

UWL REPOSITORY

repository.uwl.ac.uk

Student engagement in online delivery of mathematics and statistics modules

Thomas, Madsen ORCID: https://orcid.org/0000-0001-9354-0935 (2021) Student engagement in online delivery of mathematics and statistics modules. In: Festival of Learning and Teaching, 08 Jul 2021, London. (Unpublished)

This is the Submitted Version of the final output.

UWL repository link: https://repository.uwl.ac.uk/id/eprint/8101/

Alternative formats: If you require this document in an alternative format, please contact: <u>open.research@uwl.ac.uk</u>

Copyright:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy: If you believe that this document breaches copyright, please contact us at <u>open.research@uwl.ac.uk</u> providing details, and we will remove access to the work immediately and investigate your claim.

Student engagement in online delivery of mathematics and statistics modules

> Thomas Madsen School of Computing & Engineering, UWL

Festival of Learning and Teaching 2021

My maths and stats teaching before March 2020

Pre-COVID teaching reflects typical mathematics/statistics lecturer: blackboard based classroom teaching. Passive learning?

Use of technology before March 2020:

- VLE for announcements, weekly notes and problem sheets, discussion boards.
- Lecture slides (depending on nature of module).
- Use of mathematical and statistical software (Excel, R, Python, MATLAB, Mathematica, SageMath).

Main engagement through synchronous faculty-student and student-student communication and collaboration.

Should we aim for similar engagement when teaching online?

Are tablets a good online alternative to blackboards?

Advanced mathematics and statistics concepts difficult to teach via slides. Blackboards slow us down, prompt mistakes and student interaction. *My experience:*

- XP-Pen and MS Whiteboard for webinars and feedback.
- Advantages: Good for formulae, derivations and drawings. Slows you down. Can export and share with students. Can be used anywhere.
- Disadvantages: Requires some practice. May have to flip between applications regularly.

For how long do students "engage" in a typical webinar?

Module	Statistics (slides)	DEs (tablet)
Avg proportion	71%	89%

Suggesting a (significant?) difference in favour of tablets. This is supported by student feedback as well.

Quizzes: do students participate & do they work?

Quizzes can be good way to engage students in asynchronous activities.

- My experience $v_i = 5.000 \text{ ms}^{-1}$ collides with a black ball on a snooker table. After the collision the black ball moves at a speed of $v_b = 4.240 \text{ ms}^{-1}$ at an angle of $\theta_b = 32^\circ$ with respect to the cue ball's original
 - Predominantly implemented using BB's test tools though alternatives such as NUMBAS and STACK exist.
 - Advantages: Facilitate student engagement in asynchronous activities. Easy to reuse. Good for large cohorts. Useful to identify response patterns (particularly relevant in "flipped" approach).
 - *Disadvantages:* Focus on low level learning objectives. Can only check factual knowledge (not problem solving skills etc). Limited feedback. Time, consuming to construct the table.

Are quizzes equally useful for all (asynchronous) phases?

- Investigate quizzes (stats): 62%.
- Consolidate quizzes (discrete maths): 41% with weak (but significant) positive correlation between quiz scores and final test score.

Videos & recordings: do these reduce engagement?

Videos/recordings can be good supplement to webinars but play *precarious* role in context of student engagement. *My experience:*

- Mainly short introductory videos, using Panopto, and recording of Collaborate sessions.
- Advantages: Flexibility for students. Students can (re)watch complicated derivations at own pace. Good for revision.
- *Disadvantages:* Risk of reduced attendance and student focus during webinars. May affect faculty-student interaction. Videos time consuming to produce and can get too "polished".

Panopto produced videos in stats module on average viewed by 14% of students (compare with 62% quiz participation in same module, cf. p.4). No data for Collaborate recordings, but student feedback suggests these have been (too?) popular.

Face-to-face return: FLEXibility with care

With care, above tools could be used in face-to-face (or hybrid) setting both to facilitate student engagement *and* add flexibility.

- *Tablets* are here to stay as can (almost fully) replace blackboards. Could enhance use to let students participate as well.
- *Quizzes* good tool for prompting asynchronous engagement related to simpler concepts (particularly in flipped setting).
- Aim to continue delivering sessions via Collaborate but plan *recordings* carefully and monitor use.

Good use of technology can increase student engagement, particularly by allowing for more focused faculty-student interactions.

Any questions?

Selected references

E-Assessment in Mathematical Sciences https://eams.ncl.ac.uk/

🚺 N. Calder, J. Jafri and L. Guo

Mathematics Education Students' Experiences during Lockdown: Managing Collaboration in eLEarning

Educ. Sci. 2021., vol. 11, Apr. 2021.

M. R. Edwards and M. E. Clinton

A study exploring the impact of lecture capture availability and lecture capture usage on student attendance and attainment *Higher Education*, vol. 77, Mar. 2019.

P. Maclaren, D. I. Wilson and S. Klymchuk

Making the point: the place of gesture and annotation in teaching STEM subjects using pen-enabled Tablet PCs Teaching Matheamtics and its Applications: An International Journal of the IMA, vol. 37, Apr. 2017.

Teaching and Learning Mathematics Online http://talmo.uk/index.html