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A B S T R A C T   

Background: Brain functional connectivity (FC) analyses based on magneto/electroencephalography (M/EEG) 
signals have yet to exploit the intrinsic high-dimensional information. Typically, these analyses are constrained 
to regions of interest to avoid the curse of dimensionality, with the latter leading to conservative hypothesis 
testing. 
New method: We removed such constraint by estimating high-dimensional source-based M/EEG-FC using cluster- 
permutation statistic (CPS) and demonstrated the feasibility of this approach by identifying resting-state changes 
in mild cognitive impairment (MCI), a prodromal stage of Alzheimer’s disease. Particularly, we proposed a 
unified framework for CPS analysis together with a novel neighbourhood measure to estimate more compact and 
neurophysiological plausible neural communication. As clusters could more confidently reveal interregional 
communication, we proposed and tested a cluster-strength index to demonstrate other advantages of CPS 
analysis. 
Results: We found clusters of increased communication or hypersynchronization in MCI compared to healthy 
controls in delta (1− 4 Hz) and higher-theta (6− 8 Hz) bands oscillations. These mainly consisted of interactions 
between occipitofrontal and occipitotemporal regions in the left hemisphere, which may be critically affected in 
the early stages of Alzheimer’s disease. 
Conclusions: Our approach could be important to create high-resolution FC maps from neuroimaging studies in 
general, allowing the multimodal analysis of neural communication across multiple spatial scales. Particularly, 
FC clusters more robustly represent the interregional communication by identifying dense bundles of connections 
that are less sensitive to inter-individual anatomical and functional variability. Overall, this approach could help 
to better understand neural information processing in healthy and disease conditions as needed for developing 
biomarker research.   

1. Introduction 

Functional connectivity (FC) analyses are continuously evolving, 
helping us to shape our understanding of network organization in 

healthy and unhealthy brains (de Vos et al., 2018; Greicius et al., 2004, 
2003; van den Heuvel and Hulshoff Pol, 2010). Typically, FC studies are 
conducted in resting-state since the associated spontaneous brain ac-
tivity recruits multiple brain regions and networks, which can also be 
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observed during active cognitive states (Buckner et al., 2013, 2009; 
Haak et al., 2018; Power et al., 2011; Raichle, 2015). Due to the con-
sistency of resting-state FC results across multiple datasets, FC can also 
be used to study brain disorders (Buckner et al., 2009; de Vos et al., 
2018; Greicius et al., 2004, 2003; Maestú et al., 2015). Furthermore, the 
use of resting-state functional magnetic resonance imaging (rs-fMRI) has 
attracted most attention given the excellent spatial resolution of fMRI to 
map brain function differences between conditions (Buckner et al., 
2013; Haak et al., 2018). However, rs-fMRI analyses provide only an 
ultra-low frequency filtered and indirect representation of the underly-
ing neural dynamics, as fMRI is based on the slow blood-oxygen-level 
dependent (BOLD) signal (Logothetis, 2008). In contrast, magneto/-
electroencephalography (M/EEG) imaging resolves such limitations by 
directly reflecting transient neural dynamics and allowing to infer 
communication among brain regions (Hipp et al., 2012; O’Neill et al., 
2018; Schoffelen and Gross, 2009; Tewarie et al., 2019). 

In any case, either using fMRI (Buckner et al., 2013; Power et al., 
2011; Raichle, 2015) or M/EEG (Dimitriadis et al., 2018; Hillebrand 
et al., 2012; Koelewijn et al., 2019; Yu et al., 2017) data, analyses are 
heavily reliant on the use of regions of interest (ROIs) for reducing 
dimensionality, with a trade-off between the advantages of faster com-
putations and less-conservative statistical tests, versus the possible loss 
of information and biased results (Hillebrand et al., 2012; Zalesky et al., 
2012a). Conversely, FC studies in the last decades have shown the 
feasibility of high-dimensional approaches to study network dynamics 
in greater detail (Hayasaka and Nichols, 2003; Hipp et al., 2012; Smith 
and Nichols, 2009; Zalesky et al., 2012a, 2012b, 2010; Zhang et al., 
2018), e.g. using cluster-permutation statistic (CPS), with the critical 
advantage that significant network clusters ensure strong evidence of 
inter-regional connectivity (Zalesky et al., 2012a, 2012b, 2010; Zhang 
et al., 2018). Therefore, high-dimensional FC analysis could enhance the 
evaluation of FC differences between healthy and unhealthy brain 
conditions (Zalesky et al., 2012b; Zhang et al., 2018). However, the 
state-of-the-art of CPS is mostly limited to non-M/EEG data (Smith and 
Nichols, 2009; Zalesky et al., 2012a, 2012b, 2010; Zhang et al., 2018) or 
low-dimensional analysis (Mamashli et al., 2019; Maris and Oostenveld, 
2007), and hence not fully exploiting the advantages of the CPS 
approach. 

In this work, we extended the application of CPS to high-dimensional 
source-based M/EEG data, e.g. for source-based FC analysis after solving 
the M/EEG inverse problem. Specifically, we estimated source pairwise 
FC using our recently proposed connectivity measure to control for 
volume conduction effects (Sanchez-Bornot et al., 2018). By concur-
rently dealing with FC analysis in the intrinsic high-dimensional 
brain-source space while controlling for volume conduction, we 
demonstrated increased sensitivity of post-hoc statistical analyses. This 
approach was applied to a dataset of 30 healthy control (HC) and 30 
mild cognitive impairment (MCI) participants, where MCI was diag-
nosed according to standard criteria (Albert et al., 2011). Statistical tests 
for the estimated FC differences between the HC and MCI groups, and for 
the covariation of these networks with respect to measured cognitive 
tests, were evaluated. We found significantly increased activation of 
occipitotemporal and occipitofrontal networks in MCI with respect to 
HC participants (hypersynchronization) in the left hemisphere, possibly 
associated with cognitive decline, and showed that significant FC clus-
ters could be exploited for developing biomarker research in Alz-
heimer’s disease (AD). 

2. Materials and methods 

2.1. Participants 

Data were collected from a total of 60 participants at Hospital Uni-
versitario de San Carlos (Madrid, Spain), including eyes-closed resting- 
state magnetoencephalography (MEG) recordings and neuropsycholog-
ical tests scores: mini-mental-state-examination (MMSE) Spanish 

version (Lobo et al., 1980), and delayed/immediate recall memory 
(DRM/IRM) scores from Wechsler Memory Scale-III (Wechsler, 1997). 
Inclusion criteria: recruitment age of 65–85 years, right-handed as 
verified using Edinburgh Handedness Inventory (Oldfield, 1971), native 
Spanish speakers, a modified Hachinski score ≤ 4 (Rosen et al., 1980), a 
Geriatric Depression Scale short-form score ≤ 5 (Reisberg et al., 1982), 
and no indication of comorbidities or brain trauma according to MRI 
inspection (López et al., 2014). MCI participants showed signs of hip-
pocampal atrophy as quantified using their anatomical MRI, and 
therefore it was considered that their cognitive impairment was related 
to AD pathology with an intermediate likelihood (Albert et al., 2011). 
HC group: N = 30, 16 females, ages 66− 80 years. MCI group: N = 30, 15 
females, ages range 65–78 years (see Table 1 for further details). 
Informed consent was obtained from all the participants in conformity 
with the Declaration of Helsinki (1991), and the study was approved by 
the local ethical review board. 

