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BACKGROUND: Artificial intelligence (AI) for echocardiography requires 
training and validation to standards expected of humans. We developed 
an online platform and established the Unity Collaborative to build 
a dataset of expertise from 17 hospitals for training, validation, and 
standardization of such techniques.

METHODS: The training dataset consisted of 2056 individual frames 
drawn at random from 1265 parasternal long-axis video-loops of patients 
undergoing clinical echocardiography in 2015 to 2016. Nine experts 
labeled these images using our online platform. From this, we trained 
a convolutional neural network to identify keypoints. Subsequently, 13 
experts labeled a validation dataset of the end-systolic and end-diastolic 
frame from 100 new video-loops, twice each. The 26-opinion consensus 
was used as the reference standard. The primary outcome was precision 
SD, the SD of the differences between AI measurement and expert 
consensus.

RESULTS: In the validation dataset, the AI’s precision SD for left 
ventricular internal dimension was 3.5 mm. For context, precision SD of 
individual expert measurements against the expert consensus was 4.4 
mm. Intraclass correlation coefficient between AI and expert consensus 
was 0.926 (95% CI, 0.904–0.944), compared with 0.817 (0.778–0.954) 
between individual experts and expert consensus. For interventricular 
septum thickness, precision SD was 1.8 mm for AI (intraclass correlation 
coefficient, 0.809; 0.729–0.967), versus 2.0 mm for individuals (intraclass 
correlation coefficient, 0.641; 0.568–0.716). For posterior wall thickness, 
precision SD was 1.4 mm for AI (intraclass correlation coefficient, 
0.535 [95% CI, 0.379–0.661]), versus 2.2 mm for individuals (0.366 
[0.288–0.462]). We present all images and annotations. This highlights 
challenging cases, including poor image quality and tapered ventricles.

CONCLUSIONS: Experts at multiple institutions successfully cooperated 
to build a collaborative AI. This performed as well as individual experts. 
Future echocardiographic AI research should use a consensus of 
experts as a reference. Our collaborative welcomes new partners who 
share our commitment to publish all methods, code, annotations, and 
results openly.

Automated Left Ventricular Dimension 
Assessment Using Artificial Intelligence Developed 
and Validated by a UK-Wide Collaborative

ORIGINAL ARTICLE

D
ow

nloaded from
 http://ahajournals.org by on M

ay 19, 2021



Howard et al; AI for LV Dimensions: a UK Collaborative

Circ Cardiovasc Imaging. 2021;14:e011951. DOI: 10.1161/CIRCIMAGING.120.011951 May 2021 406

The advent of deep learning with neural networks 
has permitted computers to perform tasks in 
computer vision that could never have been re-

alistically approached before. This is commonly termed 
artificial intelligence (AI).

AI has great potential to increase the time-effi-
ciency for quantification when reporting echocardio-
grams.1,2 However, a key challenge to becoming part 
of the human-led team is that such automation needs 
to earn the trust of echocardiographers and cardiolo-
gists.

Human staff benefit from expert societies delivering 
education, training, and examinations to maintain high 
standards.3 This facilitates them to deliver measure-
ments that reflect underlying anatomy and physiology 
and are consistent with historical clinical data. This al-
lows physicians to trust the results for clinical decisions 
and to be able to interpret data, regardless of when and 
where it was acquired, in a broadly consistent manner.

AI must be trained and tested to at least the same 
level of rigor as human experts, for it to have any place 
in clinical environments.4 The approach for humans 
is to educate them with many examples and validate 
their performance against standards set by experts. AI 
should go through a process that is at least as demand-
ing. To achieve this, we established the Unity Collab-
orative group of echocardiographers and cardiologists, 
which already includes 17 hospitals across the United 
Kingdom, to bring together expert representatives to 
provide this skilled training and validation of AI.

Here, we present the Unity Collaborative labeling 
system for developing open-access training and vali-
dation data for echocardiography and demonstrate 
its use for making guideline-standard parasternal long 
axis left ventricular (LV) measurements. The dataset for 
model development, trained AI, and associated code 
are made available at the project website (https://data.
unityimaging.net).

