
UWL REPOSITORY

repository.uwl.ac.uk

DCSS protocol for data caching and sharing security in a 5G network

Edris, E.K.K., Aiash, M. and Loo, Jonathan ORCID: https://orcid.org/0000-0002-2197-8126 (2021)

DCSS protocol for data caching and sharing security in a 5G network. Network, 1 (2). pp. 75-94.

http://dx.doi.org/10.3390/network1020006

This is a University of West London scholarly output.

Contact open.research@uwl.ac.uk if you have any queries.

Alternative formats: If you require this document in an alternative format, please contact:

open.access@uwl.ac.uk

Copyright: [CC.BY.NC license]

Copyright and moral rights for the publications made accessible in the public portal are

retained by the authors and/or other copyright owners and it is a condition of accessing

publications that users recognise and abide by the legal requirements associated with these

rights.

Take down policy: If you believe that this document breaches copyright, please contact us at

open.research@uwl.ac.uk providing details, and we will remove access to the work

immediately and investigate your claim.

mailto:open.research@uwl.ac.uk
mailto:open.research@uwl.ac.uk

Article

DCSS Protocol for Data Caching and Sharing Security in a
5G Network

Ed Kamya Kiyemba Edris 1 , Mahdi Aiash 1,* and Jonathan Loo 2

1 School of Science and Technology, Department of Computer Science, Middlesex University,
London NW4 4BT, UK; ee351@live.mdx.ac.uk

2 School of Computing and Engineering, University of West London, London W5 5RF, UK;
jonathan.Loo@uwl.ac.uk

* Correspondence: m.aiash@mdx.ac.uk

Abstract: Fifth Generation mobile networks (5G) promise to make network services provided by
various Service Providers (SP) such as Mobile Network Operators (MNOs) and third-party SPs
accessible from anywhere by the end-users through their User Equipment (UE). These services will
be pushed closer to the edge for quick, seamless, and secure access. After being granted access to
a service, the end-user will be able to cache and share data with other users. However, security
measures should be in place for SP not only to secure the provisioning and access of those services
but also, should be able to restrict what the end-users can do with the accessed data in or out of
coverage. This can be facilitated by federated service authorization and access control mechanisms
that restrict the caching and sharing of data accessed by the UE in different security domains. In this
paper, we propose a Data Caching and Sharing Security (DCSS) protocol that leverages federated
authorization to provide secure caching and sharing of data from multiple SPs in multiple security
domains. We formally verify the proposed DCSS protocol using ProVerif and applied pi-calculus.
Furthermore, a comprehensive security analysis of the security properties of the proposed DCSS
protocol is conducted.

Keywords: 5G; security protocol; network services; federated identity; data caching; data sharing;
authorization; formal methods; ProVerif; applied pi calculus

1. Introduction

Fifth Generation mobile networks (5G) promise to push services to the edge; mobile
subscribers will be able to access these with their User Equipment (UE) ubiquitously. After
accessing services such as content data, the UE will be able to request other processes
such as caching and sharing of the accessed data. 5G also promises to enable seamless
connectivity, secure access to the network and services, security will be provided by
authentication methods such as those specified in [1]. The initial security will be provided
locally in the Home Network (HN) using primary authentication protocols to authenticate
the UE to access the network [2,3]. The next security stage will be provided by the HN and
external data networks (DN) using a variety of security mechanisms that are interoperable
in the HN and Service Providers (SP) network via DN function of the 5G architecture [1,4,5].

With 5G supporting numerous shareholders including end-users, Mobile Network
Operators (MNO), and SPs, accessing and provisioning of services will require security
mechanisms that protect the shareholders and the services [4]. There is also a need for
permission delegation propagation and sharing between users to allow SPs to offer specific
services beyond their security domain and still have some control over the accessed data
by the user. Services will be provisioned at the edge, close to the user by multiple SPs from
different security domains, hence being exposed to various security threats. Therefore,
this will require unified, interoperable, robust, and multi-purpose security solutions such
as federated authentication and authorization mechanisms [4]. The use of Federated

https://www.mdpi.com/journal/network
https://www.mdpi.com
https://orcid.org/0000-0001-5981-9844
https://orcid.org/0000-0002-3984-6244
https://orcid.org/0000-0002-2197-8126
https://doi.org/10.3390/network1020006
https://doi.org/10.3390/network1020006
https://creativecommons.org/
https://www.mdpi.com/article/10.3390/network1020006?type=check_update&version=2

2

Identity (FId) in multi-tenant network infrastructure with security procedures from trusted
and semi-trusted third-parties can provide access to the right delegation, flexible security
management, and precise tracking of critical UE data [2]. The MNO and SP will be able to
transfer their security management to a third-party and allow permission delegation to
end-users [6,7].

As users in 5G will be able to cache and share data supported by Information-Centric
Networking (ICN) [8–10] to improve access and caching, security measures should be
in place to authorize what the end-users can do with the accessed data. This can be
facilitated by service authorization mechanisms that apply access controls and encryption
techniques that restrict the caching and sharing of data by the UE. The use of federated
authorization procedures that use the use of a single digital Identity (ID) of a user in
different domains’ scenarios, MNOs will be able to provide security and seamless session
continuity as users move from one network to another [7]. However, there is a lack of
security mechanisms that can provide efficient data caching and sharing authorization
in 5G. Therefore, we propose a Data Caching and Sharing Security (DCSS) protocol to
provide service authorization to the UE for secure caching, sharing of data, and access
rights delegation. To the best of our knowledge, no protocol in 5G provides data caching
and sharing with permission delegation, facilitated using federated authorization, and no
formal analysis on data caching and sharing security protocol.

Our contributions in this paper are summarized as follows. We explore how feder-
ated identity, access controls, and permission delegation can be used to provide service
authorization in 5G. We propose a DCSS protocol that enables the UE to cache and share
data securely with access rights delegation in 5G. Furthermore, we use a formal method
approach with ProVerif and applied pi-calculus to formally verify the proposed DCSS
protocol. We also conduct a comprehensive security analysis on the protocol’s security
properties based on two taxonomies.

The rest of the paper is structured as follows. The related work on data security in
5G is presented in Section 2. The problem definition and concepts on federated security,
access controls, delegation are discussed in Section 3. Section 4 presents the proposed DCSS
protocol, architecture overview, security requirements, and assumptions of the proposed
scheme, while Section 5 presents the modelling of the proposed DCSS protocol. The formal
verification of the DCSS protocol is in Section 6. Section 7 analyzes the security properties
of the protocol. Finally, the paper concludes in Section 8.

2. Related Work

In addressing 5G security, much attention has been given to physical layer and net-
work security, providing the UE with secure access to the network. The related work
in [11–16] explored different physical layer security techniques such as artificial noise
injection to improve channel quality, anti-eavesdropping signal methods and secure beam-
forming to enhance the spatial distribution properties of the transmitted signal, while
the related work on network security [3,17–21] analyzed the 3GPP specified protocols [1]
for flaws by formally analysing the protocols’ security properties and suggesting some
improvements. These include enhancement of diameter protocol security, ensuring that
Security Anchor Function (SEAF) should never initiate unsolicited authentication request
after synchronization failure, and adding a Subscriber’s Permanent Identifier (SUPI) in the
message sent from Authentication Server Function (AUSF) to SEAF when confirming the
session key after as successful primary authentication between the UE and HN.

Different security solutions have been proposed specifically to address security at the
network level, which provides the basis of the service level security. The authors in [22]
discussed mobile edge computing and its security issues and proposed a multi-server
protocol that providing authentication, key establishment between UEs, privacy protection,
and UE tracking by the SP. In [23], the authors explored identity protection in legacy and
5G networks. They proposed an anonymous access authentication scheme, providing the
users’ identities protection, analyzed and verified with formal methods and BAN logic.

3

The authors in [24] explored multi-server and small cells in heterogeneous networks. They
considered authentication, key exchange, data storage, and transmissions. They analyzed
the protocol in [25] that claimed to provide security in multi-server architecture in 5G but
had some flaws. They improved the protocol by proposing some improvements. In [26],
authors explored Wireless Sensors Networks (WSN) and IoT in 5G. Base on the work
in [27] that provided authentication and access control scheme, they introduced a system
architecture that integrated IoT with 5G and proposed a formally analyzed ECC-based
security solution providing authentication, authorization, key agreement, and privacy-
preservation for WSN in 5G.