2.2. MEG data recording 

The MEG signals were acquired using an Elekta-Neuromag system 
with 306 channels (102 magnetometers and 204 planar gradiometers) 
with a sampling frequency of 1 kHz and online anti-alias filter with 
0.1− 330 Hz bandwidth. Concurrently, head movements were tracked 
using a continuous head-position indicator (cHPI) with four coils 
attached to the scalp. The position for these coils, fiducial points 
(nasion, and left/right preauricular), and head-shape model were 
digitised using a three-dimensional Fastrak Polhemus system (Polhe-
mus, Inc, USA). Additionally, bipolar electro-oculogram sensors were 
attached above and below the left eye to measure ocular movements, 
and an electrical ground electrode was attached to the earlobe. With 
these conditions, three-minute MEG resting-state recordings were ac-
quired for all participants. During the acquisition, they were instructed 
to remain calm and control their movement as long as possible, while 
an expert supervised the session to ensure that participants remained in 
an awake state. Offline, the recorded MEG signals were processed using 
the temporal extension of the signal-space separation technique 
(Maxfilter version 2.2, Elekta; correlation threshold = 0.9, time win-
dow = 10 s) to reduce the contribution of external magnetic field and 
correct for the head movements using the cHPI data. However, we 
found non-significant differences of head movement between both 
groups (p ≈ 0.68), with an average Euclidean distance (reference: 
initial head position) of 3.3 mm (±2.5) and 3.7 mm (±2.9) for the HC 
and MCI groups, respectively. 

2.3. Pipeline for data preparation 

Data preparation for post-hoc analyses was conducted using a 
MATLAB custom code based on SPM12 and Fieldtrip tools. The first step 

Table 1 
Participants’ demographics. The p-values were obtained by two-independent 
samples t-test (*) or chi-square test (+). HC = Healthy Control; MCI = Mild 
Cognitive Impairment; M = Male; F = Female; MMSE = Mini-Mental State Ex-
amination; IRM: Immediate Recall Memory; DRM: Delayed Recall Memory; 
RH_ICV and LH_ICV: right and left hippocampal volume normalised with 
intracranial volume, respectively. Highest education completed, using five 
levels: 1. Illiterate, 2. Primary studies, 3. Elemental studies, 4. High school 
studies, and 5. University studies.   

HC group (N = 30) MCI group (N = 30) p-values 

Age (years) 72.1 ± 4.1 72.2 ± 4.0 0.874* 
Gender (M/F) 14/16 15/15 0.796+

Educational level 3.6 ± 1.1 3.4 ± 1.3 0.707* 
MMSE 29.2 ± 0.8 26.9 ± 1.9 <1e-6* 
IRM 38.7 ± 8.0 18.9 ± 9.0 <1e-8* 
DRM 24.6 ± 6.6 7.2 ± 8.0 0.089* 
RH_ICV 0.00250 ± 0.00030 0.00207 ± 0.00047 0.0002* 
LH_ICV 0.00251 ± 0.00035 0.00207 ± 0.00046 0.0002*  
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is to obtain meshes for the cortical surface of each individual. This was 
implemented by using the SPM12′s “normal” size template mesh, with 
8196 vertices fairly distributed over the cortical surface (4098 vertices 
per hemisphere, excluding cerebellum, ∼ 5 mm source-to-source sepa-
ration). This SPM12′s template mesh is available within the software 
files and was initially obtained from an exemplar individual using 
BrainVISA/Anatomist (Litvak et al., 2011; Mattout et al., 2007). More-
over, it was demonstrated with data from nine individuals that the 
fitting of the SPM12′s canonical mesh to a new individual brain, via 
nonlinear warping, resulted in superior results in comparison to using a 
fixed template brain, and comparable results to those obtained from 
cortical meshes directly extracted from the individual brain (Henson 
et al., 2009). Therefore, in our study we followed this procedure for 
obtaining individual meshes by warping the SPM12′s “normal” size 
mesh into the individual brains, which is an automatic process as 
implemented in SPM12. Not least important, in the second step, the 
individually warped canonical mesh is co-registered with the sensors 
space using the location for the MEG sensors and Pholemus’ digitised 
headshape points. Although this is also an automatic step as imple-
mented in SPM12, we preferred in our study to use a modified interface 
based on the automatic SPM12′s co-registration routine to improve the 
accuracy (see Supp. Fig. 1). As outcome from the implementation of 
these two steps, we obtained the location for the brain sources in our 
study, as they corresponded to the 8196 vertices in the individual 
meshes, and the MEG lead-fields for these sources using the single-shell 
Boundary Element Method, as it can be calculated in SPM12 directly 
after the co-registration step, correspondingly for a perpendicular dipole 
orientation constraint (Henson et al., 2010, 2009). 

Similarly, using the SPM12 toolbox within a MATLAB custom script, 
signals were pre-processed using a Butterworth’s bandpass filter of 
0.5− 48 Hz bandwidth, downsampled to 200 Hz and epoched into 2-sec-
onds segments (90 trials) using a Hann window. Although highly rec-
ommended in other pipelines, notice that we do not reject artifact 
signals in our pipeline as we use a FC measure which is robust to volume 
conduction, as discussed below. Next, source reconstruction analysis 
was conducted using the SPM12′s Bayesian minimum norm imple-
mentation (Mattout et al., 2006), separately for each segment. Finally, 
the discrete Fourier transform (MATLAB fft function) was applied to 
each estimated and epoched source activity, and its derived complex 
numbers were halved to “single” precision and saved to hard disk for 
post-hoc FC analyses. In summary, this resulted in a 3D matrix of di-
mensions 96 frequency bins (frequency resolution of 0.5 from 0.5 to 48 
Hz), 8196 sources and 90 segments, for each subject. 

2.4. Pipeline for FC analysis 

Specifically, in this study the envelope of the imaginary coherence 
(EIC) was estimated as the FC measure between two signals xi(t) and 
xj(t), for each frequency f (Sanchez-Bornot et al., 2018):  

where Xin(f) is the Fourier transform complex number output for signal 
xin(t), estimated separately for each epoch n = 1,…,90, the operator I(∙ 
) extracts the imaginary part of the argument’s complex number, and |∙|
stands for the absolute value. The above EIC formula produces a nor-
malised measure of FC strength with values between 0 and 1, similar as 
with the coherence measure (Sanchez-Bornot et al., 2018). In this 
equation, considering the outcome of the imaginary operation as z(f) =

I(∙), the Hilbert’s transform h(f) = H (∙) allows us to obtain the EIC 
measure by estimating the analytical signal of the imaginary part, i.e. 
h(f) = z(f)+ iz̃(f), where z̃(f) is obtained as (Zygmund, 2002): 

z̃(f ) = −
1
π lim

ε→0

∫+∞

ε

z(f + ω) − z(f − ω)
ω dω 

Due to limited RAM memory for conducting the statistical analyses, 
it is troublesome to directly compute the whole connectivity matrix of 
8196 × 8195/2 interactions. Therefore, we partitioned the FC matrix 
into a 16 × 16 sub-block matrices for a total of C17

2 = 136 blocks (15 
blocks times 500 sources + 1 block times 696 sources = 8196). We only 
kept the block subindices for the strictly upper triangular matrix due to 
the symmetry of the FC measure (Supp. Fig. 2). After the block-wise FC 
estimation, the EIC values were averaged for the interested frequency 
bands. These bands were chosen by partitioning the classical M/EEG 
band into 8 subbands to allow a slightly higher level of detail (delta δ: 
0.5− 4 Hz; lower-theta θ1: 4− 6 Hz; upper-theta θ2: 6− 8 Hz; lower-alpha 
α1: 8–10.5 Hz; upper-alpha α2: 10.5− 13 Hz; lower-beta β1: 13− 20 Hz; 
upper-beta β2: 20− 30 Hz; gamma γ: 30− 48 Hz). Thus, resulting in a total 
of 8 × 8196 × 8195/2 FC measures, or about 0.27 billion features. 
Finally, these features were saved to hard disk, separately for each 
participant, frequency band and block, for post-hoc statistical analyses. 

