
UWL REPOSITORY

repository.uwl.ac.uk

R-PEKS: RBAC enabled PEKS for secure access of cloud data

Rajesh Rao, K., Ghosh Ray, Indranil, Asif, Waqar ORCID: https://orcid.org/0000-0001-6774-3050,

Nayak, Ashalatha and Rajarajan, Muttukrishnan (2019) R-PEKS: RBAC enabled PEKS for secure

access of cloud data. IEEE Access, 7. pp. 133274-133289.

http://dx.doi.org/10.1109/ACCESS.2019.2941560

This is the Published Version of the final output.

UWL repository link: https://repository.uwl.ac.uk/id/eprint/7510/

Alternative formats: If you require this document in an alternative format, please contact:

open.research@uwl.ac.uk

Copyright: Creative Commons: Attribution 4.0

Copyright and moral rights for the publications made accessible in the public portal are

retained by the authors and/or other copyright owners and it is a condition of accessing

publications that users recognise and abide by the legal requirements associated with these

rights.

Take down policy: If you believe that this document breaches copyright, please contact us at

open.research@uwl.ac.uk providing details, and we will remove access to the work

immediately and investigate your claim.

mailto:open.research@uwl.ac.uk
mailto:open.research@uwl.ac.uk

Received August 29, 2019, accepted September 11, 2019, date of publication September 16, 2019,
date of current version September 26, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2941560

R-PEKS: RBAC Enabled PEKS for Secure
Access of Cloud Data
K. RAJESH RAO 1, INDRANIL GHOSH RAY 2, WAQAR ASIF2,
ASHALATHA NAYAK3, (Member, IEEE), AND
MUTTUKRISHNAN RAJARAJAN2, (Senior Member, IEEE)
1Department of Information and Communication Technology, Manipal Institute of Technology, Manipal 576104, India
2Department of Electrical and Computer Engineering, City, University of London, London EC1V 0HB, U.K.
3Department of Computer Science and Engineering, Manipal Institute of Technology, Manipal 576104, India

Corresponding authors: Indranil Ghosh Ray (indranil.ghosh-ray@city.ac.uk) and Ashalatha Nayak (asha.nayak@manipal.edu)

This work was supported by the European Union’s Horizon 2020 Framework Programme for Research and Innovation under Grant 740690.

ABSTRACT In the recent past, few works have been done by combining attribute-based access control
with multi-user PEKS, i.e., public key encryption with keyword search. Such attribute enabled searchable
encryption is most suitable for applications where the changing of privileges is done once in a while.
However, to date, no efficient and secure scheme is available in the literature that is suitable for these
applications where changing privileges are done frequently. In this paper our contributions are twofold.
Firstly, we propose a new PEKS scheme for string search, which, unlike the previous constructions, is free
from bi-linear mapping and is efficient by 97% compared to PEKS for string search proposed by Ray et.al
in TrustCom 2017. Secondly, we introduce role based access control (RBAC) to multi-user PEKS, where
an arbitrary group of users can search and access the encrypted files depending upon roles. We termed
this integrated scheme as R-PEKS. The efficiency of R-PEKS over the PEKS scheme is up to 90%.
We provide formal security proofs for the different components of R-PEKS and validate these schemes
using a commercial dataset.

INDEX TERMS Access control, cloud computing, MUSE, PEKS, RBAC, SUSE.

I. INTRODUCTION
In the cloud, encryption may be a suitable mechanism to pro-
tect the data at rest. However, encryption prevents searching
within the data which is essential for better usability of the
encrypted data. This gives rise to a new area of research,
called searchable encryption (SE). One problem of using SE
in a symmetric setting is the maintenance of index, espe-
cially for applications where the dataset undergoes a frequent
update. A variant of SE, called public key encryption with
keyword search or PEKS is the most popular encryption
technique which was introduced in [1] and is free from any
index generation. Following this, much research has been
carried out on single-user searchable encryption (SUSE)
with access control mechanisms [2]. However, multi-user
searchable encryption (MUSE) is becoming more relevant
for most of the commercial applications involving a large
group of users with complex access structures. Some work
has also been done on MUSE by delegating the permission

The associate editor coordinating the review of this manuscript and
approving it for publication was Petros Nicopolitidis.

of searching among multiple users in an access controlled
environment. Most of these works involve attribute-based
access structure.

SE for keyword search yields huge outputs for most of
the commercial applications which deal with a large dataset.
Most of these outputs are not intended, which gives rise to
unnecessary network traffic. SE for string search is of special
interest as this customizes the search. By string, we refer to a
sentence, which is an ordered sequence of words. Instead of
a word search or disjunctive word search, search for ordered
word sequence customizes the search to better precision.
In this paper, we treat any word that occurs in plain text as a
keyword and make no difference between word and keyword.
Thus a string is an ordered sequence of keywords. In [3],
non-adaptively secure SE for string search was proposed, but
the approach was in a symmetric key setting. In [3] authors
pointed out why it is impossible to design adaptively secure
SE in symmetric search. In [4], the authors introduced the
idea of string search using PEKS which is adaptively secure.
All existing PEKS schemes are based on pairing-based cryp-
tography where the basic component is bi-linear mapping.