Most of the related work on service security discussed caching schemes and storage
techniques, not much on the service security mechanisms. The authors in [28] proposed
cooperative edge caching architecture for caching and computing resources at the wireless
network edge in 5G. In [29], the authors proposed a caching and sharing optimization
solution to assist sensor networks in 5G for content delivery to the UE. Enabling ICN with
edge computing improves communication and content distribution, the authors in [30]
proposed an ICN-capable Radio Access Network (RAN) architecture for edge computing
in 5G that offers caching at the edge. Also, [31] discusses CCN-based caching in 5G and
proposes an edge caching scheme based on content-centric networking.

On service security in 5G, the authors in [32] discussed malicious access and de-
struction of data and proposed a label-based access control mechanism that provides
authentication to authorized nodes to ensure authenticity and integrity of data using em-
bedded labels, while [33] proposed a security mechanism that uses hash function technique
to protect data sharing in for 5G networks. In [34], the author proposed an authentication
and access control mechanism for 5G applications that can be delegated to the 3rd parties
SPs at the edge, providing security at the network and service level. The authors in [4]
proposed a federated authentication and authorization protocol that provides secure access
to services from multiple SPs and single sign-on to users using federated identity for
seamless access to services in 5G.

However, most of the related work discussed in this paper did not consider the security
issues raised by integrating ICN with 5G. In addition, those who explored the security
issues did not consider the multiple shareholders, data security, and the need for a unified,
interoperable solution in 5G [2]. With network and service access security addressed,
content caching, and sharing authorization of the accessed content needed addressing.
Moreover, their proposed security solutions were not formally analyed using formal
methods and no security analysis was conducted on their protocols’ security properties
for security guarantees. Based on the above observation, we intend to address both data
caching and sharing using federated ID, access right delegation, and access controls that
use user and data capabilities explained in the next section.

3. Data Caching and Data Sharing Security in 5G

This section discusses some of the concepts used in this paper. After being granted
access to the service, the UE should able to access data, request further authorization to
cache, and share data. It should also be able to perform its own activity such as delegating
its access rights to another UE. This could be achieved with the assistance of the SP or
independently depending on the service policies, network coverage conditions and the
delegation permission [4]. We are more interested in the content access and retrieval
process, which deals with content delivery. With content delivery and sharing between
end-users in proximity of each other, caching at UE level is possible with the use of content-
centric networking (CCN)-based framework to enable traffic offloading, caching at the
edge and content dissemination from the SP to UE via baseband unit pool (BBU) [9,35].

3.1. Federated Authorization

The end-user will be able to access services from numerous SPs controlled by Identity
Provider (IdP) using the same digital identification [7]. Following a successful federated

4

authentication between the UE and the IdP, the IdP will be able to send the FId and security
context to the SP for end-user verifications and access authorization, [36]. This is supported
by authentication and authorization mechanisms such as access controls, security protocols
and the OAuth2 framework [37], which also supports Single Sign On (SSO) to provide a
common login credentials for users across multiple systems.

The access controls facilitate authorization by granting the end-user access to the
services, verified against the user’s profile and a permission list [38]. Some of the access
controls used are Role-based Access Control (RBAC) [39], Encryption-based Access control
EBAC [40], Attribute-based access control ABAC [41], and Capabilities-based Access
control CBAC [42]. These access control mechanisms use different techniques to give
different access rights, attributes, capabilities, and encryption to a subject to access an
object in the form of security tokens.

3.2. Permission Delegation

Permission delegation allows the assigning of access rights to an end-user by an
administrative user or another end-user. It requires a user to have the ability to use the
access right being delegated but not the administrative user [43]. A federated delegation
mechanism can be applied to the capability generation and propagation process for au-
thorization and capability revocation management. Using ABAC and CBAC with FId
in a content-aware mobile network could efficiently address challenges in access control
strategy processing. By delegating part of the authentication and authorization tasks to
other users in different security domains, it supports the 5G security and services access
objectives. Processing validation of capability in the HN and third-party SPs enables a
flexible, elastic, context-aware, and fine-grained access control mechanism in 5G.

3.3. Capabilities and Attributes

The access control technique is based on attributes and capabilities with security
context from the federated identity-based protocol [4], which are used to enable the UE
to request caching and sharing permission of the data. With capabilities, the mechanism
leverages CBAC and ABAC to enable the UE to obtain the data cache and share autho-
rization from the SP. The capabilities techniques used are based on the abilities defined
in [42] and labels defined in [44] as token claims. After being granted access to the service,
the UE retrieves the data and then sends another request to SP for caching and sharing
authorization. The SP generates a security token that defines the object and subject abilities,
the data is the object and UE is the subject. The generated tokens are cache and share
tokens with capabilities and attributes parameters, the tokens are similar in structure, but
their roles differ. They are linked with the data object name and the UE, which is used to
define objects and subjects’ abilities. As in [4,44], dot-separated sequence of numbers are
used for an ability in form of a label whereby an ability is a string .i1.i2.i3 . . . in of value n
where i1, i2, i3 . . . , in are integers. An example of abilities for a UE or Network Data Object
(NDO) will be .1.2.3.4, or 01.02.03.04.

During the authorization, procedure tokens are created and sent to the relevant
entities for verification. Both the data and UE will be given labels as part of security tokens
validation and verification. Access to a data object is granted if the data object’s label is a
prefix of the UE’s label. Whereby, a data object with a label “2.0.0” with abilities “0.1.0” for
caching and “0.0.1” for sharing could only be accessed by UE with abilities such as “.2.0.0”,
“.2.1.0”, “.2.1.1”. . . etc, i.e., whenever an authenticated UE requests data, it needs to provide
the right label to SS that confirms its rights to access, cache, or share the data. The SP
creates the labels and links to the subject and object, the UE cannot promote themselves to
access other data objects but the permission can be delegated to other UE if delegation was
part of the initial request of the access token [4]. The labels are integrated into the security
tokens as access rights. Any other subject to access the data will require the nonce key to
decrypt that data object as the data can only be accessed with the access token or nonce key
both generated by SP. The label consists of user capabilities (ucap) and data capabilities

5

(dcap), label = (ucap, dcap). A generic security structure and attributes are described in
Table 1.

Table 1. Generic security token structure.

Attribute Description

Token ID security token identifier
Issuer ID of the token issuer

Issue date timestamp when token was created
Issue Sign Token’s digital signature

Subject UE ID granted the rights of the token
Service SP associated with token

Audience the target entity for token
Nonce authentication nonce (optional)

Expiry date time when token becomes invalid
Access rights set of attribute and capabilities (Label)
Security Info nonce key ID

Scope set of conditions (type of grant, token and offline access setting)

3.4. Problem Definition

With 5G promising to offload data traffic from the backhaul to the fronthaul, it will
facilitate the pushing of content to the edge closer to the user. The content dissemination
will facilitated by CDN technologies such CCN. This is due to the end-users’ increasing
demand for quick access and downloads of multimedia content, to enable this service, users
with their UEs will be allowed to cache and share content. This raises security concerns at
the edge and while the UE is accessing, caching, and sharing the content. Related work has
suggested new ways to access service in 5G [4] but there is still a lack of security mechanism
that can address the security concern while the UE is caching and sharing data.

Our research proposes a multi-tiers security framework as shown in Figure 1 below
that addresses security at three levels namely:

• Network: Deals with securing connections at the network level
• Service: addressees security challenges between devices and service providers to

access and cache data.
• D2D: support secure sharing of data aiming devices with or without network operator

involvement.

Figure 1. Security Framework.

This paper presents a potential protocol to address the security challenges at the
service level because it enables mobile devices-having already been authenticated at the
network level-to be authorized by service provider to cache and share data, while the work

6

in [45] presents protocols at the D2D level to achieve mutual authentication among devices
prior to data sharing.

4. The Proposed Data Caching and Sharing Security (DCSS) Protocol

This section presents the proposed Data Caching and Sharing Security (DCSS) Protocol
that leverages the [46], security [1] and Service-based Architecture (SBA) [47] of 5G with
Federated Identity Management (FIdM) and enhanced access controls supporting the
provision of network services and slicing [2]. This protocol relies on primary authentication
protocols such as 5G-AKA [3] to authenticate the UE on the HN and federated authorization
protocols such as [4,32] to authorize the UE access the SP services. The federated security
process is controlled by IdP via trust and Public Key Infrastructure (PKI), after this process,
the UE is assigned federated ID (FId) and SSO. Therefore, the UE will be able to use those
credentials during the run of DCSS protocol.