2.5. Nonparametric statistical analyses 

Our study involves a feature matrix of 60 rows (30 HC and 30 MCI 
participants measurements with HC data stacked first) and about 0.27 
billion columns, where the features corresponded to the estimation of 
C8196

2 = 33,583,110 pairwise FC for each of the mentioned frequency 
bands, together with the score vectors for the cognitive tests that were 
tested on each participant (one or two missing data in each test; same 
row order between the score vectors and the feature matrix). These 
measurements are used for: (i) the Wilcoxon rank-sum analysis of the 
differences between HC and MCI groups, and (ii) the Spearman rank- 
correlation analyses between each cognitive test (vector) and feature 
(matrix columns). 

In our case, the estimated FC and cognitive scores are nonnegative 
and hardly follow the normality assumption. Therefore, we adopted a 
whole non-parametric framework to implement our cluster-permutation 
approach as discussed below. Non-parametric tests not only can produce 
more accurate results than comparable traditional techniques (Hol-
lander et al., 2013), but also are often used to exploit relevant data 
structure, such as when using the permutation technique to exploit 
spatial smoothness (Hayasaka and Nichols, 2003; Zalesky et al., 2012a, 
2012b, 2010). 

The permutation technique is adopted here to create surrogate data 
under the null-hypothesis of no group differences between the obser-
vations in the feature matrix or no-monotonic relationship between each 
feature and cognitive scores, as discussed below with more technical 

details for the Wilcoxon and Spearman analyses, respectively. Simply 
stated, each surrogate data is created by randomly reshuffling the row- 
order of the feature matrix in the Wilcoxon analysis, or the order of 
vector scores in the Spearman analysis (N = 1000 Monte Carlo simula-
tions in our study). In the Wilcoxon analysis, notice that all the elements 
in each row of the matrix must be jointly reshuffled in order to create 
surrogate data while preserving the data structure. Particularly, the row 

EICij(f ) =

⃒
⃒
⃒
⃒
⃒
⃒
H

⎛

⎝1
N

∑N

n=1
I
{

Xin(f )X*
jn(f )

}
/ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

n=1

⃒
⃒
⃒H

(
I
{

Xin(f )X*
jn(f )

}) ⃒
⃒
⃒

2

√
√
√
√

⎞

⎠

⃒
⃒
⃒
⃒
⃒
⃒

2   
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reshuffling corresponds to randomly assigning each subject to either the 
HC or MCI group, accordingly to the hypothesis of no group differences 
(Hayasaka and Nichols, 2003). This data-driven approach is critical for 
testing the significance of FC clusters as discussed below. 

The implementation of our statistical framework is a computational 
challenge because the Wilcoxon and Spearman analyses produce an 
array of 0.27 billion p-values for the original and each of the 1000 
surrogate data. Therefore, we adopted the suprathreshold technique 
(Hayasaka and Nichols, 2003; Zalesky et al., 2012a, 2012b, 2010) to 
select only those features with corresponding p-values lower or equal 
than a threshold of p1 = 10− 7, p2 = 10− 6, or p3 = 10− 5, for the lower 
tail distributions, or greater or equal than 1 − p1, 1 − p2, or 1 − p3, for 
the upper tail distributions, for respectively measuring negative and 
positive effects. Subsequently, the suprathreshold connection indices 
were extracted from the selected features, for each separate frequency 
band, with FC indices in the range 

{
1,…,C8196

2
}

and, finally, these 
indices were saved to hard disk for the posterior CPS analysis. 

Note that for 0.27 billion features, using the mentioned thresholding 
strategy, the expected number of spuriously selected features is about 
27, 270, or 2700, correspondingly to the above-defined suprathresholds. 
However, the probability for these “false positive” connections to 
agglomerate in clusters by chance or, similarly, the probability to 
observe a cluster with high cardinality by chance, is expected to be much 
lower than for the discovered FC corresponding to the actual networks, 
which is the principal motivation beyond using this approach. More-
over, we expect to obtain significant clusters of different sizes depending 
on the specific chosen suprathreshold value. Specifically, we could 
obtain narrower extended clusters for more conservative p-values 
(p1 = 10− 7), while wider clusters could be obtained for higher p-values 
(p3 = 10− 5). 

Recall that the above analyses were conducted for the upper trian-
gular part of the 8196 × 8196 FC matrix. After partitioning the upper- 
triangular matrix into 136 sub-blocks (Supp. Fig. 2), the statistical an-
alyses were conducted block-wise due to RAM limitations. Afterwards, 
we loaded the suprathreshold FC indices for each block, separately for 
each frequency band, and assembled the indices for all the blocks before 
running the cluster parcellation procedure, which will be discussed in 
the next section. As a summary, this first stage of the implementation of 
our approach can be presented as follows:  

1 FC data, or features, were loaded for all the participants, separately 
for each block and frequency band.  

2 Wilcoxon and Spearman analyses, which were based on each of the 
0.27 billion features and cognitive scores, were conducted for the 
original and each of the 1000 surrogate data, thus producing the 
corresponding p-values for each feature.  

3 The suprathreshold values p1 = 10− 7, p2 = 10− 6, and p3 = 10− 5, 
were used separately for selecting the corresponding suprathreshold 
features for negative and positive effects.  

4 Only the FC indices corresponding to the suprathreshold features, 
were saved to hard disk for the posterior cluster parcellation. 

2.6. Cluster-permutation statistical analysis 

Our approach follows the same path for extending the application of 
cluster-permutation techniques to neuroimaging data by proposing a 
new neighbourhood measure, as done in previous studies (Zalesky et al., 
2012a, 2010; Zhang et al., 2018). For example, the network-based sta-
tistic (NBS) proposes the creation of clusters by considering a neigh-
bourhood relationship where two connections are regarded as 
neighbours if they share a node, thus expanding graph components (see 
Fig. 1 in Zalesky et al., 2010). Similarly, the spatial pairwise clustering 
(SPC) statistic checks whether there is a simultaneous match or neigh-
bourhood relationship between the connections endpoints (see Fig. 3 in 
Zalesky et al., 2012a). Here, we instead introduce a novel 

neighbourhood measure where two connections are considered neigh-
bours if and only if they share one endpoint while the other endpoints 
are spatial neighbours (see Fig. 1). Furthermore, we note that the SPC 
relies on a more restrictive criterion of neighbourhood than NBS, 
whereas our criterion is more restrictive than SPC’s. As a result, our 
method’s detected clusters can always be identified by SPC, and SPC’s 
clusters can always be identified by NBS, but not the other way around 
(Fig. 1). 

In the following sections, therefore, we shall consider a unified 
framework to implement CPS analysis with the use of a neighbourhood 
measure. Using this framework, the second and last stage of our statis-
tical analysis is stated as follows:  

1 For each frequency band and for each suprathreshold value p1 =

10− 7, p2 = 10− 6, or p3 = 10− 5, suprathreshold FC indices are loaded 
for all the blocks and assembled together in the range 

{
1,…,C8196

2
}
, 

separately for the selected suprathreshold features for negative and 
positive effects.  

2 Using the assembled indices, clusters are estimated based on a 
neighbourhood measure and using the breadth-first search algorithm 
(see Supp. Table 1 for a practical implementation), separately for the 
original and 1000 surrogate data.  

3 The number of connections, or cluster size, is computed for each 
cluster of the original and surrogate data.  

4 The maximum-cluster-size statistic is calculated as the maximum size 
among all the clusters that were estimated for each surrogate data, 
which includes the clusters estimated for all the frequency bands and 
negative/positive effects, separately for each suprathreshold p-value. 
Thus, rendering a distribution of 1000 samples of this statistic in our 
analysis for each suprathreshold p-value.  

5 The 95th percentile of the maximum-cluster-size distribution is then 
selected as the critical value, depending only on the suprathreshold 
p-value.  

6 Finally, separately for each suprathreshold p-value, the significant 
FC clusters in the original data are those clusters with size greater or 
equal than the corresponding critical value. 