133274 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0001-9178-0652
https://orcid.org/0000-0002-4156-8247

K. R. Rao et al.: R-PEKS: RBAC Enabled PEKS for Secure Access of Cloud Data

One problem with this technique, especially in the context of
string search, is the huge computational cost which makes it
less suitable for commercial applications [5]. In this paper,
we introduce a new adaptively secure PEKS scheme, which is
free from bi-linear mapping and compatible with role based
access control (RBAC) mechanism for secure search and
access of outsourced encrypted data.

Recently, most of the researchers applied SE with
attribute based access control (ABAC) to provide restricted
access based on the attributes for their outsourced personal
health record (PHR). In PHR datasets, changing privileges
(i.e., user-permission assignments) areminimal [6], [7]. Since
ABAC is the most suitable approach for these cases, protect-
ing PHR data in the cloud by the means of attribute based
keyword search over encrypted data is the most preferred
choice of researchers [5], [8]–[10].

In big organizations, a large number of employees access
data under a complex access structure. MUSE finds its appli-
cation in such cases. If the search needs to be customized
using string search, PEKS is the best possible solution for
that. Since the access structure is subjected to frequent mod-
ifications, the concept of RBAC is considered to be the most
suitable access control mechanism [7]. For example, wireless
networks are secured with RBAC in small and medium-
sized businesses. Here without RBAC, the ad-hoc process of
granting and revoking network privileges as well as access
to users becomes extremely difficult to manage especially
when the number of employees increases beyond a cer-
tain point. Thus to design access control in MUSE for fre-
quently changing string search privileges, the combination of
RBAC with PEKS is considered to be optimal. Additionally,
RBAC has minimal overhead when a large number of
employees enter and exit the organization. Here we describe
an industrial application where our model can provide the
most optimal solution, but due to the confidentiality agree-
ment, the company’s identity is not disclosed.
As per the PCI DSS (Payment Card Industry Data Security

Standard), the credit/debit card information should not be
stored in plain text. So companies use a hashing technique
(SHA-256) to store the card information in the database.
So during the transaction when the user enters his card
details, based on the hash value of the card details the infor-
mation such as name and address are auto-filled.

It may be noted that the use of hashing technique is also
exposed to the risk of statistical attack. In our model, even
if the adversary gets the trapdoor he cannot search unless he
gets access to the search algorithm. Migrating from hashing
to PEKS comes with the additional cost but to make the
searching process efficient, we introduce role based PEKS,
i.e., R-PEKS for such situations. To the best of our knowl-
edge, no secure searching scheme is available using PEKS
with RBAC.

In this paper, we consider the following three real-
world scenarios where PEKS, integrated with RBAC, is a
good choice for commercial applications. We coin the term
R-PEKS for it. We validate and compare our model

with existing schemes using the methodologies proposed
in [11].
Scenario 1: An organization wants to outsource its large

amount of data to the cloud service provider (CSP). Such data
can be accessed by the set of employees who are privileged
by their roles to search.
Scenario 2: When an employee P wants to get access to

certain data of some employee Q who is working under him,
then the privilege is given to P to get access to Q’s data.
Scenario 3: When a group G is formed from a subset of

employees who are having different roles, then the group
level privilege is given to all members for accessing data
pertaining to the group.

Most of the threat models assume that the data owner and
data user are trusted. However, the cloud service provider
(CSP) is considered as honest-but-curious [3], [4], [12].
Recently, in MUSE, the threat model was developed by con-
sidering that data users are colludingwith the CSPwhere both
are honest-but-curious [13]. We develop R-PEKS under this
threat model.

Main contributions of this paper are as follows:

1) Our proposed model is at the intersection of RBAC
and PEKS, which facilitates data owner to provide
restricted data search and access based on the RBAC
configuration. We implement access control in three
different modes depending on the above scenarios,
namely, single-user (Scenario 1), multi-user peer to
peer (Scenario 2) and multi-user group (Scenario 3).

2) We introduce a new PEKS scheme which, unlike the
previous schemes, is free from bi-linear mapping and
is more practical and efficient compared to the earlier
scheme of [4] by 97% but yet providing an equivalent
level of security.

3) With normal PEKS, the search request of a user u
is spread over the whole dataset of the organization,
of which a limited portion is meant for the access of
the user u. In such PEKS, the access control is handled
manually after the search. In this context, R-PEKS
enforces the access control during the search and the
efficiency of R-PEKS over the PEKS scheme is up to
90%when the part of dataset pertaining to user u is 10%
of the whole cloud data.