METHODS
The dataset for model development, trained AI, and associated 
code are made freely available the project website (https://
data.unityimaging.net). This research and release of associ-
ated dataset received a Favourable Opinion from the South 
Central—Oxford C Research Ethics Committee (Integrated 
Research Application System identifier 279328, 20/SC/0386).

Image Annotation
We developed an online interface which could be accessed 
remotely by collaborators (https://data.unityimaging.net). It is a 
web-based, interactive, real-time platform for efficiently obtain-
ing annotation of medical images (Figure 1). Within the plat-
form, projects can be set up to collect keypoints (also known as 
landmarks) between which measurements are made.

Onto this platform, we stored 2 datasets of echocar-
diographic images showing the parasternal long-axis view. 

One dataset was for training and monitoring the progress 
of training. The other dataset was for validation: the neu-
ral network was not shown any of these images during the 
training phase.

Each AI and human measurement was calculated using 
the Euclidian distance between 2 identified keypoints: ante-
rior to posterior septum for septal thickness; posterior sep-
tum to endocardial posterior wall for LV internal diameter, 
and endocardial to epicardial posterior wall for posterior 
wall thickness.

Training and Progress-Monitoring 
Dataset
To train the neural network, we created a training (and prog-
ress-monitoring) dataset of echocardiographic images with 
expert-derived annotations of key points. The images were 
derived from echocardiograms collected between 2015 and 
2016 from 7 laboratories.

The Unity Collaborative experts (see acknowledgements) 
shared the pooled task of annotating the images, using our 
online platform. Each image was labeled once, to mark the 4 
keypoints required for measuring the LV internal diameter and 
wall thicknesses in the parasternal long-axis view. An example 
image with the 4 points identified is shown in Figure 1.

As successive trainings of the neural network were under-
taken, we reviewed the outputs and results on the progress 
monitoring dataset. These results were used to further iden-
tify types of images (such as images with a small LV cavity) to 
target further labeling.

Validation Dataset
The validation dataset was a fresh set of images, which the 
AI could never have encountered during training. The images 
were extracted from 100 consecutive echocardiograms per-
formed over 3 days across the 7 echocardiography laborato-
ries. From each study, the systolic and diastolic frames were 
extracted from the parasternal long-axis video, to form a 
dataset of 200 images.

Each image was labeled with the 4 keypoints twice by 
each of 13 experts, yielding 26 independent evaluations. 
From these, we derived high quality consensus reference 
measurements (see Statistical analysis). These experts were 
BSE-accredited echocardiographers and consultant cardi-
ologists specializing in echocardiography. The images were 
presented in a random order, and each expert was blinded 
to any previous labeling by themselves or others. They were 
encouraged to label every image, unless image quality made 
it impossible.

Training the Neural Network
We trained a neural network to annotate the 4 keypoints. 
For each point, the neural network was trained to produce a 
heatmap, which was an image with intensity 1 at the exact 
point of interest, and decayed away in all directions to 0, 
following a gaussian distribution with SD of 4 pixels.5 This 
approach made it easier for the network to learn, because if 
the network made an approximately correct proposal, it could 
not only be partially rewarded, but also be guided toward the 
correct answer, defined by the direction of steepest gradient 
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up the heatmap. Previous applications of this network (eg, 
for human pose) have used gaussian distributions with an SD 
of 1 pixel,6 perhaps because it was possible for the human 
experts to identify those locations very precisely. In echocar-
diography, an individual expert making an individual assess-
ment cannot consistently select the same pixel, and therefore 
a network has difficulty learning to match a patch with an SD 
of only 1 pixel. We found that with an SD of 4 pixels, training 
was robust.

We derived the coordinates of each predicted keypoint 
from the peak of the corresponding heatmap. From the 4 
keypoints proposed by the network, we could calculate the 
4 distances: left ventricular internal dimensions (systole and 
diastole) and the diastolic thicknesses of the anteroseptum 
and posterior wall.