Fig. 1. Essential differences among the clustering criteria for network-based 
statistics (NBS), spatial pairwise clustering (SPC) and our novel criterion. 
Each line represents a connection derived from FC analysis, while the circles 
represent the nodes (brain sources). Clusters A-D are represented separately, 
enclosed within different shadowed regions and drawn using different colours. 
These clusters can be discovered using different neighbourhood measures as 
follows. For the NBS statistic, two connections are neighbours if they share a 
node, then any connected component is a cluster, i.e. A, C and D. SPC detects as 
neighbours those connections which endpoints are spatial neighbours, thus it 
finds that B, C and D are clusters using the von Neumann neighbourhood. Our 
SPC proposed modification introduces a more restrictive criterion: two con-
nections are neighbours if and only if they share one endpoint while the other 
endpoints are spatial neighbours; thus, it considers that only C and D 
are clusters. 
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2.7. Measure of cortico-cortical FC neighbourhood 

Our novel neighbourhood measure is presented here in detail for our 
case where connections are between brain sources located in the cortical 
surface, rather than in a two-dimensional grid as introduced above in 
Fig. 1. Set 

(
XI1(k),XI2(k)

)
, I1(k) < I2(k), and 

(
XI1(l),XI2(l)

)
, I1(l) < I2(l), as a 

pair of connections defined for the strictly upper-part of a triangular 
matrix that is representing a symmetric FC measure, where the unique 
connections are arranged using an array of FC indices 1 ≤ k, l ≤ C8196

2 , 
k ∕= l, and I(k) = (I1(k), I2(k) ) :

{
1,…,C8196

2
}
⊢ {1,…,8195} × {2,…,

8196} is a functional mapping of the connection index to its corre-
sponding vertices indices. Thus, 

(
XI1(k),XI2(k)

)
:
{
1,…,C8196

2
}
⊢ R 3 ×

R 3. 
Based on this definition, our FC neighbourhood measure can be 

calculated as follows:  

1 Given two connections represented by its indices k and l, 1 ≤ k,
l ≤ C8196

2 , k ∕= l, check whether Im(k) is equal to In(l) for some m,

n ∈ {1,2}.  
2 If true, then these connections have a vertex in common. Set J(k) and 

J(l) as the complementary vertices in the connections, i.e. J(k) =
I3− m(k) and J(l) = I3− n(l). Notice that J(k) ∕= J(l) by definition.  

3 Finally, these connections are neighbours if the vertices XJ(k) and XJ(l)

are neighbours in the cortical surface (see Supp. Fig. 3). 

2.8. Efficient computation of statistics within the CPS approach 

Another improvement that we are introducing with respect to state- 
of-the-art CPS techniques is the application of computational tricks for 
dealing efficiently with the calculations within the permutation pro-
cedure. For example, naively, when running the Wilcoxon rank-sum 
statistic, the measures ranks are computed for the array of M = 60 
participant measurements within each permutation. However, that will 
be inefficient as it involves an order of O(Mlog(M)N ) operations, where 
N is the number of Monte-Carlo permutations. Because the measure-
ments are fixed along permutations, we just need to sort the measure-
ments at the initial step and then the rank-sum statistic can be updated 
linearly after each permutation, with a lower cost of O(MN) operations 
(see Supp. Table 2 for a MATLAB code with the implementation of this 
idea). 

Similarly, the Spearman rank-correlation analysis is based on the 
measurements ranks, thereby the rank estimation could be optimised as 
previously. Furthermore, in the correlation formula for the rank- 
correlation analysis between FC and cognitive scores we don’t need to 
perform all the calculations for each permutation step. Clearly, as this 
formula can be expressed as 

C(x, y) =

∑M

i=1
(xi − x)(yi − y)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑M

i=1
(xi − x)2 ∑M

i=1
(yi − y)2

√ =

∑M

i=1
xiyi − Mxy

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑M

i=1
(x2

i + y2
i ) − M

(
x2 + y2)

√

then the numerator term Mxy, and the whole denominator can be 
computed once. The only term that needs to be recomputed for each 

permutation is 
∑M

i=1
xiyi. In summary, the intertwining of statistics and 

permutation calculations is feasible and has a significant impact on the 
speed of the whole procedure 

Finally, another apparently less significant but very important trick 
is to use the suprathreshold statistical values, instead of the corre-
sponding suprathreshold p-values. Therefore, within our implementa-
tion of the cluster-permutation procedure, we avoided estimating p- 
values for the involved statistical analysis. Interestingly, the most 
important aspect of this trick is that usually p-values for the Wilcoxon 

and Spearman analyses are obtained using approximations because of 
the computational cost of using an accurate p-value computation. In our 
work, we created a lookup table for the Wilcoxon rank-sum statistic, 
which allowed to obtain the needed suprathreshold statistical values. 
For example, for our rank-sum statistic involving 30 HC vs. 30 MCI, we 
used the table values of 579, 603 and 629 for the lower tail of the sta-
tistical distribution, and 1251, 1227 and 1201 for the upper tail, 
correspondingly to the suprathreshold p-values of p1 = 10− 7, p2 = 10− 6, 
or p3 = 10− 5, respectively (see Supp. Fig. 4). For the Spearman rank- 
correlation analysis, due to the high number of participants (M = 60), 
it is difficult to obtain an accurate p-values lookup table as the exact 
method involves an order of factorial of M operations. Therefore, for 
simplicity, for the Spearman analysis we used suprathreshold correla-
tion values that were estimated using the standard p-value approxima-
tion for the Pearson’s correlation coefficient that is based on the 

Student’s t-distribution, i.e. t = r̂
̅̅̅̅̅̅̅̅̅̅̅̅
n − 2

√
/

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − r̂2

√
, where r̂ is the esti-

mated correlation coefficient, and the p-value is estimated as 2P(T > t), 
where T follows a t-distribution with n − 2 degrees of freedom. 

Summarising our approach, Fig. 2 shows a roadmap for the imple-
mentation of our analyses. Firstly, the MEG data was obtained from a 
dataset including 30 HC and 30 MCI participants (Fig. 2A, top). Sec-
ondly, a Bayesian minimum norm method (Mattout et al., 2006) was 
applied to estimate source time series in 8196 locations of the individual 
cortical surface, separately for each participant (Fig. 2A, bottom; Fig. 2B, 
top). Thirdly, after the spectral analysis of the source activity using 
Fourier transform, FC maps were derived using EIC (Sanchez-Bornot 
et al., 2018). The FC maps were computed directly for all the source 
pairs, an upper-triangular matrix of 8196 × 8195/2 elements and 
averaged across the selected frequency bands (Fig. 2B, bottom). These 
calculations were performed separately for each participant and, finally, 
the outcome consisting of a matrix of 60 rows and about 0.27 billion 
columns was submitted for post-hoc statistical analyses (Fig. 2C). 

2.9. Data availability 

The data of the present study would be available through an insti-
tutional repository and under a previous request to the authors. 

2.10. Code availability 

The MATLAB code is available at the following GitHub repository: 
https://github.com/JMSBornot/High-Dimensional-Source-MEG-FC. 

3. Results 

3.1. High-dimensional FC analysis can detect brain-wide communication 

We will focus on source MEG-FC analysis to demonstrate our 
approach with very high dimensional data. Particularly, the FC maps 
were obtained using EIC, which allows to estimate both short-range and 
long-range connections while controlling for volume conduction arte-
facts (Sanchez-Bornot et al., 2018). Our analyses also include neuro-
psychological tests scores for the assessment of participants’ cognitive 
abilities (MMSE, IRM and DRM). These measures were used to study the 
FC differences between HC and MCI participants using the nonpara-
metric Wilcoxon rank-sum test, and the monotonic relationship between 
the FC strength and neuropsychological tests scores using the nonpara-
metric Spearman rank-correlation test. 