Rest of the paper is organized as follows: In Section II we
discuss the related work. Section III highlights the architec-
ture of our proposed model R-PEKS. Section IV defines the
R-PEKS components and Section V describes the R-PEKS
design. In Section VI we discuss the security analysis of
different components of R-PEKS. In Section VII we provide
experimental results. In Section VIII we focus on comparison
with other schemes and Section IX concludes the paper and
outlines areas for future work.

II. RELATED WORK
Sensitive data especially patient’s electronic health records
in cloud storage can be protected by combining traditional

VOLUME 7, 2019 133275

K. R. Rao et al.: R-PEKS: RBAC Enabled PEKS for Secure Access of Cloud Data

public key encryption scheme with access control [14]. The
drawback of traditional encryption techniques is that it cannot
provide privacy-preserving keyword searches on encrypted
data. Further, in [14], the mathematical function used for the
encryption scheme is bi-linear mapping which has a huge
computational cost and makes it inefficient for lightweight
applications.

Access control mechanisms with the SUSE scheme pro-
vide restricted access to data based on roles, keys, and
attributes. In role based access, i.e., role based encryption
of [15], the security for cloud storage is enabled by the data
owner where he encrypts data using some role and public
parameters. In the case of key based access control of [16],
the accessible file’s decryption key is given to the users.
Integrating such a model with SE increases the complex-
ity of the key management when the user accesses a large
number of files. Recently, in [17]–[20], an attribute based
SE scheme was implemented which result in huge computa-
tional cost because of the security assumption, which is based
on BDH (Bi-linear Diffie-Hellman) assumption due to the
usage of bi-linear mapping. Further, in [2], [9], [10], fine-
grained access control and multi-field search query were
implemented in SE with ABAC during file access in the
cloud. The file in the cloud is attached with an encrypted
index to label the keywords and access policy. So the user can
get access to the file if the keyword is matched and the access
policy mechanism grants the permission. Further, it allows
the user to locally derive the search capability. String search
can be viewed upon as ordered multiple keyword searches.
Few schemes were proposed for string search in symmetric
searchable encryption (SSE) [3] and PEKS [4], but both these
schemes are without access control mechanism.

Access control mechanisms with MUSE schemes are con-
structed using broadcast encryption, along with attributes,
coarse-grained and fine-grained access control. The key
problems identified in MUSE are the key management and
access control. Broadcast encryption [21] was the first mech-
anism to introduce access control in a multi-user environ-
ment, where the message is encrypted by broadcaster and
can be decrypted only by those users who are part of the
broadcast channel. Further, based on the broadcast encryption
technique, coarser-grained access control was introduced
into MUSE in a cloud environment in [22]. In [23], Key-
Aggregate Searchable Encryption (KASE) was introduced
in cloud storage for decreasing the key management during
data sharing where each document was encrypted with a
different key. This was implemented by generating a single
key called key-aggregate in MUSE. In [24], single or multi-
keyword search based on attributes and access control were
implemented, which is known as fine-grained access control.
In [25] multi-keyword search along with authorization in the
multiple user setting was studied, where the authorization
was meant for a specified period of time. Work has also been
done to improve search efficiency amongmultiple users using
SSE for cloud applications [26]. In recent past, PEKS scheme
was combined with ABAC to provide restricted access on

personal health record (PHR). In [8], the authors designed
PEKS integrated with ABAC to support multi-keyword
search in multi-user settings. In [5], the expressive
SE scheme in PEKS was studied and developed for out-
sourced PHRs. In this work, the authors treated keyword
search predicates as access policies and express them as a
conjunction or any other boolean expression of keywords.
Further, in [5], bi-linear mapping in prime-order group was
used to make it somewhat secure compared to bi-linear
mapping in the composite-order group. It may be noted that
ABAC in PEKS is not a suitable mechanism when access
policies are changing quite often. This is because, with every
change in the policies, the data owner needs to download,
decrypt and re-encrypt the data [6]. In [13], data users collud-
ing with the CSP is considered as a mandatory requirement
of MUSE. Moreover, in SE, most of the threat model focused
only on privacy against honest-but-curious CSP and data
users [13], [22].

In light of the above discussions, it is clear that an access
control mechanism in SE is very much essential to maintain
a large number of privileged access. Such privileged access
in SE should be conformable for future analysis and change
in an efficient way. In this paper, we propose R-PEKS based
on RBAC and a new PEKS. Unlike the earlier ABAC based
schemes, R-PEKS is more suitable for applications where the
change of user-permission assignments is a frequent activity.
Also, the underlying PEKS in R-PEKS is free from bi-linear
mapping and thus make it lightweight and more efficient
compared to earlier schemes. In Table 1, we provide a com-
parison of our scheme with the existing models. It may be
noted that our PEKS security relies on CDH (Computational
Diffie-Hellman) assumption whereas in [4], [5] the security
assumption was based on the BDH assumption. CDH is a
very popular hard problem andmany state-of-the-art schemes
are based on CDH assumptions. For example, authors
in [27], [28] also used CDH as the basis of their security
proof.