The neural network architecture was HigherHRNet 
W-24,6 with an output layer for each of the 4 keypoints. 
Training images were augmented during each epoch with 
random affine transformations, random gamma changes, 
and random erasure of a section of this image. The network 
was trained for 300 epochs, with an initial learning rate of 
0.001 using the RAdam optimizer7 and the mean squared 

error loss function. The learning rate was reduced by a fac-
tor of 5 every time the loss on the progress-monitoring 
dataset plateaued for 20 epochs. If an expert was unable 
to localize the keypoint on an image (eg, due to very poor 
image quality), the training process did not train on that 
key point of that image (by weighting the loss function to 
0). The network was trained using four 24 GB Titan RTX 
graphical processing units (Nvidia Corporation, Santa Clara, 
California) with a batch size of 24 and an input image size 
of 608×608 pixels using the PyTorch framework version 
1.4.0 and Python version 3.7. Training took ≈ 22 hours.

For inference, a center crop of 640×640 pixels (with zero 
padding if needed) was fed into the network. The resultant 
heatmaps were transformed into physical coordinates using 
the DICOM meta-data, which were extracted using the 
pydicom package.

During the network implementation and training process, 
80% of the images in the training-and-progress-monitoring 
dataset were used for training the network, and 20% were 
kept aside for progress monitoring. We ensured that from 
each echocardiogram video, frames were used for training or 
for progress monitoring, but never both.

Figure 1. The unity interface.
The unity interface (www.unityimaging.net) provides an easy-to-use web-based interface to annotate medical images. The system is divided into a labeled area 
(blue square) and an information area, showing that user’s statistics, compared with those of other users (red square). The 4 keypoints used in this study are high-
lighted as circles with their names and associated target icons for their exact location. Keypoints on echocardiograms can be labeled either using a touch screen 
interface or a mouse. The system also allows regions of interests and curves to be annotated (not shown).
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Finally, when the neural network had completed training, 
its performance was then assessed using the separate valida-
tion dataset of 200 images.

Validation of Neural Network Against 
Consensus of Experts
The final validation process was necessarily more stringent 
than the training process. The reference standard against 
which the network was validated was, for each image, the 
consensus of the 26 measurements from 13 experts for each 
of the 4 keypoints on each of the 200 images.

Statistical Analysis
The validation process recognized that expert opinions will 
vary for a single image. The reference standard for each 
measurement was defined for each measurement on each 
image as the median value of the 13 experts’ individual 
measurements.

For each measurement on each image, we calculated the 
signed deviation of the AI measurement with respect to the refer-
ence measurement, for example, +2 mm when the AI measured 
left ventricular internal diameter (LVID) as 41 mm and the con-
sensus of experts was 39 mm. Across all images, we calculated 
the bias as the mean of these signed deviations, and the preci-
sion as their SD. We also calculated the 50th (ie, the median), 
80th, 90th, and 95th quantiles of the absolute deviations. All 
of these measurements were also conducted for each individual 
expert (still using the consensus of experts as the reference).

This process was also carried out for each of the experts’ 
measurements treated as an individual: this provided context 
against which to judge the AI performance. We also calcu-
lated the associated intraclass correlation coefficients (ICCs) 
for these calculations.

The F-test was used for comparisons between stan-
dard deviations using R’s var.test function. Differences in 
absolute errors were assessed using a Wilcoxon signed-
rank test, because of their inherent folded normal distri-
bution. P<0.05 was used as the threshold for statistical 
significance.

Statistical analyses were performed using the R program-
ming language version 3.6.2 using the tidyverse8 and irr9 
packages.

RESULTS
Dataset
The training and progress monitoring dataset com-
prised 2056 images. The validation dataset comprised 
200 frames, which are paired end-systolic and end-
diastolic frames from 100 separate echocardiography 
cases. Table 1 describes these videos. For the valida-
tion dataset, left ventricular internal diameter aver-
aged 4.7 cm (SD 0.64 cm) in diastole and 3.77 (0.73 
cm) in systole, and diastolic thicknesses of the inter-
ventricular septum were 1.17 cm (0.24 cm), and of 
the posterior wall 1.10 cm (0.16 cm).

Table 1. Image Sources

 Training and progress-monitoring dataset Validation dataset

Dataset size 2056 extracted images, of which 1894 had all 4 
keypoints identifiable by their expert viewer

200 images

Dataset source Random selection of images from a 2-y period 
from 7 laboratories during 2015–16

Sequential echocardiograms conducted over 3 
days in 2019.