With about 0.27 billion features, the effect size of these statistical 
analyses must be noticeable to be successfully measured while control-
ling for multiple comparisons (Zalesky et al., 2010). For this purpose, we 
first used false discovery rate (FDR) (Genovese et al., 2002) and found 
significant relations in the rank-correlation analyses only between FC 
and DRM/IRM scores. In the analysis with DRM, we used FDR parameter 
q = 0.05 and found the significant p-values lower than 10− 7 (p < 10− 7) 
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Fig. 2. Flowchart from MEG data to functional connectivity (FC) and statistical analysis. (A) Top: MEG signals are collected from 102 magnetometers and 204 planar 
gradiometers, for a dataset of 30 HC (HC: S1-30, left) and 30 MCI (MCI: S1-30, right) participants. Bottom: After pre-processing, source activity is estimated using 
Bayesian minimum norm for source reconstruction. (B) Time-series of estimated source activity segmented into nonoverlapping epochs (top) to produce FC maps for 
8196 sources, where only the suprathreshold connections for communication at δ band are shown for clarity (bottom). (C) Top: Wilcoxon rank-sum analysis of FC 
strength differences between HC (red colour) and MCI (blue) participants, as revealed by the colour-bar histograms and statistic p-values for the selected connections 
with subindices I,J. Bottom: The connections with suprathreshold p-values are submitted to cluster-permutation statistical analysis for detecting significant clusters 
while controlling for multiple comparisons. 
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with correlation coefficients 0.63 < r < 0.69 and − 0.75 < r < − 0.63 for 
the positive and negative correlations, respectively. In contrast, using 
q = 0.05 did not produce any result in the analysis with IRM. But, in the 
latter analysis, we found significant results for q = 0.2, with p < 10− 6, 
0.59 < r < 0.69 and − 0.72 < r < − 0.59. 

The above results were summarised by counting the number of sig-
nificant brain-wide connections. Specifically, Table 2 shows the 
outcome separately for the DRM and IRM tests, positive and negative 
correlations, and for each frequency band. Notice that the number of 
significant negative correlations was much more prominent for lower 
frequencies for both cognitive tests, whereas positive correlations were 
more prominent for higher frequencies. Interestingly, lower values of 
the cognitive tests are expected for participants showing a mild or 
advanced stage of dementia with respect to age-matched HC. Conse-
quently, our results showed a significant relationship between increased 
FC strength and cognitive decline in the lower frequency bands, which 
has been previously interpreted as FC hypersynchronization (i.e. higher 
FC strength in MCI with respect to HC participants) and considered as 
related to cognitive decline (Engels et al., 2017; Garcia-Marin et al., 
2009; Koelewijn et al., 2019; López et al., 2014). 

Our results are also consistent with the notion that the DRM score 
seems to provide a more sensitive measure of cognitive decline than IRM 
and other tests (Welsh et al., 1991). As mentioned above, in contrast to 
the analysis with DRM, no significant associations were found for the 
analysis with IRM when FDR was applied with q = 0.05. Furthermore, 
both DRM and IRM scores exhibited very similar trend information, as 
the Spearman rank-correlation analysis between both scores produced 
an almost perfect relationship (r = 0.94, with negligible p-value). To 
some extent, this is also consistent with our previous analysis (albeit 

using a different dataset) that showed a probabilistic causal relationship 
between immediate and delayed recall memory scores (Ding et al., 
2018). 

The results for both the DRM and IRM analyses were further 
explored by visual inspection of the high-dimensional FC maps for the 
significantly correlated connections (Fig. 3). In these maps we could 
clearly appreciate the increased details in contrast to traditional ROI- 
based approaches, which revealed the strongest correlations predomi-
nantly among the interactions of occipitofrontal, occipitotemporal and 
parietotemporal regions in the left hemisphere in δ band (Fig. 3A–B), 
and central and occipitotemporal regions in the left hemisphere in θ2 
band (Fig. 3C-D). Significant correlations were also exhibited by con-
nections in the right hemisphere and between both hemispheres, but 
the latter networks seemed to be much less organized in comparison 
with the left-hemispheric connectivity. Furthermore, the substantial 
overlap of the FC cortical maps for both the DRM and IRM corrobo-
rated the above-mentioned tight relationship between DRM and IRM 
scores. 

Next, we summarised our results using a parcellation of the cortical 
surface into ROIs only for comparison purposes with the literature. 
Specifically, we employed the Desikan-Killiany atlas (Desikan et al., 
2006) and reported the significant inter-regional FC derived from the 
previous high-dimensional FC results. Fig. 4 shows a schema ball sum-
marization of the correlation analysis between the FC and DRM scores 
for the more relevant interactions reported in Table 2. In this repre-
sentation, the number of connections between any two ROIs was esti-
mated as the number of significant connections between the ROI 
sources. As shown in each schema, this number was normalised with 
respect to the highest value within each representation. 

Fig. 3. Cortical maps of FC significantly correlated with cognitive (DRM or IRM) scores. Each FC map is topographically presented in three views: left/right lateral 
views of the cortical hemispheres and frontal view. The left/right view only shows connections between regions in the same hemisphere, whereas the frontal view 
shows all the significant FC. (A-B) Significant FC in δ band (see Table 2). (C-D) Significant FC in θ2 band. Significant correlation of FC strength with cognitive scores 
was tested using FDR for both DRM and IRM tests, with FDR parameter q = 0.05 for DRM and q = 0.2 for IRM test. A higher value of q was needed for IRM test as it 
was less sensitive than DRM. 

J.M. Sanchez-Bornot et al.                                                                                                                                                                                                                    



Journal of Neuroscience Methods 348 (2021) 108991

8

For the FC hypersynchronization, the most prominent associations 
were found between the lateral occipital and medial orbitofrontal re-
gions in δ band (Fig. 4 A, 5 connections between ROI #11 and ROI #14 
in the left hemisphere, or L11↔L14), and between the adjacent post-
central and superior frontal regions in θ2 band (Fig. 4B, L22↔L28 with 
86 connections). Otherwise, the most relevant hyposynchronization (FC 
strength is decreased in MCI with respect to HC) was found between the 
left-hemispheric postcentral regions and right-hemispheric isthmus 
cingulate cortex in α2 band (Fig. 4C, L22↔R10 with 21 connections). 
Overall, these results are interesting per se and serve as comparison 
standards for the following analysis. 

3.2. CPS analysis more consistently detects brain-wide communication 

To recall, the proposed high-dimensional analyses involved about 
0.27 billion features. Therefore, Bonferroni and FDR tests can be ex-
pected to produce conservative results. In this situation, it has been 
shown that the CPS could serve as a less conservative statistic since it can 
exploit the spatial structure in the data (Zalesky et al., 2012b, 2010). By 
clustering together spatially related features in combination with a 

permutation approach that preserves the spatial structure, CPS can 
automatically reduce dimensionality while increasing the sensitivity of 
post-hoc statistical analyses. Here, the CPS was computed after defining 
suprathresholds corresponding to p-values p1 = 10− 7, p2 = 10− 6, and 
p3 = 10− 5 for selecting relevant features at the lower and upper tails, 
separately, for the Wilcoxon rank-sum and the Spearman 
rank-correlation analysis. 

In our study, the application of CPS produced significant results only 
for the rank-correlation analysis between FC and DRM scores in the θ2 
band, and for the rank-sum analysis (MCI vs. HC contrast) of FC strength 
in the δ band. For the former analysis, Fig. 5 shows the cortical FC maps 
of the whole set of connections surviving the pruning according to the 
defined suprathreshold p-values, ordered from the most (top) to less 
conservative (bottom) suprathresholds (Fig. 5A). Correspondingly, the 
distributions of the maximum-cluster-size statistic are shown in the 
middle column separately from top to bottom for each suprathreshold, 
together with the highlighted 95th percentile of the distribution which 
was selected as the critical value (Fig. 5B). Unsurprisingly, this value 
increased dramatically from more conservative (critical value CV =

59.0) to less conservative analysis (CV = 603.5). As stated previously 

Fig. 4. Inter-regional FC significantly correlated with DRM score. The connectivity strength between two regions of the Desikan-Killiany atlas is estimated as the 
number of significant connections between the two regions in the corresponding high-dimensional correlation analysis. Region labels are shown separately for the left 
hemisphere (blue) and right hemisphere (red). The colormap indicates the inter-regional connectivity strength (values between 0 and 1), where this value is nor-
malised as the number of connections divided by its highest value. (A-B) Graphs of hypersynchronized connectivity (FC strength significantly higher in MCI with 
respect to HC participants, MCI>>HC) as identified in δ and θ2 frequency bands. All significant connections in these bands showed negative correlations (see 
Table 2). (C) Graph of hyposynchronised connectivity (MCI<<HC) as identified in α2 frequency band. All connections in this band showed positive correlations 
(see Table 2). 
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(Materials and Methods), only those clusters estimated from the actual 
data with extension exceeding the corresponding critical value were 
retained (Fig. 5C). 