III. ARCHITECTURE OF OUR PROPOSED MODEL - R-PEKS
The design of single-user and multi-user R-PEKS settings for
secure access of cloud data is given in Figure 1. The data
owner of Figure 1 is the enterprise which can grant or deny
a certain set of permissions to its users. Here encryption and
searching are the two operations on a dataset which consti-
tutes permission. Therefore to maintain the restricted access
on such permissions, the data owner maintains the role man-
ager. In Figure 1, the searchable encryption mode component
enables SUSE and MUSE as two different modes for search-
ing the string request based on the privileges in the PEKS
domain. Key pairs are generated for each authorized user in
Key generation component. A data user may be an individ-
ual or group with limited data scope who can request for
string search. CSP in the Public cloud is responsible to store
the encrypted data and to execute the search algorithm on the
cipher using the trapdoor and the public key. For the security
reason, the roles that are assigned to users (i.e., user-role

133276 VOLUME 7, 2019

K. R. Rao et al.: R-PEKS: RBAC Enabled PEKS for Secure Access of Cloud Data

TABLE 1. Properties of different searchable encryption schemes.

FIGURE 1. Design of the R-PEKS settings for secure access of cloud data.

assignments), as well as permissions (i.e., role-permission
assignments), are maintained across the corporate network
and public cloud respectively. Therefore, along with the data
owner, the CSP should also authorize the users to access the
defined permissions, i.e., The CSP performs a string search
using PEKS based on the role-permission assignments. The
detailed description of the activities are given below:

1) Initially, the data owner generates RBAC configuration,
key pair for all the authorized users and enables two
different modes of searchable encryption, i.e., SUSE
and MUSE.

2) Data owner encrypts using PEKS and AES (see
Figure 1) and stores the dataset using single-user and
multi-user R-PEKS in public cloud.

3) The trapdoors are generated by the data owner on
receiving the string search request and mode of
R-PEKS from the data user. Such trapdoors are used
by the CSP in the public cloud to perform a selective
search based on RBAC configuration and identify the
required files from the dataset.

4) Finally, the CSP returns the ID of the files that
match the search to the data owner, which then

VOLUME 7, 2019 133277

K. R. Rao et al.: R-PEKS: RBAC Enabled PEKS for Secure Access of Cloud Data

decrypts the corresponding AES-encrypted files using
AES-decryption for the data user.

Remark 1: It may be noted that PEKS encryption is an
one-way function as searchable ciphers produced by PEKS
encryption cannot be decrypted. It is used only for searching
using the trapdoor. In the R-PEKS, to retrieve the plain text
file, we encrypt the plain text files using PEKS as well
as AES and maintain a map between these two encrypted
file pointers. Whenever some PEKS encrypted file pointer
is detected by the search algorithm, the corresponding AES
encrypted file is sent to the data owner for decryption and
retrieval of the plain text file.
Remark 2: We maintain a map since AES encryption and

decryption components of R-PEKS are straight forward,
we skip this component while describing R-PEKS in the
following sections.

IV. R-PEKS COMPONENTS
A. PEKS: DEFINITIONS AND PRELIMINARIES
1) DOCUMENT COLLECTIONS AND DATA STRUCTURES
Let 4 = {w1,w2, . . . ,wd } be a dictionary of d words
and P(4) be the set of all possible documents which are
collections of words. Let D ⊆ P(4) be the collection of n doc-
uments D = (D1,D2, . . . ,Dn). Let id(Di) be the unique iden-
tifier for the documentDi.We denote the list of all n document
identifiers in D by id(D), i.e., id(D) = {id(D1), . . . , id(Dn)}.
Furthermore, let D(wj) be the collection of all documents
in D containing the word wj. A string s of l words is an
ordered tuple (w1,w2, . . . ,wl). Let D(s) denote a collection
of documents in D that contains the string s. It is easy to check
that D(s) ⊆

⋃l
i=1 D(wi). We denote by δ(D), all the distinct

keywords connected to the document collection D.

2) CRYPTOGRAPHIC PRIMITIVES
Here we define cryptographic primitives that are needed for
our PEKS scheme for string search. We typically denote
an arbitrary negligible function by negl such that for any
arbitrary polynomial p(.), there exists an integer a such that
for all λ > a, negl(λ) < 1

p(λ) [29]. We also use pseudo
prime number generator [30], denoted by PPNG(1λ) which
outputs a λ-bit probabilistic prime number. For a finite set S,
we denote the operation of picking an element uniformly at
random from S by x ← S.

3) PUBLIC KEY ENCRYPTION WITH SEARCHING
Definition 1: Anon-interactive public key encryptionwith

keyword search scheme consists of the following polynomial
time randomized algorithms:

1. KeyGen(λ): This algorithm takes security parameter, λ,
and generates a public/private key pair Apub,Apriv.

2. PEKS_Enc(Apub,w): For a public key Apub, and a word
w, this algorithm produces searchable encryption of w.

3. Trapdoor(Apriv,w): Given a private key Apriv and a
word w, this algorithm produces a trapdoor tw.

4. Search(Apub,C, tw): Given the public key Apub and
searchable encryption C = PEKS_Enc(Apub,w′) and
a trapdoor tw, this algorithm outputs ‘yes’ if w = w′,
otherwise ‘no’.