The proposed 5G DCSS protocol has following advantages:

• It uses the security context from other service authorization protocols [4] that provides
the UE with access to the data such as keys and IDs. Hence encouraging security
integration as specified in [2] without compromise the security.

• It provides two options to the UE in terms of how to use the data that is caching and
sharing it with other UEs.

• It can be used for caching or sharing or for both.
• It allows the UE delegate its access permission, if it was permitted by the SP.
• The data security is considered by use of subject and object labels that gives the UE

and the data capabilities aligned with user’s access rights.

4.1. Architecture Overview

The proposed DCSS protocol leverages FIdM model [7] in Figure 2 aligned with 5G
system [46], security entities [1], and federated entities. It can be applied in both 5G core
network (5GC) or third-party SP environment. It uses IdPs, third-party SP Authentication,
Authorization, and Accounting (AAA) servers, and Service Servers (SS) to provide feder-
ated security. To enable FIdM, it can also be coupled with 5G systems and security entities.
It enables the redefinition of the UE ID settings as well as the sharing of the security context
such as keys, tokens, nonces, and IDs, both inside and outside the 5GC. The following
entities are defined for DCSS protocol and may play many roles:

• UE: end-user is the entity trying to access the service.
• SMF: 5G HN Session Management Function (SMF) manages the session between the

UE and HN and acts as a pass-through authenticator.
• SPAAA: The AAA servers of the SP. It verifies the ID of the user, checks the authenticity

of the request, and generates authorization tokens used by the UE to request services.
• SS: service server, which hosts the service and grants access to the protected services.

The UE registers to the MNO prior to initial authentication to 5GC via the SEAF
controlled AUSF, whereby the user’s subscription data and security context are stored in
Unified Data Management (UDM)/Authentication Credential Repository and Processing
Function (ARPF) [1,3]. Simultaneously, the MNO registers the UE with SP based on the
service agreement and access policies. The MNO and third-party SP also must agree on the
security process and parameters such as PKI mechanism, access control policies, identities,
authentication, and authorization levels protocols to be used [4]. In addition, the SP
registers its services, access control policies, shared secret and keys, SP identity (SPID), and
credentials to the IdP. To complete the trust and federated security interoperability the HN
registers the UE’s GPSI, user attributes, credentials, and Home Network ID (HNID). This
can be managed by an internal or external entity such as the IdP to implement federated
security in 5G [7].

7

Figure 2. 5G FIdM Model.

Then the UE obtains authenticated to access the 5G network using 3GPP primary
authentication protocols such as 5G authentication and key agreement (AKA) protocol [3].
After being granted access to the network, the UE requests access to a service which in this
case is provided by the third-party SP, the authentication and authorization are provided by
protocols such as [4,5], respectively hence the UE gains access to the service, access/fresh
tokens and SSO for further requests such as caching and sharing. The fresh token can also
be used to refresh its permissions if the original token is expired or to request permissions
to other services.

4.2. Data Caching and Data Sharing Authorization

The DCSS protocol intends to provide authorization to the UE to cache and share the
data accessed using the service authorization protocols such as NS-FId protocol [4]. After
accessing the data, the UE will have the option to cache or share data or do both, hence,
the need for cache and share security. The proposed protocol is divided into caching and
sharing authorization phases, uses cache token ChT and share token ShT for caching and
sharing requests, respectively comprising claims, labels, and access rights delegation. The
token structure similar defined in [4], the tokens however have some additional claims
and scope to achieve their objectives. Both cache and share tokens should include the UE
and data object capabilities, delegation ability in form of label bitstring, and the security
context such as nonce key ID. The nonce key could be used to extend data security with
encryption and decryption options. The use of labels enable the caching and sharing of the
data even when the SP involvement is minimal or direct authorization is no existent, for
example, in areas with no network coverage.

The UE uses the access token and security context from federated authorization
protocol [4] such as the keys to request caching authorization of the data accessed. The
security token is timestamped, has an expiry date that deems the token invalid, enforcing
the UE to request a new token or refresh the expired token [37]. It also includes an identifier,
hence a security token will have the following tuple, similar to those in [4]: Token = ID,
label, timestamp, expiry date, so the cache token is ChT = (f id, ssid, d1, label, Ts1, Exp1).
The use of timestamps and the expiry date reduces the risk of replay attacks. The security
token is assigned to the respective entities UE, SPAAA, SS and digitally signed by the
SPAAA securely to provide the integrity and authenticity of the token. The data caching
security provides authorization to UE to cache the accessed data.

After Caching the data, the UE uses the cache token and security context such as
ACK_1 strings to request sharing authorization of the data accessed and now cached. The
data sharing security provides authorization for the UE to share the accessed data. The UE
in HN or VN might want to share the cached data with another UE, to be able to do so the
UE must request permission from the SP to grant the UE access to data. The Share Token is
ShT = (f id, d1, label, Ts2, Exp2).

8

The security token can be deemed invalid if it used after the expiry date and revoked if
it is misused or the attributes do not match the requested data attributes in the SS database.
This is followed with negative acknowledgement (NACK) to the UE from the SS.

4.3. Security Assumptions and Requirements

We assume that the UE would have achieved primary authentication to HN and
service authorization to the SP services. The UE will be in possession of the pre-shared key
KUE3A, KUESS and the access token AcT as the results of those procedures. The expected
security properties to be achieved by the DCSS protocol are data confidentiality, integrity,
authenticity, and entity authentication. Even though the DCSS is intended to provide
data caching and share authorization, to harden the security in 5G, this protocol will re-
authenticate the participating entities. These security properties are defined informally
before being formalized, two taxonomies are adopted for precise and meticulous security
analysis [4]. First, the security properties of the protocol are specified from an agent A’s
point of view, with defined between two agents A and B as set 1 [48];

• aliveness,
• weak agreement,
• non-injective agreement
• injective agreement

Secondly, the security protocol should meet the following security properties as set 2 [49];

• mutual entity authentication
• mutual key authentication
• mutual key confirmation
• key freshness
• unknown-key share
• key compromise impersonation resilience.

5. Modelling of DCSS Protocol

In this section, the proposed protocol is modelled using entities; UE, SPAAA and SS
leveraging on system architecture shown in Figure 2. We have omitted SMF as it has no
significant role in the protocol execution. The protocol applies cryptographic primitives
such as hash function, symmetric/asymmetric encryption, digital signature, and Message
Authentication Code (MAC), access, and cache tokens to provide message authentication,
confidentiality, integrity, and non-repudiation. Its security assumptions are based on the
5G specifications [1], while the Universal Subscriber Identity Module (USIM) in the UE
has cryptographic capabilities such as key agreement, Key Derivation function (KDF),
encryption facilitated by Elliptic Curve Integrated Encryption Scheme (ECIES) [50].

Protocol Message Exchange

We now give an overview of DCSS protocol execution and message exchange illustrat-
ing the protocol’s full execution. It involves the following parties, UE, SPAAA, and SS and
consists of cache and share authorization phase. The UE is granted access to the SP services
using federated authorization protocol [4], which is when the access token AcT and KUESS
are generated before. The KUE3A is a preshared key between the UE and SPAAA, the UE is
in possession of the access token AcT before this proposed protocol is run. In addition, the
UE and SS would also know each other’s ID, public key, and shared session key from the
previous message exchange of the authentication and authorization protocol that granted
the UE access to the service. The use of signed digested messages is to provide message
authenticity, integrity, and non-repudiation. The protocol messages between the parties are
illustrated in Figure 3, with reference to notations in Table 2 and described in detail below:

9

Table 2. DCSS Protocol Notation and Description.

Notation Description

SPID SP identifier
SID session ID

SSID authorization server ID
DNN service code:SPID

R1 nonce
EID UE permanent identifier

PKSP SPAAA public key
KUE3A UE and SPAAA preshared key
KUESS UE and SS session key
Ack_1 acknowledgement

Hack_1 hash for Ack_1
Ack_2 acknowledgement

Hack_2 hash for Ack_2
Exp expiry date
D1 dataname
Ts timestamp

label capabilities strings
ACT access token
ChT cache token
ShT share token
h(x) hash value (h) of message (x)

{x}{k} message (x) encrypted with key K

Figure 3. DCSS Protocol Message Exchange Flow.