In Fig. 5C, notice that the same cluster with different extensions, 
involving the communication among the central regions, was significant 
for the more conservative suprathreshold values (top two rows). For the 
most conservative (p1 = 10− 7), it survived with extension of 135 

connections (CV = 59.0), whereas for a less conservative threshold 
(p2 = 10− 6) it survived with extension of 227 connections (CV =

187.0). Interestingly, for the least conservative suprathreshold (p3 =

10− 5) this cluster vanished completely while a different cluster with a 
much higher extension of 1019 connections survived (CV = 603.5). This 
latter cluster captured the communication between occipitotemporal 
regions in the left hemisphere (Fig. 5C, bottom). The above results were 

Fig. 5. Significant clusters detected using the cluster-permutation statistic for the Spearman rank-correlation analysis between FC strength and DRM score in θ2 band. 
Three different suprathreshold values were tested as represented per row. (A) Cortical maps of all connections surviving after pruning for each suprathreshold value. 
(B) Normalised histograms of the probability distributions of the maximum-cluster-size statistic (horizontal-axis) with corresponding arrow-annotated 95th 
percentile, which is the critical value for selecting the significant clusters in the actual data. The distribution upper tail is highlighted in orange. The vertical axis 
represents the relative probability values in the range 0-1, shown in a log-scale for clear visibility. (C) Significant clusters that remain after removing the clusters with 
extension lower than the corresponding critical value. 

Table 2 
Number of significant FC links correlated with IRM and DRM scores. Positive and negative correlations are counted separately for each considered frequency 
band: 0.5-4 Hz (δ), 4-6 Hz (lower-theta, θ1), 6-8 Hz (upper-theta, θ2), 8-10.5 Hz (lower-alpha, α1), 10.5-13 Hz (upper-alpha, α2), 13-20 Hz (lower-beta, β1), 20-30 Hz 
(upper-beta, β2), and 30-48 Hz (gamma, γ). More relevant negative interactions were found in lower frequency bands, particularly δ and θ2 bands (highlighted in blue 
colour in the online version), whereas more relevant positive interactions were found in higher frequency bands, particularly α2 band (red colour).  
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consistent with a previous observation that more conservative thresh-
olds could reveal spatially focal clusters, whereas the lesser conserva-
tives may reveal widely extended clusters (Friston et al., 1994; Zalesky 
et al., 2012a). Furthermore, note that these clusters involved hyper-
synchronized FC as the rank-correlation analysis between FC and DRM 
scores produced negative values (− 0.75 < r < − 0.58 for the bigger 
cluster of central regions, and − 0.69 < r < − 0.53 for the occipito-
temporal cluster), indicating that the increased FC strength in these 
regions could be a sign of memory impairment. 

For the rank-sum analysis in the δ band, we only found a single 
significant cluster of hypersynchronized FC (significantly increased FC 
in MCI with respect to HC participants) between occipitofrontal regions 
in the left hemisphere as shown in Fig. 6B. However, this cluster was 
only significant for p2 = 10− 6, which shows that selecting an appro-
priate suprathreshold value may be a challenge. Furthermore, note that 
these connections were not observed when the same contrast was sub-
mitted for the FDR analysis in the previous sections, which could evi-
dence that SPC produce more sensitive results. Interestingly, the 
connections in this cluster overlapped with the significant connections 
previously detected by the rank-correlation analysis between FC 
strength and DRM/IRM scores with the use of FDR, in the same fre-
quency band (see Fig. 3A–B). 

Similarly, a more detailed inspection of the significant clusters ob-
tained in the rank-correlation analysis also revealed consistency be-
tween the FC clusters of central and occipitotemporal regions (Fig. 5C) 
with the significant connections obtained within the FDR analysis in the 
same frequency band (Fig. 3C-D). Overall, this suggested the signifi-
cance of these interactions at both the cluster and individual connection 
levels in our study, albeit the finding of significant clusters offers a more 
solid proof for interregional communication. 

3.3. Developing neuromarkers of cognitive dysfunctions with high- 
dimensional source-based MEG-FC and CPS analysis 

Here, we first observe that our main results revealed the significant 
hypersynchronization of occipitotemporal and occipitofrontal networks, 
which could be associated with an ongoing AD pathology given the 
overlap with the critical regions affected during the early stages of AD 
progression according to Braak’s staging system (Braak et al., 2006), 
Second, as a FC cluster more consistently connect two regions, a 
cluster-strength index could provide more critical information that may 
be useful for developing neuromarkers of cognitive decline. 

Beforehand, the above significant networks derived by the CPS 
application were mapped into ROI connectivity maps using the Desikan- 
Killiany atlas. First, Fig. 7A (left) exposes the weight matrix for the 
cluster of central regions that was reported above (see Fig. 5C, middle 
row). This cluster revealed that the strongest interaction was observed 
between the postcentral and superior frontal regions (126 connections). 
Similarly, Fig. 7B (left) exposes the weight matrix for the regions in the 
occipitotemporal network (see Fig. 5C, bottom row), where the stron-
gest association was found between the lateral occipital area with the 
middle, superior, and transverse temporal regions with 340, 350 and 
139 connections, respectively. Finally, Fig. 7C (left) exposes the weight 
matrix for the cluster of occipitofrontal connections (see Fig. 6B), in 
which the strongest FC was found between the lateral occipital region 
with the lateral and medial orbitofrontal regions, with 25 and 69 con-
nections, respectively. These brain regions are known to be critical for 
memory, emotion, object and face processing, which are among the 
principal cognitive functions affected during AD progression (Des-
granges et al., 1998; Grill-Spector et al., 2001; Kringelbach and Rolls, 
2004; Rolls, 1999; Serrano-Pozo et al., 2011). 

To evaluate whether these clusters could be used to predict cognitive 
decline, we first proceeded to average all the cluster connections to 
produce a single-valued cluster-strength index, separately for each 
cluster and participant, i.e. averaging the 227, 1019 and 111 connec-
tions, corresponding to the central (Fig. 7A), occipitotemporal (Fig. 7B) 
and occipitofrontal (Fig. 7C) clusters. Subsequently, we evaluated the 
predictive value for the first two clusters using receiver operating 
characteristic (ROC) analysis. For simplicity, we provided the classifi-
cation targets (HC or MCI) and the cluster-strength index as parameters 
for estimating the ROC curves, together with their corresponding 95 % 
confidence interval (CI) and area under curve (AUC) values, using N =

1000 bootstrap replications. We found that the cluster-strength index 
showed a high classification performance with AUC = 0.81, CI =

[0.69;0.90], and AUC = 0.79, CI = [0.65;0.89], for the corresponding 
clusters (Fig. 7A–B, right-side column). For the third cluster, we con-
ducted Spearman rank-correlation analysis between its cluster-strength 
index and DRM test scores, which revealed a strong negative correlation 
with r = − 0.67 and p < 10− 8 (Fig. 7C, right-side column), which re-
inforces the observation that FC hypersynchronization could be an early 
sign of cognitive decline. 