Frames 2056 frames from the PLAX view of 1265 echo-
cardiograms

Paired end-systolic and end-diastolic images from 
100 PLAX echocardiograms

Sex Male: 822; Female: 960; unspecified 274 Male: 106; Female: 92; unspecified: 2

Age Median 62 (IQR, 44–74) Median 60 (IQR, 48.5–73)

Manufacturer/model

Philips Epic 7G: 11 Epic CVx: 4

Epic 7C: 111 Epic 7C: 74

Affinity 70C: 329 Affinity 50G: 6

Affinity 50G: 127 CX50: 8

CX50: 18 iE33: 106

iE33: 1058  

Unknown: 1

General Electric Vivid q: 127 Vivid E9: 2

Vivid S6: 2

Vivid S70: 16

Vivid E9: 3  

Vivid i: 121

Unknown Unknown: 132  

IQR indicates interquartile range.
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Results of Training Phase: Precision With 
a Single Trainer As the Standard
Our collaborative group reviewed the 2056 images in the 
training and progress-monitoring dataset, with each im-
age annotated by 1 expert from a group of 9. In 1894 
of these images, all 4 key points could be annotated. 
80% of these annotated images were used directly to fit 
the network. The remaining 20% were kept aside solely 
for progress monitoring, which allowed precision of the 
network to be assessed on images it had not been fitted 
to (Figure 2). In line with recommendations,10 we have 
called this progress monitoring rather than the conven-
tional AI term of validation, to avoid misunderstanding 
because to a clinical audience the term validation is gen-
erally reserved for a final assessment against a fresh da-
taset after a model or algorithm has been finalized.

For left ventricular internal dimension, at the end of 
training, the SD of the difference between the AI mea-
surement and the single expert (precision SD) had fallen 
to 3.1 mm on the training dataset and 4.5 mm on the 
progress-monitoring dataset with minimal bias (−0.2 
and −0.1 mm, respectively, Table 2).

For septal wall thickness, the precision SD had fall-
en to 2.5 mm for the training and 2.2 mm for the 

progress-monitoring dataset (Table 3). For the poste-
rior wall, these values were 2.3 and 2.9 mmm, respec-
tively (Table 3).

Results of Validation Phase: Precision 
With the Consensus of Experts As the 
Standard
The 200 new images of the validation phase were each 
labeled by 13 experts (9 original + 4 new), twice in a 
random order. Each image therefore had 26 opinions. 
In this set, we defined the expert consensus reference 
standard for the correct dimension as the median value 
of the individual experts’ median opinion. We could 
therefore calculate the error in the dimension measured 
by the AI, as well as the errors in the dimensions re-
ported by the individual expert opinions as compared 
with the expert consensus reference value.

The AI measured LV dimension with precision SD of 
3.5 mm. Notably, this was smaller than that it deliv-
ered during progress monitoring of training (4.5 mm, 
P=0.0002). The corresponding ICC was 0.926 (95% CI, 
0.904–0.944). Individual expert opinions matched the 
expert consensus with a precision SD of 4.4 mm, with 
an ICC of 0.817 (95% CI, 0.778–0.954).

Figure 2. System pipeline.
A neural network was trained on the training set of 1894 images. One thousand five hundred fifteen of these were used to directly train the network, while 379 
were used for progress-monitoring. Finally, we assessed the performance of the network on a new dataset of 200 successive echocardiograms, labeled by 13 
experts.
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The precision SDs were significantly smaller in dias-
tole than in systole. For the AI, it was 2.5 mm in diastole 
versus 4.3 mm in systole (P<0.0001). For experts, it was 
3.3 mm in diastole versus 5.3 mm in systole (P<0.0001).

For septum thickness, the AI delivered a precision 
SD of 1.8 mm (ICC, 0.809 [95% CI, 0.729–0.967]), 
and the individual experts 2.0 mm (ICC, 0.641 [95% 
CI, 0.568–0.716]). For posterior wall thickness, the AI 
had precision SD 1.4 mm (ICC, 0.535 [95% CI, 0.379–
0.661]), and the individual experts 2.2 mm (ICC, 0.366 
[95% CI, 0.288–0.462]).