Caching Authorization
Msg1.UE→SPAAA: ({CachTokenReq},{KUE3A})
After the UE is granted access to the data, it sends a cache request CachTokenReq for a

10

cache token. It includes the UE’s IDs (EID/FID), data name DataName, access token
AcT, the hash of the access token hact signed by the SPAAA private key SKAAA and key
KUESS to SPAAA encrypted with preshared key KUE3A. The Act, hAcT, SKAAA, KUE3A
and KUESS are generated during the authentication and authorization procedure between
UE and SPAAA to grant the UE access to the service. Key KUESS is included if it was not
sent during the previous authentication and authorization procedure, while the access
token AcT supports verification of the user’s ID and subscription since it includes the UE
subscription details.

Msg2.SPAAA→UE: ({CachTokenResp},{KUE3A})
When the SPAAA receives message 1, the authorization server verifies the AcT. If the
subscription policy includes caching rights, SPAAA creates cache token ChT and sends it
with a hash of the cache token hChT signed with its private key SKAAA in cache response
CachResp message encrypted with session key KUE3A.

Msg3.UE→SS: ({CachReq},{KUESS})
After receiving the cache token ChT from SPAAA in message 2, the UE sends a cache
request message CachReq encrypted with preshared key KUESS to the service server SS
requesting authorization to cache the data in its possession. The message includes a ChT
and a signed hash of the cache token hChT with SPAAA private key SKAAA.

Msg4.SS→UE:({CachAck},{KUESS})
When the SS receives CachReq in message 3, it verifies the cache token ChT, if it is valid
then it acknowledges the UE’s request to cache the data by sending an acknowledgement
Ack1 in CachAck message encrypted with KUESS, which also includes the hash of the
Acknowledgement hAcK1 signed with the SS private key SKSS.

Sharing Authorization
Msg5:UE→SPAAA:({ShaTokenReq},{KUE3A})
Now that the UE is authorized to cache the data, it sends a share token request message
ShaTokenReq to SPAAA to obtain sharing authorization of the cached data. The message
includes access token AcT and cache acknowledgement Ack1, for validation and to notify
the authorization server that it has permission to cache the data that it wishes to share.

Msg6:SPAAA→UE:({ShaTokenResp},{KUE3A}})
When SPAAA receives message 5, it verifies the access token, checks if the subscription
policy includes sharing rights then sends a share response message ShaTokenResp to the
UE. The message includes a share token ShT, hash of the share token hShT signed with
SKAAA and encrypted with the KUE3A that authorizes the UE to share the content.

Msg7:UE→SS: ({ShaReq},{KUESS})
When the UE receives message 6, it sends a share request message ShaReq to SS encrypted
with KUESS that includes a share token ShT and its hash hShT that were sent to UE in
message 6 by SPAAA.

Msg8:SS→UE:({ShaAck},{KUESS})
The SS verifies the received share token parameters in message 7 and sends an acknowl-
edgement Ack2 with its hash hAck2 in a share acknowledgement message ShaAck to UE
acknowledging the request to share the data.

6. Verifying of DCSS Protocol

This section formally models and verifies the proposed protocols using formal meth-
ods, ProVerif, and security properties are formalized with ProVerif results.

6.1. Formal Method Approach

Formal method approach with automated protocol verifier have been used in the verifi-
cation of mobile network authorization protocols to for security properties guarantees [4,51].
However, most verification techniques and tools find these properties very challenging
and hard to deal with, due to the cryptographic primitive’s algebraic properties used,
some tools and manual proof checks are not suitable for symbolic reasoning. For protocol
formal analysis, there are a variety of automated verification methods available, such

11

as Automated Validation of Internet Security Protocols and Applications (AVISPA) [52],
Tamarin [53] and ProVerif [54].

ProVerif [54] is an automatic tool for analyzing security protocols, with Dolev-Yao [55]
as the adversary, and it supports equational theories which are defined by users and as
well as enabling the verification of security properties. It supports the underlying theory
of abstraction, but it may also lead to false attacks. Applied pi-calculus [56] is used as
a formal language to describe and model security protocols. The syntax is paired with
formal semantics to enable reasoning about protocols. With a variety of cryptographic
primitives modelled by equations and rewrite rules. In addition, the security properties
with observational equivalence properties are proved as inputs in form of secrecy and
authentication. The information is translated into an internal representation of the protocol
which makes some abstraction crucial to an unbounded number of sessions. Functions are
used to model cryptographic primitives, while terms built over an infinite set of names
such as (a, b, c, . . .) with an infinite set of variables such as (x, y, z, . . .) and a finite set
of function symbols such as f 1, . . . , f n represent the messages. A set of reduction rules
describes how the application of function symbols to terms is affected. Table 3 shows the
syntax and grammar of ProVerif process language and more details can be found in [54]. As
a result, we believe ProVerif an appropriate tool for this analysis. This tool has been used
in the formal verification of security properties of 5G authentication [3], authorization [4]
and federated [57] protocols for security guarantees.

Table 3. Core Language: Term and Process Grammar.

Term Grammar

a, b, c, k, s name
x, y, z variable

M,N ::= terms
h(D1, . . . ,Dn) function application
f(M1,. . . ,Mn) constructor application

D ::= expressions
fail failure

P,Q ::= processes
out(N,M); P output

in(N, x : T); P input
!P !P replication
0 nil

P | Q parallel composition
new a : T; P restriction

let x : T = D in P else Q expression evaluation
if M then P else Q conditional

6.2. Formal Verification Using ProVerif

In ProVerif, the protocol modelling is composed of declaration, process macros, and
main processes. With queries used in the rectification of the correctness and secrecy of a
protocol. Using declarations of types, functions, queries, and events, the ProVerif code is
used to effectively specify the protocol. Free names are free variables that are known to the
public, globally known whereas bound names are locally known by the process such as the
public channel for communication, [private] excludes names from the attacker [54].

Specification includes the following:

• Functions: fun sign(bitstring, sskey): bitstring,
• Key: type key.
• Private and public names: free fid:id [private]. free kuess:key [private]

free pubChannel: channel.
• Queries: Queries on secrecy, reachability, and authentication. A query of the at-

tacker’s knowledge attacker(M) is used to specify a secrecy property. The attacker

12

may have knowledge of M if the fact attacker(M) can be derived from the horn clauses.
There is no way for the attacker to learn about M if the fact attacker(M) cannot be
derived from the clauses. With reachability, the query query attacker(K) is also
used to debug the model of the protocol to check a particular branch is reachable or
not. query k: bitstring; event(endServer(k)). The correspondence assertions
are used to specify authentication properties as event(e1(M)) event(e2(M)). If all
clauses that conclude event e1 include event e2 in their hypotheses, then event e1
can only be derived when event e2 is true, proving the correspondence assertion [54].
In the case of the DCSS protocol, the following is queried: query attacker (eid).
query attacker (kue3a) are used to test the secrecy of the message, FID and key
KUESS, respectively, while query U:host, SS:host,
K:key; event (endSS (U,SS,K)) ==> event(beginUE (U,SS,K)) is used to test
events relationships (authentication).

• Events: Querying events using correspondence assertion to test the relationship between
events. (i) Event correspondence uses syntax to query a basic correspondence assertion,
query x1 :t1, . . . , xn :tn ; event (e (M1, . . . ,Mj)) ==>
event(e’(N1, . . . , Nk)). Where terms M1, . . . ,Mj,N1, . . . ,Nk are
built by the constructors applied to the variables x1 , . . . , xn of types t1, . .
. , tn and e, e’ are events. (ii) While the injective correspondence assertions are
used to capture one-to-one relationship and denoted as query x1:t1, . . , xn:tn
; inj-event(e(M1, . . . ,Mj)) ==> inj-event (e’(N1, . . . , Nk)). The cor-
respondence asserts that there is a distinct earlier occurrence of the event e’(N1,
. . . ,Nk) for each occurrence of the event e(M1, . . . ,Mj). [54].

• Process: The protocol encoded using the main process and the process macros for the
participating entities to allow sub-process being defined; ((!procUE(hostU)) for the
UE (!procAAA(hostA)) for the SPAAA and (!procSS (hostSS)) for SS. The main
process also starts off with several copies of the system entities UE, SPAAA, SS using
the required parameters denoting several roles sessions as explained in the message
exchange.