Two cryptographic hash functions are used in our scheme
5PEKS , namely H1 and H2 which are as follows: H1 :

{0, 1}∗ × {0, 1}∗ 7→ Zp, H2 : {0, 1}∗ × Zp 7→ {0, 1}λ.
For our implementation, we take G as Zp. Thus, for a word
w ∈ {0, 1}∗, H1〈k2,k1〉(w) = H1〈k2〉

(
H1〈k1〉(w)

)
∈ Zp.

B. OUR PEKS SCHEME
In this section, we present our PEKS scheme5PEKS for string
search.
Scheme 1 (5PEKS): The scheme 5PEKS is a collection of

four polynomial time algorithms (KeyGen, PEKS_Enc, Trap-
door, Search) such that:
1. KeyGen(1λ) : KeyGen is a probabilistic key generation

algorithm that is run by the data owner to setup the
scheme. It takes a security parameter λ, and returns
the setup. Since KeyGen is randomized, we write it as
(a, k1, k2)← KeyGen(1λ). The public key is pk = {k2}
and the secret key is sk = {a, k1} where a← Zp.

2. PEKS_Enc(k1, k2, a,Di) : PEKS_Enc is a probabilis-
tic algorithm run by the data owner to generate the
ciphertext Ci corresponding to document Di. Since
PEKS_Enc is deterministic, we write this as Ci =
PEKS_Enc(k1, k2, a,Di).

3. Trapdoor(k1, k2, a, s) : Trapdoor is a deterministic algo-
rithm run by the data owner to generate trapdoors for
a given string of words s = (w1,w2, . . . ,wl). It takes
k1, k2, a and s as input and outputs t = (t1, t2, . . . , tl),
where ti is the trapdoor corresponding to the word wi.
Since trapdoor is deterministic, we write this as
t = Trapdoor(k1, k2, a, s).

4. Search(k2,C, t) : Search is run by the CSP in order to
search for the documents in D that contain the string s.
It takes a ciphertext collectionC corresponding to D and
the trapdoor t corresponding to s and returns D(s), the set
of identifiers of documents containing the string s.

The Construction: Now we provide the actual algo-
rithms for key generation (Algorithm 1), PEKS encryption
(Algorithm 2), trapdoor generation (Algorithm 3) and search-
ing (Algorithm 4).

Algorithm 1 KeyGen
Require: security parameter λ.
Ensure: a, k1 and k2.
p← PPNG(1λ);
Set a← Zp;
(a, k1, k2)← KeyGen(1λ);

Remark 3: To encrypt the document Di, we read the
whole document as a stream of words and form an ordered
sequence(w1,w2, . . . ,wl). A string is a subsequence of this
sequence which is encrypted by applying PEKS_Enc on

133278 VOLUME 7, 2019

K. R. Rao et al.: R-PEKS: RBAC Enabled PEKS for Secure Access of Cloud Data

Algorithm 2 PEKS_Enc
Require: a, k1, k2 and D = (D1, . . . ,Dn).
Ensure: C = (c1, . . . , cn).
Form a collection W = {w1, . . . ,wd } of all distinct
words occurring in D;
i← 1;
while i ≤ n do
open Di in read mode and Ci in write mode;
j← 1;
wp← 0;
while (!EOF) do
read j-th string in sj = (w1, . . . ,wm);
k ← 1;
while k ≤ m do
A = H1〈k2,k1〉(wk);
B = H2〈k2〉(A

a∗(k+wp));
Append B in Ci;
k ← k + 1;
wp← wp+ 1;

end while
j← j+ 1;

end while
i← i+ 1;

end while

every word in the string. If the same word occurs multiple
times, for each instance the encrypted footprint will be differ-
ent depending on the position (denoted by k in the algorithm)
of the word in the string.

Algorithm 3 Trapdoor
Require: s = (w1,w2, . . . ,wl), k1, k2, a.
Ensure: t = (t1, . . . , tl).
j← 1;
while j ≤ l do
Aj = H1〈k2,k1〉(wj);
tj = Aaj ;
j← j+ 1;

end while

Remark 4: To search in a cipher, we first read all the
ciphers of form [B] in a list called listB. To find the match
of the first trapdoor, i.e., t1, we check it against each entry
of listB. This is done in the second while loop. If a match is
found, then the index of that block is stored in start_pointer
and the rest of l − 1 trapdoors are checked against next l − 1
blocks in listB starting from start_pointer + 1. If a match
is found in all l successive steps, we add the file pointer in
encrypted_file_pointer and go for the next file. If the match
fails in any step we repeat thematching of t1 for the remaining
blocks in the same way until the file is exhausted.
Remark 5: In the PEKS, we assume that the data owner

creates the data, encrypt using PEKS and uploads to the
public cloud for future search. So the KeyGen and PEKS_Enc
are run by the data owner. To search, the query is converted