Visualizing AI Performance in 
the Context of Individual Expert 
Measurements
A simple visual summary of the AI measurements in the 
context of expert performance is given in Figure 3 for 
left ventricular internal dimension in diastole. Figure 3A 
shows that for each image, the AI generally reports a 
value near the middle of the spread of individual expert 
measurements. In Figure 3B, each expert viewing (2 view-
ings per expert) is represented by a separate gray curve, 
and the AI by a red curve. The curves show the distri-
bution of magnitudes of deviation of the measurements 
from the consensus measurement. For example, for the 
expert represented by the lowest gray curve (ie, the ex-
pert whose measurements were generally closest to the 
expert consensus), the curve passes through the point 
(50%, 1.1 mm), which means that their median error 
was 0.11 cm. Similarly, it passes through (80%, 2.6 mm), 
which means that 80% of measurements were within 
2.6 mm of expert consensus. For the LVID in diastole, the 

individual experts had a median error ranging from 1.1 
to 2.8 mm, and the AI had a median error of 1.1 mm. 
Sizes of these errors are shown in Table 2. The lower pan-
els show the deviation of the AI (Figure 3C) and single 
expert measurements (Figure 3D) against the expert con-
sensus measurement as reference.

Corresponding displays for the wall thicknesses and 
left ventricular systolic dimension are given in Figures I 
through III in the Data Supplement.

Accuracy of Dimensions Versus Keypoint 
Localization
The AI was better at matching the expert consensus 
of the dimension of the LV than it was at choosing key 
point locations that matched expert consensus, although 
it was specifically trained to succeed at the latter task 
rather than the former. For example, in the progress-
monitoring dataset, the AI’s absolute error for the LVID 
dimension was smaller than both the absolute error in 
position of the septal endocardial point and the posterior 
wall endocardial point (median absolute error, 2.2 versus 
3.1 and 5.8 mm, P=0.0006 and P<0.0001 respectively).

This was because the neural network often made mea-
surements at a different longitudinal position along the 
ventricle than the expert consensus but nevertheless cor-
rectly drew the dimension transversely across the ventricle 
and therefore obtained an acceptable measurement. The 
reason for this is best seen in the validation dataset, be-
cause there are multiple expert opinions. It emerges that, 
just like the AI, different experts also choose different key-
points for measuring LV dimension. Figure 4 displays this 
phenomenon in a standardized manner. For each image, 

Table 2. Performance in Measuring Left Ventricular Internal Dimension

Dataset
Number 
of images Mean bias (95% CI)

Precision 
SD

Quantiles of absolute differences

50% 80% 90% 95%

LVID

 Training and progress monitoring (using single expert as reference)

  Training AI 1597 −0.2 mm (−0.3 to −0.0) 3.1 mm 1.2 mm 2.6 mm 3.8 mm 5.2 mm

  Progress-monitoring AI 296 −0.1 mm (−0.6 to 0.4) 4.5 mm 2.2 mm 5.2 mm 7.2 mm 9.8 mm

 Validation (using expert consensus as reference)

  AI 200 0.0 mm (−0.5 to 0.5) 3.5 mm 1.4 mm 3.7 mm 6.0 mm 8.8 mm

  Expert 200 0.0 mm (−0.1 to 0.1) 4.4 mm 2.3 mm 5.5 mm 9.0 mm n/a *

 Diastolic frames only

  AI 100 0.6 mm (0.1 to 1.1) 2.5 mm 1.1 mm 2.6 mm 4.3 mm 5.3 mm

  Expert 100 −0.1 mm (−0.2 to 0.1) 3.3 mm 1.8 mm 4.1 mm 6.3 mm 10.0 mm

 Systolic frames only

  AI 100 −0.6 mm (−1.4 to 0.3) 4.3 mm 1.9 mm 5.2 mm 8.1 mm 9.3 mm

  Expert 100 0.1 mm (−0.1 to 0.3) 5.3 mm 3.0 mm 7.1 mm 12.0 mm n/a*

AI is judged against a single expert’s measurement during training and during progress-monitoring. During validation, both the AI and indi-
vidual experts are judged against the consensus of experts. AI indicates artificial intelligence; and LVID, left ventricular internal diameter.
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we re-expressed the deviation of keypoint locations given 
by individual experts (E1 to E13) and the AI, relative to 
the size and orientation of the consensus measurement 
line for the LVID. This is equivalent to rotating and resiz-
ing the image so that the consensus measurement line 
for the LVID is vertical, and its length is 1 arbitrary unit. 
This allowed the error in the position of each point to 
be expressed as 2 components. One is in line with the 
direction of LVID measurement, that is, vertical on the 
rotated image, which we term transverse. The other is 
perpendicular to this direction, that is, horizontal on the 
rotated image, which we term longitudinal, expressed as 
a percentage of the 1 arbitrary unit.