6.3. DCSS Protocol Formal Analysis

The protocol was modelled and simulated using secure, insecure channels and pro-
cesses representing entities UE, SPAAA and SS. ProVerif found an attack on the protocol
as shown in Figure 4, on a public channel (UE <===> SPAAA <==> SS). We were concerned
with federated ID FID, the cache token ChT, share token ShT, and access token AcT prop-
erties. There were attacks on the protocol as a result of a formal analysis based on the adver-
sary vector. The ProVerif results indicate that the secrecy of ChT, ShT, AcT, FID, Ack_1 and
Ack_2 holds. The authentication event is queried as non-injective and injective agreements
between UE and SS, which does not hold, SS may end the protocol assuming it is talking to
UE, even though the UE never runs the protocol with SS.

Figure 4. DCSS Protocol Attack Results.

13

The event beginSS means that the protocol was completed by SS, UE received mes-
sage 8 with Ack2 after sending Sht, hShT in message 7, event beginUE means that the SS
received message 3. The protocol parameters are taken as arguments by the events: KUESS
and cache token ChT and its claims, SS which must verify the cache token and digital signa-
ture. If the arguments are true, then acknowledgement is sent otherwise it ends sends an in-
valid token. We would like to prove the correspondences event (endSS(U, SS, K)) ==>
event (beginUE(U, SS, K)). inj-event (endSS(U, SS, K)) ==> inj-event (begin
UE(U,SS, K)).

In ProVerif the direct proof of this correspondence does not hold because message
7 and message 8 sent after query query []; event (endSS()) event(beginUE()) fail to
hold due the attacker’s knowledge of A’_15173 and kue3a_15172, attacker(A’_15173),
attacker(kue3a_15172). The attacker may obtain (hostU[],hostU[],kue3a_15172).
attacker((hostU [],hostU[],kue3a_15172)) as explained in attacker trace below. We
further attempt to prove and conclude the desired correspondence by noting that an event
with the argument KUESS cannot be executed before Ack2 has been sent, i.e., before the
Ack2 is generated by executing the share request message ShaTokenReq with the share
response message ShaTokenResp. One part of correspondence holds with true (basic) while
the other does not hold in ProVerif with false (one to one).

6.3.1. The Attack on DCSS Protocol

Based on the attack derivation (abstracts) or attack trace (semantics), the attack on a
protocol can be outlined. The derivation in ProVerif illustrates how an attacker can breach
the protocol’s security properties using abbreviations for the internal representation of
names or terms. This is in form of a numerical list of steps, each of which corresponds
to a process or an action taken by the attacker. The attack trace, on the other hand, is
an executable trace of the considered process that depicts the real attack. The trace is a
sequence of public channel inputs and outputs, as well as events related to the process.
The input, output, or event is followed by their position in the process at n, which refers
to the program point at the process’s start. When ProVerif is given query attacker (M),
where M is the message transmitted on the channel c, the intention is trying to prove
a state in which a property is unreachable by showing not attacker (M), in that the
RESULT not attacker (M) is true, the attacker ends up without term (M) meaning that
the attack does not have (M), while query x1 : t1, . . . , xn :tn ; event (e(M1,
. . . ,Mj)) ==> event(e’(N1,. . . ,Nk)), tests the events’ relationship. It is asserted

that for each occurrence of the event, there must be a well defined earlier occurrence of
another event. The man-in-the-middle as the first attack, the attacker I starts by eaves-
dropping on the communication between entities, leading to two further attacks found by
ProVerif. The attacker impersonates UE continuing the protocol with SS, which completes
the protocol with the attacker instead of the UE.

UE -> I_SPAAA: {CachTokenReq}, {KUE3A}
I_UE -> SPAAA: {CachTokenReq}, {KUE3A_15172}
SPAAA -> I_UE: {CachTokenResp}, {KUE3A}
I_SPAAA -> UE: {CachTokenResp}, {KUE3A_15172}
UE -> I_SS: {CachReq}, {KUESS}
I_UE -> SS: {CachReq}, {KUESS}
SS -> I_UE: {CachAck}, {KUESS}
I_SS -> UE: {CachAck}, {KUESS}
UE -> I_SPAAA: {ShaTokenReq}, {KUE3A}
I_UE -> SPAAA: {ShaTokenReq}, {KUE3A_15172}
SPAAA -> I_UE: {ShaTokenResp}, {KUE3A}
I_SPAAA -> UE: {ShaTokenResp}, {KUE3A_15172}
UE -> I_SS: {ShaReq}, {KUESS}
I_UE -> SS: {ShaReq}, {KUESS}
SS -> I_UE: {ShaAck}, {KUESS}

14

I_SS -> UE: {ShaAck}, {KUESS}

6.3.2. Attack Derivation and Trace

TRACE 1

1 The attacker has some term A’_15173. attacker(A’_15173).
2 The attacker has some term kue3a_15172. attacker(kue3a_15172).
3 The attacker initially knows hostU[]. attacker(hostU[])
4 Using the function 3-tuple the attacker may obtain (hostU[],
hostU[],kue3a_15172). attacker((hostU[],hostU[], kue3a_15172)).
5 new skue: skey creating skue_15181 at {1}
6 new skss: sskey creating skss_15182 at {2}
7 new skaaa: sskey creating skaaa_15183 at {3}
8 out(c, ~M) with ~M = pk(skue_15181) at {6}
9 out(c, ~M_15346) with ~M_15346 = spk(skss_15182) at {8}
10 out(c, ~M_15427) with ~M_15427 = spk(skaaa_15183) at {10}
11 in(c, a_15179) at {12} in copy a_15180
12 in(c, (hostU,hostU,a)) at {124} in copy a_15178
13 get keys(hostU,hostU,a) at {57} in copy a_15180
14 new skue_37: skey creating skue_15552 at {13} in copy a_15180
15 new fid_39: id creating fid_15554 at {15} in copy a_15180
16 new ucap: bitstring creating ucap_15560 at {21} in copy a_15180
17 get keys(hostU,hostSS,kuess) at {56} in copy a_15180
18 event endUE(hostU,hostSS,kuess) at {25} in copy a_15180 (goal)
19 The event endUE(hostU,hostSS,kuess) is executed.
20 A trace has been found.
21 RESULT event(endUE(U_110,SS_111,K_112)) ==>
event(beginSS(U_110,SS_111,K_112)) is false.

TRACE 2

22 event endUE(hostU,hostSS,kuess) at {25} in copy a_19431 (goal)
23 The event endUE(hostU,hostSS,kuess) is executed in session a_19431.
24 A trace has been found.
25 RESULT inj-event(endUE(U_116,SS_117,K_118)) ==>
inj-event(beginSS(U_116,SS_117,K_118)) is false.

The attacker’s actions are explained in derivations and trace steps concisely as shown
in Figure 5, with some text omitted for simplicity. The two attack traces follow similar steps
but have varying inputs, outputs, and events as follows.

• In trace 1, Line 1–4 are steps taken by the attacker, indicating that attacker may
know UE, therefore may also know key kue3a using the 3-tuple function in line 4.
The attacker may have received message A′_15173 by eavesdropping on the public
channel at input {12} uses this knowledge to obtain kue3a_15172. Line 5–7 at input
{1}–{4} corresponds to creation and insertion of keys on public channel. Line 9–11
at output {6}–{10} correspondence with the attacker saving the keys in new vari-
ables ~M = pk(skue_15181), ~M_15346 = spk(skss_ 15182) and ~M_15427 = spk
(skaaa_15183)for reuse later. Line 11 at {12} the attacker has session copy a_15180
with UE pretending to be SPAAA as I_SPAAA sending a_15179 to UE after eaves-
dropping on the channel. On line 12 the attacker obtains message hostU,hostU,a
that includes the key for session between UE and SS in session copy a_15178. The
attacker eavesdrops on insertion of keys KUESS at input {56} and KUE3A input
{57}, respectively, in session copy a_15180. On line 14 UE creates primitives at
{13}–{21}, sends them to SPAAA start the protocol run. On line 18 the attacker
was able to achieve is his goal in session copy a_15180 (goal) with UE, when
the event endUE(hostU,hostSS,kuess) is executed. With UE ending the protocol

15

thinking it was talking to SS while UE never run the protocol with SS. The attack is
on non-injective agreement on line 21.