Algorithm 4 Search
Require: t = (t1, . . . , tl), {C1 . . . ,Cn}, k2.
Ensure: encrypted_file_pointers, a list of encrypted docu-
ment pointers;
exists = false; counter ← 0;
i← 1;
while i ≤ n do
read all blocks of the form [B] from Ci and arrange B’s
in listB;
start_pointer = −1;
m← 1;
while (m ≤ listB.length) do

compute chk = H2〈k2〉(t
m
1));

if (chk == listB[m]) then
start_pointer = m;
exists = true;
counter = 1;
break;

else
m = m+ 1;

end if
if (counter = 1) then
k ← 2;
while (k ≤ l) do
if (H2〈k2〉(t

start_pointer+counter
k) ==

listB[start_pointer + counter]) then
counter ← counter + 1;

else
exists = false;
break;

end if
k ← k + 1;

end while
end if
if (exists = true) then
add i to encrypted_file_pointers

end if
end while

end while

to trapdoor by the data owner and is given to the cloud.
CSP runs the search using these trapdoors along with the
public key of the data user. In R-PEKS, the data owner is the
data administrator who is responsible for creating employee
accounts and provide employees role based access to search
on the encrypted data stored in the cloud. So, in R-PEKS,
the data owner runs KeyGen for each employee/user and
provides themwith their keys. Further, the data owner fetches
the keys of the corresponding employee and encrypt the files
based on the assigned roles. To search, employees request
data owner for the legitimate trapdoor for a given search
query. Search is run by the CSP only on the privileged files
using the trapdoor and the public key of the corresponding
data. The search results are sent to the data owner who further
decrypts and redirects the files to the employee.

VOLUME 7, 2019 133279

K. R. Rao et al.: R-PEKS: RBAC Enabled PEKS for Secure Access of Cloud Data

FIGURE 2. NIST RBAC [31].

Remark 6: Unlike traditional public key encryption
scheme, in PEKS the data owner uses both the secret key and
public key for encryption and trapdoor generation. Therefore
data owner does not allow anybody to take the ownership of
encryption as well as trapdoor generation. The data owner
delegates only the search process, where the third party can
search by using the data owner’s public key without having
any dependency on the secret key.

In the next lemma, we study the correctness of the search
algorithm.
Lemma 1 (Correctness): Let s = (w1, . . . ,wl) be a string

such that s is in the document Di in the document collection
D and Ci← PEKS_Enc(k1, k2, a,Di). Let [B1], . . . , [Bl] are
the encrypted blocks inCi for the string s taken in order. Then
Search(k2,C, t) will point out the identifier corresponding
to Di where t = (t1 . . . , tl) is the trapdoor corresponding to s
taken in order, i.e., id(Di) ∈ Search(k2,C, t).

Proof: Let A1 = H1〈k2,k1〉(w1). for some j. Note that,
then B1 = H2〈k2〉(A

am
1) for some integer m depending on the

position of the word w1 in the file. Now,

H2〈k2〉(t
m
1)) = H2〈k2〉(H1〈k2,k1〉(w1)a)m)

= H2〈k2〉(A
am
1)

= B1

This detects [B1] for t1. Two consecutive blocks Bj and Bj+1
are detected for two consecutive words wj and wj+1 if there
are two consecutive numbers, say k and k + 1, such that
Bj+1 = H2〈k2〉(A

a(k+1)
j+1), and Bj = H2〈k2〉(A

a(k)
j), where

Aj+1 = H1〈k2,k1〉(wj+1) and Aj = H1〈k2,k1〉(wj). Hence the
result follows.
Remark 7: It may be noted that the second while loop of

string search algorithm (i.e., Algorithm 4) is responsible for
maintaining the ordering of keywords which is essential to
detect string. We have also achieved a multi-keyword search
by relaxing this condition for ordering. For the experimental
results, we have used the variant which is dealing with string
search only, i.e., Algorithm 4. Therefore our PEKS scheme
5PEKS can search string and multi-keyword based on the
user’s request. In order to perform a selective search, we inte-
grated our PEKS scheme 5PEKS with the RBAC model
(i.e., R-PEKS). The detailed explanation about RBAC com-
ponents and functions which are crucial for integrating with
our PEKS scheme 5PEKS are given in Section IV-C.