We note that the first two clusters cannot be used in the latter 
analysis, nor the third cluster can be used in the former analysis, without 
incurring in statistical circularity. Overall, these results demonstrate the 

Fig. 6. Significant clusters detected using the cluster-permutation statistic for the Wilcoxon rank-sum analysis (MCI vs. HC) in δ band. (A) Connections surviving after 
pruning for a selected suprathreshold value (10− 6). (B) Only a cluster involving occipitotemporal regions (111 connections) survived after the correction by 
maximum-cluster-size statistics. See Fig. 5 caption for further details. 
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high predictive value and sensitivity of using a cluster-strength index, 
despite the simplicity of using just a single feature in our analysis. 
Therefore, it may provide an optimistic prospect for the development of 
a source MEG-FC neuromarker in AD research. 

4. Discussion 

To the best of our knowledge, this is the first time that M/EEG an-
alyses have been conducted on such a large scale with about 0.27 billion 
features. In the typical studies, FC analyses are often limited to the use of 
coarse brain regional parcellation, falling short of fully exploiting the 
ample information of the original data (Engels et al., 2017; Hillebrand 

et al., 2012; Raichle, 2015; van den Heuvel and Hulshoff Pol, 2010; 
Zalesky et al., 2010), and thus leading to information loss, reduced 
statistical sensitivity, and consequently to potential bias in research 
findings (Hillebrand et al., 2012; Zalesky et al., 2012b). To avoid such 
limitations, here we studied the estimation and statistical mapping of 
brain FC with its intrinsic high-dimensional characteristics, using a 
robust FC measure (Sanchez-Bornot et al., 2018) and a proposed unified 
framework for cluster-permutation statistical (CPS) analysis (see Mate-
rials and Methods). We demonstrated our approach with the use of 
source-based MEG-FC analysis using a database of 30 HC and 30 MCI 
participants that also included neuropsychological data. The MCI par-
ticipants had memory impairment and hippocampal atrophy as detected 

Fig. 7. Biomarker evaluation of cluster-strength index for prediction of cognitive decline. (A-C) Clusters derived from Spearman rank-correlation and Wilcoxon rank- 
sum analyses are further scrutinised (cluster FC maps were plotted in Fig. 5C, middle and bottom row, and Fig. 6B, correspondingly in the same order). For each 
cluster, interregional weight connectivity matrices were obtained by counting the number of significant connections between two different regions of the Desikan- 
Killiany atlas, while a cluster-strength index was estimated as the average of all the cluster FC values, separately for each participant. Note that each cluster only 
connects a small number of ROIs as shown in the matrices. A (left-side column): the first cluster mostly connects postcentral with posterior cingulate and adjacent 
superior frontal regions. B (left-side column): the second cluster contains a hub located in the lateral occipital cortex, with a significant number of connections to 
inferior, middle, superior, and transverse temporal gyrus, and insula. C (left-side column): the third cluster mostly connects lateral occipital with lateral and medial 
orbitofrontal cortex. A-C (right-side column): an estimated cluster-strength index is used to evaluate cognitive decline. A-B (right-side column): for the first two 
clusters separately, ROC analysis is performed using the cluster-strength index and the corresponding HC/MCI label for each participant, which includes the esti-
mation of its 95 % confidence interval and area under the curve (AUC) statistic. C (right-side column): for the third and last cluster, Spearman rank-sum correlation 
analysis was conducted between the cluster-strength index and DRM test scores. Red open circle: HC participant; blue cross: MCI. 
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by structural MRI scans (see Table 1), thereby the MCI can be linked to 
AD pathology with an intermediate likelihood (Albert et al., 2011). We 
consider that this application is of utmost importance to show the 
prospect of source MEG-FC analysis for studying neuromarkers of Alz-
heimer’s disease (AD) and its earlier progression. 

4.1. Significance of high-dimensional MEG-FC analysis using CPS 

As an important contribution, we proposed a unified framework for 
CPS analysis (Zalesky et al., 2012b, 2012a, 2010; Zhang et al., 2018) to 
make possible our study involving a huge number of connections in 
source MEG-FC analysis. This was realised by observing that the 
essential difference between the network-based statistic (NBS) (Zalesky 
et al., 2010) and the spatial pairwise clustering (SPC) (Zalesky et al., 
2012a) is in the considered neighbourhood criterion to evaluate adja-
cent connections (see Fig. 1). Additionally, we introduced here a novel 
neighbourhood measure that was discussed in detail for the CPS analysis 
of high-dimensional FC maps in the brain cortical surface (see Materials 
and Methods). Our approach was unlike previous studies that used FC 
analysis or cluster-permutation statistic in a reduced space, by: (i) 
conducting the analysis among the sources of selected regions based on 
prior information (Mamashli et al., 2019); (ii) analysing significant 
connected components (Zalesky et al., 2010); (iii) considering the con-
nectivity mapping of a seed point within the brain (Hipp et al., 2012); or 
(iv) using coarser grids to avoid the possible spurious estimation of FC 
among nearby sources (Zalesky et al., 2012b, 2012a). In contrast, we 
have used most of the available information in a source MEG-FC mani-
fold to render less-biased conclusions. 

Note that Zalesky et al. (2012a) observed that the use of NBS could 
be preferable for coarser spatial resolution, whereas the SPC could be 
superior in higher resolution (see Fig. 3 in Zalesky et al., 2012a, and 
discussion therein), where the latter could be explained by observing 
that SPC’s neighbourhood criterion is more restrictive than NBS’s. 
Following the same reasoning, we observed that our novel neighbour-
hood measure is more restrictive than the SPC’s (see Fig. 1), thus the 
significance testing of salient clusters could be more robust with our 
measure than with previous methods only in analysis with very high 
spatial resolution. Although we do not perform any comparison analysis 
among the different neighbourhood measures, it can be clearly appre-
ciated the compactness of significant clusters detected in our study with 
our proposed measure (see Figs. 5,6). 

Importantly, our work has shown that CPS analysis can be performed 
in very high-dimensional scenarios without much computational burden 
(see Materials and Methods). Furthermore, it should be noted that CPS 
controls the family-wise error rate by testing significance at the cluster 
instead of individual connections (Hayasaka and Nichols, 2003; Zalesky 
et al., 2012b, 2012a, 2010). Therefore, when performing source MEG-FC 
analyses with CPS, we focused on the significant detected FC clusters 
and proposed a cluster-strength index. Not only our significant clusters 
revealed critical networks involved in memory and cognitive processing 
(Figs. 5,6), our cluster-strength index also showed promising results in 
evaluating the cognitive status of the participants (Fig. 7). 

4.2. Implementing CPS analysis in high-dimensional scenarios 

We refuted a pessimistic observation made in the SPC paper (Zalesky 
et al., 2012a), where the authors stated that the cluster partition of 
suprathreshold connections is “performed by initializing an N(N − 1)/
2 × N(N − 1)/2 adjacency matrix”, which will be unfeasible in our case 
with N = 8196 sources. As has been shown here, our testing of a 
neighbourhood relationship between two connections exclusively rely 
on the testing of a neighbourhood relationship in the cortical surface 
(see Materials and Methods and Supp. Fig. 3). Therefore, if we use an 
adjacency matrix to reflect this relation, our matrix will be of di-
mensions N× N, which is a huge improvement with respect to the 
previous observation. Alternatively, using a sparse matrix 

representation or a list data-structure for keeping track of the neigh-
bouring vertices of each vertex will translate into additional computa-
tional gains. 

In our proposed implementation of the CPS analysis, the permutation 
and statistical procedures were performed separately (blockwise) for 
each of the C17

2 = 136 sub-blocks (16 × 16 partition) of the strictly 
upper-part of a triangular FC matrix (8196 × 8195/2 pairwise connec-
tions) and defined frequency bands (Materials and Methods). If users 
have a lower RAM memory capacity, a finer sub-blocks partition should 
be considered, e.g. a 41 × 41 partition (40 blocks times 200 sources + 1 
block times 196 sources = 8196) for a total of C42

2 = 861 sub-blocks. 
This blockwise approach helps to make more feasible the implementa-
tion of CPS analyses, reducing the RAM use to the memory requirement 
for each block computations. 