• In trace 2, the same steps, inputs, and outputs but in different sessions. In this trace
the attacker achieves his goal in session copy a_19431 (goal) with UE, when the
event endUE(hostU, hostSS, kuess) is executed. The attack is against injective
agreement a one-to-one relationship correspondence in session copy a_19431 on
line 25.

Figure 5. DCSS Protocol Attack Trace.

6.4. Improved Version of DCSS Protocol

Some changes were made in the modelling of the protocol to address the security
threats discovered in the previous version and an improved version of the DCSS protocol
is presented. To improve this protocol the UE send ID (FID), hash hFID and to SPAAA
in message 1 and to SS in message 3, SPAAA sends ID (SPID) and hash hSPID to UE in
message 2 and SS sends ID (SSID) and its hash hSSID in message 4. This prevents the
attacker from using the information it has on UE and impersonating the UE when trying
to start sessions with other entities.

After changes were made, the protocol was modelled and run in ProVerif again, there
was no attack found as shown in Figure 6, hence the protocol is secure. The ProVerif results
indicate that the secrecy of Ack_1, Ack_2, Fid, d1, ChT, ShT holds as shown in Table 4.
The authentication events in form of non-injective and injective agreements hold that is
query []; event (endSS()) event(beginUE()) is true.

16

Figure 6. DCSS Protocol Safe Results.

Table 4. Proverif Query Checks.

Properties Query Expected Proverif
Output Output

ChT Secrecy True True
ShT Secrecy True True
FID Secrecy True True
AcK_1 Secrecy True True
Ack_2 Secrecy True True
UE-SS Non-injective True True

Agreement
SS-UE Injective True True

agreement

7. Security Analysis

The security analysis of the DCSS Protocol security properties based on two tax-
onomies and discusses the security consideration of the protocol.

7.1. Protocol Security Analysis

In our threat model, a Dolev Yao model [55] is used as the adversary which controls
the network communication channel. It is capable of reading, intercepting, modifying,
and sending messages. Eavesdropping, manipulation, interception, impersonation, and
message injection are some of the attacks it can initiate. Hashing, encryption, and sign-on
values that are known to the attacker can also be used by the attacker. The analysis is
based on a symbolic model, which assumes perfect cryptography, but the computational
strengths of the primitives are ignored. The protocol, however, must meet specific security
properties and the analysis of the protocol is based on security requirements sets 1 and
2 [48] and 2 [49], respectively.

7.1.1. The Analysis Based on Set 1

• Secrecy: The FID and D1 are never revealed to the attacker, hence secrecy is achieved.
Also property covers the data confidentiality and privacy.

• Aliveness: The SPAAA obtains the aliveness of UE when the UE sends a cache
authorization request to SPAAA with an access token, while SS does when the UE
sends cache or share the message. The SS responds with acknowledgement strings,
(Ack_1 and Ack_2) for tokens (ChT and ShT), respectively.

• Weak Agreement: When SPAAA achieves weak agreement in form of non-injective
agreement on access token with UE and SS achieves this when Acknowledgement
strings is received by UE.

• Non-injective Agreement: This is achieved when the UE obtains a non-injective
agreement on access token with the SPAAA. The SS achieves this on ChT, ShT with

17

the UE, when it is generated by SPAAA and sent to UE. The tokens ChT/ShT includes
labels, therefore SS obtains the assurance on ChT/ShT from the SPAAA.

• Injective Agreement: The tokens between the SPAAA and SS are fundamental to the
protocol’s security goal. The injective agreement on labels with the SP assures the UE
that SS is known and trusted. The UE obtains the injective agreement on ChT, ShT
and AcT with the SPAAA and SS respectively to assure that the sessions with SS and
were authorized the SPAAA. Simultaneously, SS is assured over tokens used that its
session with UE was authorized by SPAAA.

7.1.2. The Analysis Based on Set 2

• Mutual Entity Authentication: Since the UE already authenticated with SPAAA and
uses SSO for further authorization, it uses the access token to acquire both cache/share
tokens from SPAAA, resulting in implicit authentication between SS and UE. In
addition, reverifies the access token, the SS verifies the ChT/ShT and in return, it
agrees to UE caching/sharing request by sending Acknowledgements. The FID and
Ack1/Ack2 proved to hold, implying that this requirement is also enforced.

• Mutual Key Authentication: This property is not required as the involved parties are
in possession of session keys KUE3A and KUESS.

• Mutual Key Confirmation: Despite that the keys are preshared, the requirement met
by the successful run of the protocol between the UE, SPAAA, and UE, SS.

• Key Freshness: Although there is no function in ProVerif to validate key freshness,
the SPAAA verifies if the AcT expiry date and timestamp supplied in the message
enforce the session’s freshness. However, because the keys’ secrecy has not been
compromised, it is assumed that they are new.

• Unknown-Key Share: ProVerif uses the reachability property to check aliveness
in a protocol. This attack is prevented by the entities’ IDs and key binding. This
requirement is demonstrated by the inclusion of IDs (FID, SPID), and access token
AcT parameters; f id, ssid, label in the authorization process.

• Key Compromise Impersonation Resilience: The UE, SPAAA and SS are in possession
of KUE3A and KUESS when the protocol starts which are pre-shared keys in this
protocol. Since the secrecy property of all data exchanged holds hence, they enforce
this requirement. Further enforcement of this requirement is achieved when digital
signatures are used in message exchange this protocol.

The UE will be able to refresh the access token and request new tokens for other
services as defined by the SP via access control claims and security parameters. The use
of FID and security tokens enable the UE and SP to start new authentication and process
that might require new parameters. With SSO the UE can access granted service and
request other services which reduce exposure to adversaries. The protocol is proved to be
secure after formally analysing it using ProVerif. With DCSS the UE will be able to request
authorization from SP to cache the data as an option. This protocol provides authorization,
implicit authentication to the UE and SP. The implementation of the DCSS protocol will
enable the UE to cache the data and security tokens for further uses such as sharing with
other UEs leveraging on SSO, which provides secure communication, improving user
experience, and use of network resources.

After the successful run of the protocol, the UE should achieve data cache and sharing
authorization for the UE to cache and share the data accessed from SS. It will also achieve
entity authentication and message authentication. This protocol is an optional protocol that
might be used if the UE needs to cache or share data. It also depends on if data have caching
abilities and if the UE has been given the ability to cache or share the data. In the case where
neither ability of the subject or the object match then the caching/sharing authorization
will be denied. This is achieved using labels and delegation of access permissions. The
messages between entities are encrypted and signed by the sender in terms of the tokens
they are signed by the SPAAA).

18

With 5G enabling seamless access to edge services and promising to improve user
experience, it is paramount to address the legacy mobile system’s security issues. Hence,
DCSS protocol will address security issues at the service level, for example when the UE is
granted access to a service and permission to cache the data but not to share it. The UE will
include its request if intends to cache and share the data. Whereby during the generation
of security tokens, the right access permissions and labels can be included in tokens and
the data security.

8. Conclusions

5G promises to push services to the edge, closer to the mobile end-users, and they will
be able to use their UEs to access services from multiple SPs seamlessly. After accessing
the services, the UE will then be able to request other services such as caching and sharing
of the accessed data and delegate permission to other users. However, it requires a
robust federated service authorization mechanism to apply access controls and delegation
that restrict the caching and sharing of data access by the UE. In this paper, we explored
authorization of data caching and sharing of accessed services using FId, access control, and
delegations in 5G. We proposed a federated protocol DCSS that can provide authorization
of data caching and sharing in 5G and SP networks. We used formal methods and the
automated proof verifier ProVerif to model and formally analyze the DCSS protocol. We
also looked at the protocol and its security properties using two different security property
taxonomies. End-users could use this protocol to request other operations with their data
securely in heterogeneous network, such as 5G. Future work will be about data caching
and sharing in communication applications such as D2D communications.

Author Contributions: Conceptualization, E.K.K.E., M.A. and J.L.; methodology, E.K.K.E. and M.A.;
validation, E.K.K.E. and M.A.; formal analysis, E.K.K.E.; investigation, E.K.K.E.; writing—original
draft preparation, E.K.K.E.; writing—review and editing, E.K.K.E. and M.A.; supervision, M.A. and
J.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. 3GPP. Security architecture; procedures for 5G system. In Technical Specification (TS) 3GPP TS 33.501 V17.0.0 (2020-12); Third

Generation Partnership Project: Sophia Antipolis, France, 2020.
2. 5GPPP. Deliverable D2.7 Security Architecture (Final); Technical Report for 5G ENSURE; 5G ENSURE: Brussels, Belgium, 2017.
3. Edris, E.K.K.; Aiash, M.; Loo, J. Formal Verification and Analysis of Primary Authentication based on 5G-AKA Protocol. In

Proceedings of the 2020 Seventh International Conference on Software Defined Systems (SDS), Paris, France, 20–23 April 2020.
4. Edris, E.K.K.; Aiash, M.; Loo, J. Network Service Federated Identity (NS-FId) Protocol for Service Authorization in 5G Network.