C. RBAC MODEL
The NIST RBAC reference model defines different RBAC
elements, RBAC assignments and mapping functions [31].
The pictorial representation of the NIST RBAC model is
shown in Figure 2. Let us define some of the elements,

assignments and functions which are crucial for R-PEKS. Let
U denote a set of users. Let R denote a set of roles where
each role is a job assigned to some users in an organization.
Let P denote a set of permissions where each permission is
an approval to perform an operation on an object. Formally
we express this by P = 2OP×OB, where OP is the set of
operations and OB is the set of objects. Let Su denote a set
of users who authorize the user u to search and access data
pertaining to them. Let G denote a set of authorized users,
i.e., a group. Let UA denote a many-to-many mapping which
is user-to-role assignment relation, i.e., UA⊆ U ×R. Let PA
denote a many-to-many mapping which is a permission-to-
role assignment relation, i.e., PA ⊆ P × R. Also from [31],
assigned_permissions: R → 2P is a mapping function
from role to a set of permissions. So, for some r ∈ R,
assigned_permissions(r) = { p ∈ P | (p, r) ∈ PA }.
RBAC Configuration. Let UP denote a many-to-many

mapping of user-to-permission assignment relation i.e., UP
⊆ U × P. Also let us consider the function RoleMining
which on input UP, outputs UA and PA, i.e., RoleMining:
U × P → { UA, PA }. The access control on RBAC can
be defined as a CheckAccess function which is responsible
for the authorization process. The function is defined as
CheckAccess: U × P → P. CheckAccess takes a user u
and the set of all permissions and returns the legitimate set
of permissions pertaining to user u through roles. Formally,
CheckAccess(u,P) = {p : p ∈ P∧∀r, (u, r) ∈ UA∧ (p, r) ∈
PA}. Similarly, we define CheckGroupAccess: G × P → P,
where G is a group of users who may have different roles.
Through CheckGroupAccess the permission is granted for all
members of the group depending on the role assigned to the
group.

V. R-PEKS DESIGN
In this section, we present our R-PEKS for single-user and
multi-user settings. Those components of 5PEKS , that are
reused in R-PEKS schemes as it is, are not described here. For
these components of 5PEKS , which are modified with access
control functionality, we use the metacharacter ‘‘*’’ for the
same set of parameters used in the corresponding component
in 5PEKS . Also, we modify the name of such components by
prefixing the original name used in 5PEKS by R.

A. R-PEKS SCHEME
Single-user R-PEKS scheme is a SUSE in R-PEKS, where
user u is authorized to search in the encrypted domain
restricted by the assigned role. Further, the construction is
given below.
Scheme 2: A single-user R-PEKS scheme, 5suse, is a

collection of five polynomial-time algorithms (KeyGen,
R-PEKS_Enc, Trapdoor, R-Search, CheckAccess) such that:

1. R-PEKS_Enc(∗,CheckAccess(u, .)): R-PEKS_Enc is a
deterministic algorithm run by the data owner to gen-
erate the ciphertext Ci for Di, if the permission set Pu,
obtained from CheckAccess, allows access to the Di.

133280 VOLUME 7, 2019

K. R. Rao et al.: R-PEKS: RBAC Enabled PEKS for Secure Access of Cloud Data

2. R-Search(∗,CheckAccess(u, .)): Search is run by the
CSP in order to search only for the privileged docu-
ments in D which are accessible under the permissions
obtained by CheckAccess.

Remark 8: In a single-user R-PEKS scheme, the data
owner performs only the selective encryption and CSP per-
forms only the selective search based on the roles assigned to
the user using CheckAccess.
Multi-user R-PEKS: peer to peer scheme is a MUSE in

R-PEKS. Here user u is authorized to search in the encrypted
domain of users in Su. The construction is given below.
Scheme 3: A multi-user R-PEKS: peer to peer scheme

5musePP is a collection of seven polynomial-time algorithms
(KeyGen, R-PEKS_Enc, AddUser, RevokeUser, Trapdoor,
R-Search, CheckAccess) such that:

1. AddUser(u,U): AddUser is a deterministic algo-
rithm run by the data owner to add a new user.
It is assigned with a new user u′ ∈ U and
updates Su.

2. RevokeUser(u,U): RevokeUser is a deterministic algo-
rithm run by the data owner to remove an existing user.
It is revoked with the existing user u′ ∈ U and updates
Su.

3. R-Search(∗,CheckAccess(u, .)): Search is run by the
CSP in order to search only for the privileged docu-
ments in D which are accessible under the permissions
obtained by CheckAccess over Su.

Remark 9: In multi-user R-PEKS: peer to peer scheme,
the requisite permission is given by the data owner to search
on others data is managed by AddUser and RevokeUser to
add and revoke the user’s privilege respectively. The algo-
rithms for AddUser and RevokeUser simply denote many-
to-many mapping which is user-to-user assignment relation,
i.e.,UU⊆ U×U . RevokeUser just updates such assignments
for user u ∈ U by revoking the assignment pertaining to
the existing user u′ ∈ U . Criteria for revoking user-to-user
assignment using RevokeUser is done if there is any change
in the existing privilege of users. The data owner performs
the selective encryption for users based on the assigned roles
using the keys generated for the individual users. Finally, CSP
performs the selective search for the authorized user who has
the requisite permission to search on others data.