Furthermore, note that saving only the indices for the suprathreshold 
features allowed a very sparse representation of the large-scale FC 
matrices for the different frequency bands, as only those features cor-
responding to the selected suprathreshold values p1 = 10− 7, p2 = 10− 6, 
and p3 = 10− 5, separately, were considered for the subsequent cluster 
analysis. Therefore, the expected density of derived FC matrices is in the 
same order. Summing up, despite having about 0.27 billion features and 
running up to 1000 Monte Carlo simulations in our study, the imple-
mentation of the CPS framework was possible because of the mentioned 
high sparsity, blockwise strategy and other novel computational ideas 
(see Materials and Methods). 

4.3. ROI vs large-scale brain-wide based FC analysis 

It would have been possible to conduct sensor-level M/EEG-FC an-
alyses (Engels et al., 2017) with CPS, with the advantages that the 
number of sensors is considerably smaller than the number of sources. 
As nearby sensors record similar oscillations emanating from the un-
derlying neuronal population, it is appropriate to use cluster statistics to 
exploit the smooth spatial FC patterns. However, a sensor can also 
identify significant activity from multiple sources located at distant 
sites, thus hindering the results interpretation. Less negative issues occur 
when using ROI-based source FC analyses. One extreme case is when the 
ROIs are coarsely defined by the brain lobes, in which case it resembles 
the sensor-level analysis. At the other extreme, FC analyses based on a 
very fine ROI parcellation (Craddock et al., 2012; Glasser et al., 2016) 
could produce results comparable with those using a high-dimensional 
approach. 

However, despite the observation that ROI analysis may provide 
robustness against inter-individual functional and anatomical vari-
ability (Hillebrand et al., 2012), it certainly leads to loss of information 
with the associated degraded sensitivity of post-hoc statistical analyses 
and biased results (Hillebrand et al., 2012; Zalesky et al., 2012a, 2010). 
In contrast, our approach uses most of the available information in a 
high-dimensional manifold while dealing with volume conduction in 
source FC analysis (Sanchez-Bornot et al., 2018). Furthermore, the 
inter-individual variability is controlled in our approach due to the 
characteristic spatial blurriness of estimated source activities (Mattout 
et al., 2006), which may be conveyed to the FC analysis, without 
incurring in any a-priori compromise on a particular brain region par-
cellation. Altogether, CPS analysis may lead to increased robustness of 
FC mapping, where discovered FC clusters should more confidently 
represent the actual brain networks. 

In contrast to ROI analysis, the use of large-scale brain-wide FC 
approach also allows for direct comparisons with ECoG analysis to 
measure FC in the brain (Hipp et al., 2012; Wang et al., 2019). Partic-
ularly, with the use of the EIC method or an imaginary coherence index 
(Nolte et al., 2004; Sanchez-Bornot et al., 2018), which are robust to 
volume conduction, we ameliorate the risk that the measured in-
teractions are spurious and allow for the robust estimation of 
short-range connectivity in the brain. Critically, EIC can also measure 
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true interactions caused by zero-lag (modulus π) phase interactions that 
are neglected by other imaginary coherence measures (Sanchez-Bornot 
et al., 2018), which is an advantage inherited by our high-dimensional 
FC approach. 

4.4. Prospective neuromarker importance of source MEG-FC analysis 

Consistent with our findings (Figs. 3–7 and Table 2), the state-of-the- 
art in AD research using M/EEG data have established a relationship 
between hypersynchronized FC and memory decline (Dimitriadis et al., 
2018; Engels et al., 2017; Koelewijn et al., 2019; López et al., 2014; 
Maestú et al., 2015). Particularly, our high-dimensional FC analyses 
exposed significant hypersynchronized communication of occipito-
temporal and occipitofrontal regions (Fig. 7, left-side column). Such 
hypersynchronization phenomenon could be attributed to overall 
neuronal excitatory enhancement (Zou et al., 2012), reduced disinhi-
bition of neurons (Garcia-Marin et al., 2009), or as a compensatory 
mechanism related to brain plasticity changes triggered by AD synaptic 
and neuronal loss (Frere and Slutsky, 2018; Styr and Slutsky, 2018). 

Among the significantly found connected regions, there is a 
consensus that the insula and temporal areas (e.g. transverse temporal, 
Fig. 7B) are critically involved in episodic memory processes (Des-
granges et al., 1998; Serrano-Pozo et al., 2011). Other significantly 
connected regions in the frontal (lateral and medial orbitofrontal cor-
tex), lateral occipital, and inferior parietal cortices (Fig. 7C), are 
important for decision making, reward evaluation, face/object and 
emotion processing (Grill-Spector et al., 2001; Kringelbach and Rolls, 
2004; Rolls, 1999). 

Furthermore, our main results (Figs. 5–7) overlapped with previ-
ously reported hypersynchronization in similar brain regions (Dimi-
triadis et al., 2018; Engels et al., 2017; Yu et al., 2017). Although, in our 
case, the identification of significant FC clusters provides stronger evi-
dence for this claim, as clusters can more robustly support the evidence 
of inter-regional communication in contrast to the sparse FC patterns 
exposed in previous works (Dimitriadis et al., 2018; Engels et al., 2017; 
Hillebrand et al., 2012; Koelewijn et al., 2019; Yu et al., 2017), with the 
additional advantage that the smooth characteristic of FC clusters also 
brings robustness against inter-individual anatomical and functional 
variability. Therefore, we suggest that these two properties of FC clus-
ters are important for a source MEG-FC neuromarker in dementia. Here, 
we further supported the importance of cluster analysis by showing that 
a cluster-strength index could be used to evaluate cognitive decline with 
promising results (Fig. 7, right-side column). However, note that these 
results must be interpreted with caution because the limited sample size 
in our study. Thus, our results must be further scrutinised using different 
databases in future studies. 

4.5. Concluding remarks 

Our high-dimensional FC measure is resilient to the negative effects 
of the instantaneous propagation of the brain electromagnetic activity or 
volume conduction, which can result in the discovery of spurious FC 
(Nolte et al., 2004; Sanchez-Bornot et al., 2018). Therefore, our 
approach is very appropriate to study both short- and long-range in-
teractions in the brain. Note also that artifact signals such as those 
emanating from eye movements, heartbeat and muscular artifacts can 
produce spurious FC due to volume conduction, indicating that artifact 
removal should be made mandatory to avoid this danger. However, 
against this logic, it has been indicated that a FC measure which is robust 
to volume conduction must also be resilient to this side effect of the 
artifact signals (Hillebrand et al., 2012). Moreover, as removing artifacts 
signals from M/EEG recordings can also delete neural activity compo-
nents of interest and harm subsequent analyses (Thompson et al., 2019; 
Winkler et al., 2014), then using a robust FC measure could become a 
practical choice for using on the raw data, as shown in our study. 
Because the importance of these observations, we recommend to further 

investigate it in future studies while providing preliminary results in the 
Supplementary Materials (see Supp. Figs. 5–6 and discussion therein) to 
support our analysis. 

Overall, we have successfully developed an analytical pipeline 
involving a unified CPS framework for analysing high-dimensional 
brain-wide FC maps, while avoiding the biases that come along with 
standard brain parcellation approaches. Such high-resolution FC maps 
can be estimated without high computational cost and could become 
important to advance research in healthy and unhealthy neural infor-
mation processing. Our proposed approach can, in general, be applied to 
a variety of neuroimaging studies, including translational clinical 
research. 
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Mäkelä, J.P., Menasalvas, E., Nakamura, A., Parkkonen, L., López, M.E., Del Pozo, F., 
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