In Proceedings of the Fifth International Conference on Fog and Mobile Edge Computing (FMEC), Paris, France, 20–23 April 2020.
5. Edris, E.K.K.; Aiash, M.; Loo, J.; Alhakeem, M.S. Formal Verification of Secondary Authentication Protocol for 5G Secondary

Authentication. Int. J. Secur. Networks 2021, In Press.
6. 5GPPP. 5G PPP White Paper: Phase 1 Security Landscape; Technical Report for 5GPPP; 5GPPP: Brussels, Belgium, 2017
7. Edris, E.K.K.; Aiash, M.; Loo, J. The Case for Federated Identity Management in 5G Communications. In Proceedings of the Fifth

International Conference on Fog and Mobile Edge Computing (FMEC), Paris, France, 20–23 April 2020.
8. Chandrasekaran, G.; Wang, N.; Hassanpour, M.; Xu, M.; Tafazolli, R. Mobility as a Service (MaaS): A D2D-Based Information

Centric Network Architecture for Edge-Controlled Content Distribution. IEEE Access 2018, 6, 2110–2129. [CrossRef]
9. Ravindran, R.; Suthar, P.; Trossen, D.; Wang, C; White, G. Enabling ICN in 3GPP’s 5G NextGen Core Architecture. In IETF (The

Internet Engineering Task Force) Request for Comments; IETF: Fremont, CA, USA, 2018.
10. Edris, E.K.K.; Aiash, M.; Loo, J. Investigating Network Services Abstraction in 5G enabled Device-to-Device (D2D) Commu-

nications. In Proceedings of the IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing,
Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (Smart-
World/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), Leicester, UK, 19–23 August 2019; pp. 1660–1665. [CrossRef]

11. Sun, L.; Du, Q. Physical layer security with its applications in 5G networks: A review. Commun. China 2017, 14, 1–14. [CrossRef]
12. Wu, Y.; Khisti, A.; Xiao, C.; Caire, G.; Wong, K.K.; Gao, X. A Survey of physical Layer security techniques for 5G wireless

networks and challenges ahead. IEEE J. Sel. Areas Commun. 2018, 36, 679–695. [CrossRef]

http://doi.org/10.1109/ACCESS.2017.2781736
http://dx.doi.org/10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00296
http://dx.doi.org/10.1109/CC.2017.8246328
http://dx.doi.org/10.1109/JSAC.2018.2825560

19

13. Gao, Y.; Hu, S.; Tang, W.; Li, Y.; Sun, Y.; Huang, D.; Cheng, S.; Li, X. Physical Layer Security in 5G Based Large Scale Social
Networks: Opportunities and Challenges. IEEE Access 2018, 6, 26350–26357. [CrossRef]

14. Noura, H.N.; Melki, R.; Chehab, A. Efficient data confidentiality scheme for 5g wireless NOMA communications. J. Inf. Secur.
Appl. 2021, 58, 102781.

15. Nandan, N.; Majhi, S.; Wu, H.C. Beamforming and Power Optimization for Physical Layer Security of MIMO-NOMA Based
CRN Over Imperfect CSI. IEEE Trans. Veh. Technol. 2021. [CrossRef]

16. Wang, J.; Wang, X.; Gao, R.; Lei, C.; Feng, W.; Ge, N.; Jin, S.; Quek, T.Q. Physical Layer Security for UAV Communications in 5G
and Beyond Networks. arXiv 2021, arXiv:2105.11332.

17. Arkko, J.; Eronen, P.; Lehtovirta, V.; Torvinen, V. Improved Extensible Authentication Protocol Method for 3GPP Mobile Network
Authentication and Key Agreement (EAP-AKA); Rfc 5448, IETF: Fremont, CA, USA, 2020.

18. Arkko, J.; Norrman, K.; Näslund, M.; Sahlin, B. A USIM Compatible 5G AKA Protocol with Perfect Forward Secrecy. In
Proceedings of the 2015 IEEE Trustcom/BigDataSE/ISPA, Helsinki, Finland, 20–22 August 2015; Volume 1, pp. 1205–1209
[CrossRef]

19. Basin, D.; Dreier, J.; Hirschi, L.; Radomirović, S.; Sasse, R.; Stettler, V. A Formal Analysis of 5G Authentication. In Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications Security, Toronto, ON, Canada, 15–19 October 2018; pp.
1383–1396. [CrossRef]

20. Fang, D.; Qian, Y.; Hu, R.Q. Security for 5G Mobile Wireless Networks. IEEE Access 2018, 6, 4850–4874. [CrossRef]
21. Zhang, J.; Yang, L.; Cao, W.; Wang, Q. Formal Analysis of 5G EAP-TLS Authentication Protocol Using ProVerif. IEEE Access 2020.

[CrossRef]
22. Lee, J.; Kim, D.; Park, J.; Park, H. A Multi-Server Authentication Protocol Achieving Privacy Protection and Traceability for 5G

Mobile Edge Computing. In Proceedings of the 2021 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas,
NV, USA, 10–12 January 2021; pp. 1–4. [CrossRef]

23. Ma, D.; Lyu, X.; Zou, R. A Novel Variable K-Pseudonym Scheme Applied to 5G Anonymous Access Authentication. arXiv 2021,
arXiv:2106.07158.

24. Wu, T.Y.; Lee, Z.; Obaidat, M.S.; Kumari, S.; Kumar, S.; Chen, C.M. An authenticated key exchange protocol for multi-server
architecture in 5G networks. IEEE Access 2020, 8, 28096–28108. [CrossRef]

25. Wu, F.; Li, X.; Xu, L.; Sangaiah, A.K.; Rodrigues, J.J. Authentication protocol for distributed cloud computing: An explanation of
the security situations for Internet-of-Things-enabled devices. IEEE Consum. Electron. Mag. 2018, 7, 38–44. [CrossRef]

26. Shin, S.; Kwon, T. A privacy-preserving authentication, authorization, and key agreement scheme for wireless sensor networks in
5G-integrated Internet of Things. IEEE Access 2020, 8, 67555–67571. [CrossRef]

27. Adavoudi-Jolfaei, A.; Ashouri-Talouki, M.; Aghili, S.F. Lightweight and anonymous three-factor authentication and access control
scheme for real-time applications in wireless sensor networks. Peer-Peer Netw. Appl. 2019, 12, 43–59. [CrossRef]

28. Zhang, K.; Leng, S.; He, Y.; Maharjan, S.; Zhang, Y. Cooperative Content Caching in 5G Networks with Mobile Edge Computing.
IEEE Wirel. Commun. 2018, 25, 80–87. [CrossRef]

29. Vo, N.S.; Duong, T.Q.; Guizani, M.; Kortun, A. 5G Optimized Caching and Downlink Resource Sharing for Smart Cities. IEEE
Access 2018, 6, 31457–31468. [CrossRef]

30. Ullah, R.; Rehman, M.A.U.; Naeem, M.A.; Kim, B.; Mastorakis, S. ICN with edge for 5G: Exploiting in-network caching in
ICN-based edge computing for 5G networks. Future Gener. Comput. Syst. 2020, 111, 159–174. [CrossRef]

31. Wang, T.X.; Chen, A.M.; Taleb, V.; Ksentini, V.; Leung, V. Cache in the air: Exploiting content caching and delivery techniques for
5G systems. IEEE Commun. Mag. 2014, 52, 131–139. [CrossRef]

32. Wang, Q.; Chen, D.; Zhang, N.; Qin, Z.; Qin, Z. LACS: A Lightweight Label-Based Access Control Scheme in IoT-Based 5G
Caching Context. IEEE Access 2017, 5, 4018–4027. [CrossRef]

33. El-Latif, A.A.A.; Abd-El-Atty, B.; Venegas-Andraca, S.E.; Mazurczyk, W. Efficient quantum-based security protocols for
information sharing and data protection in 5G networks. Future Gener. Comput. Syst. 2019, 100, 893–906. [CrossRef]

