolite levels in major depressive disorder: a systematic review and meta-analysis of
 480 proton magnetic resonance spectroscopy studies., Mol. Psychiatry. 24 (2019) 952–964.
- 481 [33] G. V Mkrtchyan, A. Graf, L. Trofimova, A. Ksenofontov, L. Baratova, V. Bunik, Positive
- 482 correlation between rat brain glutamate concentrations and mitochondrial 2-oxoglutarate

483 dehydrogenase activity., Anal. Biochem. 552 (2018) 100–109.

- 484 [34] M. Rijpkema, J. Schuuring, Y. van der Meulen, M. van der Graaf, H. Bernsen, R. Boerman, A.
 485 van der Kogel, A. Heerschap, Characterization of oligodendrogliomas using short echo time
- 486 1H MR spectroscopic imaging., NMR Biomed. 16 (2003) 12–18.
- 487 [35] S. Chawla, L. Oleaga, S. Wang, J. Krejza, R.L. Wolf, J.H. Woo, D.M. O'Rourke, K.D. Judy,
- 488 M.S. Grady, E.R. Melhem, H. Poptani, Role of proton magnetic resonance spectroscopy in
- 489 differentiating oligodendrogliomas from astrocytomas., J. Neuroimaging. 20 (2010) 3–8.

491 Figure legends

- 492 Fig. 1: Examples of NMR spectra of TMSP and calculated natural ¹³C enrichments of TMSP in the
- 493 samples of different brain regions. (A) Examples of NMR spectra for total TMSP (${}^{12}C+{}^{13}C$, the red
- 494 one) and ¹³C-labeled TMSP (2^{*13}C, the black one). (B) The natural ¹³C enrichments (Calculated from
- the ratio of ${}^{13}C/{}^{13}C+{}^{12}C$) of TMSP in all the samples from 11 different brain regions. *Note: TMSP: 3-*
- 496 (*Trimethylsilyl*) propionic-2,2,3,3-d4 acid sodium salt.
- 497 Fig. 2: Schematic diagram of ¹³C labeling of metabolites from [1-¹³C] glucose in the first TCA circle
- 498 between astrocytes, GABAergic neurons and glutamatergic neurons. *Note: TCA circle: tricarboxylic*
- 499 acid cycle; Glc: glucose; Pyr: pyruvate; Acetyl-CoA: Acetyl coenzyme A; 2-OG: 2-oxoglutarate;
- 500 OAA: oxaloacetate; Subscript number: ¹³C labelled positions in different metabolites.
- Fig. 3: Examples of NMR spectra for total metabolites (${}^{12}C+{}^{13}C$, the red one) and ${}^{13}C$ -labeled metabolites
- 502 $(2^{*13}C, \text{ the black one})$ from the occipital cortex. Note: Asp: aspartate; Cre: creatine; GABA: γ -
- 503 *aminobutyric acid; Gln: glutamate; Glu: glutamate; Glx: glutamine+glutamate; Gly: Glycine; Myo:*
- 504 myo-Inositol; NAA: N-acetylaspartate; Tau: Taurine; Subscript number: ¹³C labelled positions in
- 505 *different metabolites.*
- 506 Fig. 4: The ¹³C enrichment in different positions of metabolites in different samples of 11 brain regions.
- 507 Note: Subscript number: ¹³C labelled positions in different metabolites. (A) ¹³C enrichment of Glu₂
- 508 and Glu₃; (B) ¹³C enrichment of Glx₂ and Glx₃; (C) ¹³C enrichment of GABA₂, GABA₃ and GABA₄;
- 509 (D) ¹³C enrichment of Gln₄; (E) ¹³C enrichment of NAA₂ and NAA₃; (F) ¹³C enrichment of Asp₂ and
- 510 Asp₃.

511 Fig. 5: Pearson correlation analysis between ¹³C enrichment in different kinds of metabolites (Glu₄, Glu₃,

- 512 NAA₂, NAA₃, Glx₂, Glx₃, GABA₂, GABA₃, GABA₄, Gln₄, Asp₃, Asp₂). Note: The correlation
- 513 coefficient (r) was calculated from the linear correlation between the ${}^{13}C$ enrichments data for
- 514 different metabolites in all the brain regions in the cross location of the figure; The white dot
- 515 represents the significant correlation (p < 0.05).
- 516 Fig. 6: The linear correlations between ¹³C enrichment in different kinds of metabolites: NAA₃-Glu₄(A),
- 517 Asp₃-NAA₃ (B), Glx₂-Glx₃ (C), Glu₄-Gln₄ (D), Glu₄-GABA₂ (E). Note: The linear trendlines are
- 518 represented with the blue dot lines and calculated from the selected blue dots; X and Y-axis represent
- 519 the ¹³C enrichment ratios for different metabolites. Subscript number: ¹³C labeled positions in different
- 520 *metabolites; Non blue dots: Outliers from the other brain regions.*