The longitudinal variability was larger than the trans-
verse for the AI (SD 15% versus 7%, P<0.0001). This 
was true both in diastole (13% versus 4%, P<0.0001) 
and in systole (14% versus 9%, P<0.0001). All the er-
rors are shown in Figure 4. The corresponding plots for 
the septum and posterior wall are shown in Figures IV 
and V in the Data Supplement.

The errors in the posterior point were larger than 
those in the anterior point. This was true both for the 
AI (longitudinal 18% versus 10%, P<0.0001; transverse 
7% versus 6%, P=0.0011) and the individual expert 
opinions (longitudinal 26% versus 20%, P<0.0001; 
transverse 12% versus 11%, P<0.0001).

DISCUSSION
This study has shown that imaging specialists repre-
senting a nation’s expertise can collaborate through a 
distributed online system to provide both training data 

and separate multiobserver validation dataset. A neu-
ral network can then be trained, and its performance 
judged using the multiple expert opinions in 2 ways: 
their consensus as the reference standard and their 
individual variation from consensus as the acceptable 
range in contemporary expert performance. AI perfor-
mance for making guideline standard left ventricular 
measurements11 from the parasternal long-axis is good, 
on par with human experts, and is challenged by the 
cases that human experts find challenging.

Capturing Multiple Mutually Blinded 
Expert Opinions
There are now many well-established neural network 
architectures for image processing.12 The bottleneck 
for an applicable echocardiographic AI is no longer the 
development of neural network architecture, nor the 
availability of vast image datasets,13 but rather expert 
annotations a clear provenance.

Many early AI tasks were classifying objects into 
simple categories, such as cats versus houses versus 
trees.14 The correct answer is generally unambiguous 
and obvious to any human. It is, therefore, reasonable 
and efficient to store a single correct answer for each 
image, and to aim for the AI to match that answer. 
The pioneering work in echocardiography AI1,2 also 
took this approach of defining the reference standard 
as a single opinion from a single expert. If the accuracy 
found in such a manner is imperfect, it is not possible to 
know whether this is (1) a failure of the AI, (2) a bias in 
the chosen expert, such as consistently over-estimating 

Table 3. Performance in Measuring Interventricular Septum and Posterior Wall Dimensions

Dataset
Number of 
images Mean bias (95% CI)

Precision 
SD

Quantiles of absolute differences

50% 80% 90% 95%

Interventricular septum

 Training and progress monitoring (using single expert as reference)

  Training AI 1597 0.0 mm (−0.1 to 0.1) 2.5 mm 0.9 mm 1.8 mm 2.5 mm 3.2 mm

  Progress-monitoring AI 296 0.3 mm (−0.6 to −0.1) 2.2 mm 1.2 mm 2.6 mm 3.7 mm 4.7 mm

 Validation (using expert consensus as reference), diastolic frames

  AI 100 −0.7 mm (1.0 to 0.3) 1.8 mm 0.9 mm 2.0 mm 3.0 mm 4.0 mm

  Expert 100 0.1 mm (0.0 to 0.2) 2.0 mm 1.0 mm 2.2 mm 3.0 mm 4.0 mm

Posterior wall

 Training and Progress monitoring (using single expert as reference)

  Training AI 1598 −0.2 mm (−0.3 to −0.1) 2.3 mm 1.0 mm 2.2 mm 3.1 mm 4.0 mm

  Progress-monitoring AI 296 −0.2 mm (−0.6 to 0.1) 2.9 mm 1.7 mm 3.5 mm 4.7 mm 5.9 mm

 Validation (using expert consensus as reference), diastolic frames

  AI 100 −0.8 mm (−1.1 to −0.5) 1.4 mm 0.9 mm 1.9 mm 2.4 mm 3.5 mm

  Expert 100 0.3 mm (0.2 to 0.4) 2.2 mm 1.1 mm 2.5 mm 3.8 mm 6.6 mm

AI is judged against a single expert’s measurement during training and during progress-monitoring. During validation, both the AI and 
individual experts are judged against the consensus of experts. AI indicates artificial intelligence.