34. Behrad, S.; Bertin, E.; Tuffin, S.; Crespi, N. A new scalable authentication and access control mechanism for 5G-based IoT. Future
Gener. Comput. Syst. 2020, 108, 46–61. [CrossRef]

35. Zhang, T.; Fang, X.; Liu, Y.; Nallanathan, A. Content-centric mobile edge caching. IEEE Access 2019, 8, 11722–11731. [CrossRef]
36. Bertino, E.; Takahashi, K. Identity Management: Concepts, Technologies, and Systems; Artech House: London, UK, 2010.
37. Dick, H. The OAuth 2.0 Authorization Framework; Rfc 6749, IETF: Fremont, CA, USA, 2012
38. Sandhu, R.S.; Samarati, P. Access control: Principle and practice. IEEE Commun. Mag. 1994, 32, 40–48. [CrossRef]
39. Ferraiolo, D.; Kuhn, D.R.; Chandramouli, R. Role-Based Access Control; Artech House: London, UK, 2003.
40. Damgård, I.; Haagh, H.; Orlandi, C. Access control encryption: Enforcing information flow with cryptography. In Theory of

Cryptography Conference; Springer: Berlin/Heidelberg, Germany, 2016; pp. 547–576.
41. Hu, V.C.; Ferraiolo, D.; Kuhn, R.; Friedman, A.R.; Lang, A.J.; Cogdell, M.M.; Schnitzer, A.; Sandlin, K.; Miller, R.; Scarfone, K.

Guide to attribute based access control (ABAC) definition and considerations (draft). NIST Spec. Publ. 2013, 800, 1–54.
42. Dennis, J.B.; Horn, E.C.V. Programming semantics for multiprogrammed computations. Commun. ACM 1983, 26, 29–35.

[CrossRef]
43. Crampton, J.; Khambhammettu, H. Delegation in role-based access control. Int. J. Inf. Secur. 2008, 7, 123–136. [CrossRef]

http://dx.doi.org/10.1109/ACCESS.2018.2832839
http://dx.doi.org/10.1109/TVT.2021.3079136
http://dx.doi.org/10.1109/Trustcom.2015.506
http://dx.doi.org/10.1145/3243734.3243846
http://dx.doi.org/10.1109/ACCESS.2017.2779146
http://dx.doi.org/10.1109/ACCESS.2020.2969474
http://dx.doi.org/10.1109/ICCE50685.2021.9427680
http://dx.doi.org/10.1109/ACCESS.2020.2969986
http://dx.doi.org/10.1109/MCE.2018.2851744
http://dx.doi.org/10.1109/ACCESS.2020.2985719
http://dx.doi.org/10.1007/s12083-017-0627-8
http://dx.doi.org/10.1109/MWC.2018.1700303
http://dx.doi.org/10.1109/ACCESS.2018.2839669
http://dx.doi.org/10.1016/j.future.2020.04.033
http://dx.doi.org/10.1109/MCOM.2014.6736753
http://dx.doi.org/10.1109/ACCESS.2017.2678510
http://dx.doi.org/10.1016/j.future.2019.05.053
http://dx.doi.org/10.1016/j.future.2020.02.014
http://dx.doi.org/10.1109/ACCESS.2019.2962856
http://dx.doi.org/10.1109/35.312842
http://dx.doi.org/10.1145/357980.357993
http://dx.doi.org/10.1007/s10207-007-0044-8

20

44. Aiash, M.; Loo, J. A formally verified access control mechanism for information centric networks. In Proceedings of the 12th
International Joint Conference on e-Business and Telecommunications (ICETE), Colmar, France, 20–22 July 2015; Volume 4, pp.
377–383.

45. Edris, E.K.K.; Aiash, M.; Loo, J. Formal Verification of Authentication and Service Authorization Protocols in 5G enabled
Device-to-Device Communications using ProVerif. Electronics 2021, Accepted for Publication. [CrossRef]

46. 3GPP. System Architecture for the 5G System. In Technical Specification (TS) 3GPP TS 23.501 V16.7.0 (2020-12); Third Generation
Partnership Project: Sophia Antipolis, France, 2020

47. 3GPP. 5G System; Technical Realization of Service Based Architecture. In Technical Specification (TS) 3GPP TS 29.500 V17.1.0
(2020-12); Third Generation Partnership Project: Sophia Antipolis, France, 2020

48. Lowe, G. A hierarchy of authentication specifications. In Proceedings of the 10th Computer Security Foundations Workshop,
Rockport, MA, USA, 10–12 June 1997; IEEE: Piscataway, NJ, USA, 1997; pp. 31–43. [CrossRef]

49. Menezes, A.J.; Oorschot, P.C.V.; Vanstone, S.A. Handbook of Applied Cryptography; CRC Press: Boca Raton, FL, USA, 2018.
50. SECG. SEC 1: Recommended Elliptic Curve Cryptography, 2009. Available online: https://www.secg.org/sec1-v2.pdf (accessed

on 26 May 2021)
51. Armando, A.; Carbone, R.; Compagna, L.; Cuellar, J.; Tobarra, L. Formal analysis of SAML 2.0 web browser single sign-on:

breaking the SAML-based single sign-on for google apps. In Proceedings of the 6th ACM workshop on Formal Methods in
Security Engineering, Alexandria, Virginia, 27–31 October 2008; ACM: New York, NY, USA, 2008; pp. 1–10. [CrossRef]

52. Armando, A.; Basin, D.A.; Boichut, Y.; Chevalier, Y.; Compagna, L.; Cuellar, J.R.; Drielsma, P.H.; Heam, P.C.; Kouchnarenko, O.;
Mantovani, J.; et al. The AVISPA tool for the automated validation of Internet security protocols and applications. Comput. Aided
Verif. Proc. 2005, 3576, 281–285.

53. Meier, S.; Schmidt, B.; Cremers, C.; Basin, D. The TAMARIN Prover for the Symbolic Analysis of Security Protocols. In
Computer Aided Verification; Sharygina, N., Veith, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; Volume 8044, pp. 696–701.
[CrossRef]

54. Blanchet, B.; Smyth, B.; Cheval, V.; Sylvestre, M. ProVerif 2.01: Automatic Cryptographic Protocol Verifier, User Manual and
Tutorial, 2020. Available online: https://opam.ocaml.org/packages/proverif/ (accessed on 2 July 2021).

55. Dolev, D.; Yao, A.C.C. On the Security of Public Key Protocols. IEEE Trans. Inf. Theory 1983, 30, 198–208. [CrossRef]
56. Ryan, M.D.; Smyth, B. Applied pi calculus. In Formal Models and Techniques for Analyzing Security Protocols; IOS Press: Amsterdam,

The Netherlands, 2011; Volume 5, pp. 112–142.
57. Bhargavan, K.; Fournet, C.; Gordon, A.D.; Swamy, N. Verified implementations of the information card federated identity-

management protocol. In Proceedings of the 2008 ACM Symposium on Information, Computer and Communications Security,
Tokyo, Japan, 18–20 March 2008; pp. 123–135. [CrossRef]

http://dx.doi.org/10.3390/electronics10131608
http://dx.doi.org/10.1109/CSFW.1997.596782
https://www.secg.org/sec1-v2.pdf
http://dx.doi.org/10.1145/1456396.1456397
http://dx.doi.org/10.1007/978-3-642-39799-8_48
https://opam.ocaml.org/packages/proverif/
http://dx.doi.org/10.1109/TIT.1983.1056650
http://dx.doi.org/10.1145/1368310.1368330

	Introduction
	Related Work
	Data Caching and Data Sharing Security in 5G
	Federated Authorization
	Permission Delegation
	Capabilities and Attributes
	Problem Definition

	The Proposed Data Caching and Sharing Security (DCSS) Protocol
	Architecture Overview
	Data Caching and Data Sharing Authorization
	Security Assumptions and Requirements

	Modelling of DCSS Protocol
	Verifying of DCSS Protocol
	Formal Method Approach
	Formal Verification Using ProVerif
	DCSS Protocol Formal Analysis
	The Attack on DCSS Protocol
	Attack Derivation and Trace

	Improved Version of DCSS Protocol

	Security Analysis
	Protocol Security Analysis
	The Analysis Based on Set 1
	The Analysis Based on Set 2

	Conclusions
	References