*Where an expert declined to make a measurement, the deviation was treated as unquantifiably large. Where this happened on >5% of 
occasions, there is no 95th percentile.
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a cavity dimension, or (3) ambiguity within the image 
which allows an expert to give different opinions on 
separate viewings.

In echocardiography, experts can have different 
opinions on the ideal positions for keypoints. Collect-
ing multiple, mutually blinded expert opinions gives 
2 advantages. First, their consensus will be less noisy 
and therefore a better reference standard. Second, the 
variation between the opinions provides crucial context 
about the acceptable range of answers.

Consensus of experts has a pedigree as gold-stan-
dard in challenging tasks. Classifying retinal photo-
graphs was performed by up to 7 ophthalmologists in 
study of AI for assessing retinal images.15 The variation 
we observed between experts (eg, 5.3 mm for LVIDs) 
in our study suggests that such an approach is wise in 
cardiac imaging too.

Our network architecture was HigherHRNet, which 
maintains high-resolution representations through 

multiscale fusions across the convolutional layers.6 Pre-
vious work has used various other designs, typically ad-
aptations of U-Net.16

An unusual feature of our study is that we mirrored 
the clinical approach11 of identifying keypoints as the 
primary network target, rather than segmenting areas 
and then defining keypoints based on those areas. This 
approach focuses the training process on aspects clini-
cians consider important for diagnostic measurements.

The other advantage of directly training a network 
to identify the keypoints is that it automatically chooses 
the longitudinal position along the length of the myo-
cardium at which to measure the wall thickness and 
cavity dimension. The alternative, used by others, is to 
write an explicit algorithm to extract a dimension from 
a pair of outlines.17

Our study used an in-house designed web-based 
labeling platform to acquire expert opinions on the 
positioning of keypoints. Other workers have taken 

Figure 3. Artificial intelligence (AI) performance in the context of individual expert measurements (diastolic left ventricular internal diameter [LVIDd]).
A, Shows measurements by the AI (red dots) in the context of the individual expert measurements (gray dots) for all 100 validation images, arranged in order of 
increasing ventricular dimension (defined by expert consensus). B, Shows the cumulative distribution of deviations from expert consensus, for the AI in red and the 
individual experts in gray. The lower panels show deviation from the expert consensus for AI (C), and the experts (D) with each panel showing the 95% limits of 
agreement (horizontal lines).
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the approach of using the keypoints and tracings that 
were performed by the sonographer at the time of 
the scan.1 Although our method required considerably 
more effort, it ensured that each piece of training data 
was reviewed by another expert to ensure there were 
no accidental labeling errors. More importantly, for the 
validation set, it allowed us to capture the 26 mutually 
blinded opinions on each keypoint, so that the perfor-
mance of the network could be judged in a representa-
tive context.

While other AI labeling platforms exist,18,19 unity 
offers certain unique advantages, including sup-
port for curve annotation (eg, of cardiac chamber 
walls) using splines, AI assisted-labeling techniques, 
and real-time project-specific leader boards to pro-
vide gamification and feedback to annotators. There 
were also certain ethical advantages by being self-
hostable, reducing inter-institutional data transfer 
concerns early in development.

A Focus on the Challenges
Some images remain difficult. Figure 5 shows the 3 
worst cases of discrepancy between AI measurement 
and expert consensus, as well as the median case 
and the best cases. In each case, we show the indi-
vidual expert measurements too, as context. In the 
Appendix, we show all measurements, ordered by 
the deviation of the AI measurement from the group 
consensus (left ventricular internal diameter in Figure 
VI in the Data Supplement, diastolic interventricular 
septal diameter in Figure VII in the Data Supplement, 
and diastolic posterior wall diameter in Figure VIII in 
the Data Supplement). Average errors in AI are now 
very low (our AI delivers a median error for diastolic 
LVID of 1.1 mm).

Future development would be most fruitfully fo-
cused on the types of cases that currently give the 
largest error. The largest errors occur when image 
quality is poor. As can be seen, these images are also 
challenging for experts.

A particular challenge for the AI was discriminating 
the posterior wall endocardium from the mitral valve 
apparatus (see bottom row, Figure 5). Because human 
experts also find this difficult, this aspect requires par-
ticular attention in future work.

More generally, the AI’s error in measuring LV dimen-
sion was larger in systole than diastole. This may be be-
cause the thickened posterior wall infringes even more 
closely on the mitral valve apparatus.

Study Limitations
The main limitation of this study is that it used single 
image frames and not video loops. In clinical practice, 
clinicians sometimes scan back and forth a few frames, 
to allow themselves to better identify the structures.

In the validation dataset, the end-systolic and end-
diastolic frames were preselected for showing to the 
AI and the experts. This was so that concordance be-
tween experts was not disadvantaged by the possibility 
that they may select different frames. In an ultimate 
clinical deployment, there are many possible methods 
of the system automatically selecting the end-diastolic 
and end-systolic frames. One possibility is for the AI to 
measure every frame and then use the maximum and 
minimum values appropriately.

Because we defined the correct answer as the expert 
consensus, which contained the opinion of all the hu-
man experts (but not the AI), the individual experts had 
a small advantage in that the expert consensus is slight-
ly biased towards their opinion. However, the effect is 

Figure 4. Positions chosen by artificial intelligence (AI) and individual experts for the keypoints of LV dimension, plotted in relation to the 
expert consensus.
The top right panel shows, for each of the 100 diastolic images in the validation dataset, the LV dimension keypoint locations chosen by the AI (coloured dots), 
in relation to the expert consensus keypoint locations (black line), after reorienting and rescaling so that the expert consensus LV dimension line is vertical and 
length 1 unit. This shows the error in the AI’s placement of keypoints is largely longitudinal along the ventricle (horizontal on the plot). Dot colors range from 
green (cases with the smallest variation between experts) to red (largest variation). The remaining plots display the corresponding information for individual ex-
perts (E1 to E13) and for systole (lower row). Corresponding plots are shown in the Appendix for the septum (Figure IV in the Data Supplement) and posterior 
wall (Figure V in the Data Supplement).
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small, because of the dilutional effect of the other 13 
experts. Moreover, this slight disadvantage for the AI 
did not prevent it from performing satisfactorily.

There was significant variability in the keypoint loca-
tions selected by the experts (Figure 5). However, the ma-
jority of the variability occurred parallel to the long-axis of 
the left ventricle (Figure 4). Consequently, the variability 
between experts in the measured dimension was much 
less than the variability in keypoint location. The variability 
seen between experts in this study (LVID, precision SD 3.3 
mm, median absolute deviation 1.8 mm) is comparable 
to that seen in historic20 (precision SD 2.1 mm) and con-
temporary21 (mean absolute deviation 2.5 mm) studies.

An AI system is not an accredited expert and is not a 
replacement for one. We envisaged that it could be used 
as a support tool in training programs or to assist offline 
quality control schemes, for example, feeding back to in-
dividuals who might be tending to over- or under-read. If 

applied in clinical practice, an AI might propose positions 
for key points, which are then confirmed or edited by 
staff. In research practice, it may have a role in reducing 
the cost of analyzing large numbers of images.

CONCLUSIONS
The rate limiting step for creating AIs acceptable to clini-
cians is no longer the design of more complex neural net-
works but rather the acquisition of appropriately qualified 
expert opinions with which to train the network.

Validating an AI against a consensus of experts has 2 
advantages. First, the consensus has smaller noise than 
a single expert’s opinion. Second, the variation between 
individual expert opinions provides a context to what 
level accuracy acceptable for an AI.

Using this approach to development and validation, 
the AI was able to make measurement with a precision 

Figure 5. Nine examples of artificial intelligence (AI) measurements of left ventricular (LV) dimension, drawn from 200 frames, showing the range of 
AI performance, with expert consensus as the reference standard.
Top: the 3 cases with the smallest AI error, Bottom: the 3 cases with the largest AI error. Middle: median cases when ranked by size of AI error, that is, showing 
typical performance. In each panel, AI measurements are in red, and 2×13=26 expert measurements in gray.
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SD for LVIDd of 2.5 mm, which is well within the range 
of acceptability for a human expert.
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