Multi-user R-PEKS: group scheme is aMUSE in R-PEKS.
Here groupG is authorized to search in the encrypted domain
of some users (i.e., a subset of U) depending on the role
assigned to G.
Scheme 4: An multi-user R-PEKS: group scheme

5museG is a collection of seven polynomial-time algo-
rithms (R-KeyGen, R-PEKS_Enc, Group_AddUser, Group_
RevokeUser, Trapdoor, R-Search, CheckGroupAccess) such
that:

1. R-KeyGen(1λ) : R-KeyGen is a probabilistic key gener-
ation algorithm that is run by the data owner to setup the
scheme for the group G.

2. R-PEKS_Enc(∗,CheckGroupAccess(G, .)): R-PEKS_
Enc is a deterministic algorithm run by the data owner
to generate the ciphertext Ci for Di, if the permission
set PG, obtained from CheckGroupAccess allows access
to the Di.

3. Group_AddUser and Group_RevokeUser are the deter-
ministic algorithms run by the data owner to add
and remove a user from the group respectively. Since
these functions are very much similar to AddUser and
RevokeUser, it is not shown explicitly.

4. R-Search(∗,CheckGroupAccess(G, .)): Search is run by
the CSP in order to search only for the privileged docu-
ments in D which are accessible under the permissions
obtained by CheckGroupAccess over group G.

Remark 10: In multi-user R-PEKS: group scheme,
the group which is a subset of users are created by the data
owner. Key generation, group privileges and managing the
group is done by the data owner. Further, the data owner
performs the selective encryption based on the assigned roles
for the group using the generated keys. Finally, based on the
request the CSP performs the selective search based on the
assigned roles for the group.
Remark 11: We observe that R-PEKS is independent of

the underlying PEKS, i.e., 5PEKS in a sense that any PEKS
system can be used to install R-PEKS. It may be noted
that in R-PEKS for single-user, i.e., 5suse, the encryption is
done using underlying PEKS encryption whenever there is a
permission which is derived from role based structure given
by CheckAccess(.) (See Scheme 2). Once the permission is
given, the encryption is done using encryption algorithm
of 5PEKS , i.e. PEKS_Enc(.). A similar analysis holds for
Search(). Thus the idea of R-PEKS can be instantiated with
respect to any arbitrary PEKS system. For example, in sub-
section VII-B, for the analysis purpose, RBAC is instantiated
with PEKS proposed in [4] under the name r-PEKS. To the
best of our knowledge, prior to this work, the PEKS scheme
of [4] was the only adaptively secure PEKS scheme for string
search and so we select this scheme for comparison.

VI. SECURITY ANALYSIS
Threat model. In the R-PEKS scheme, we consider both
CSP and data users as honest-but-curious. Under this assump-
tion, CSP can infer additional privacy information, i.e., role-
permission assignments and other information related to the
search pattern and access pattern of the data [21]. Further,
the malicious data users may collude with CSP to access
unauthorized files by tweaking the roles. Unlike [24], the key
and role management is handled by the data owner. So in our
model, CSP cannot collude with any revoked malicious users
in accessing the unauthorized privileges.

In the next two subsections, we discuss the security of
R-PEKS and its components. In Subsection VI-A, we show
that our PEKS is adaptively secure under the CDH assump-
tion. In Subsection VI-B, we show that our R-PEKS system
ensures data confidentiality by secure access.

VOLUME 7, 2019 133281

K. R. Rao et al.: R-PEKS: RBAC Enabled PEKS for Secure Access of Cloud Data

A. SECURITY OF PEKS
In this section, we show that5PEKS is secure against adaptive
string attack. The basic idea behind an adaptive string attack
is that the adversaryA is allowed to ask for PEKS encryptions
of multiple strings chosen adaptively. The definition of secu-
rity requires thatA should not be able to distinguish the PEKS
encryption of two arbitrary strings of same length, even when
A is given access to PEKS_Enc() and Trapdoor() oracle.
We first define an experiment for any PEKS scheme π =
(KeyGen,PEKS_Enc,Trapdoor, Search), any adversary A,
and any value k of the security parameter.
Definition 2 (Game_Adaptive_GenericA,π (1k)):
1. A key (pk, sk) is generated by running KeyGen(1k).
2. The adversary A is given input 1k and oracle access

to PEKS_Enc(.) and Trapdoor(.) and outputs a pair of
strings s0, s1 of the same length, say m.

3. b ← {0, 1} and then a ciphertext c ← PEKS_Enc(sb)
is computed and given to A. We call c the challenge
ciphertext.

4. The adversary A continues to have oracle access to
PEKS_Enc(.) and Trapdoor(.) and outputs a bit b′.

5. The output of the experiment is defined to be 1 if
b′ = b, and 0 otherwise. In case Game_Adaptive
_GenericA,π (1k) = 1, we say that A succeeded.

Since our scheme deals with two cryptographically strong
hash functions, namely, H1 and H2, we would like to extend
Definition 2 by giving oracle access of these two hash func-
tions to an adversary, which leads to the modified security
definition as given below.
Definition 3 (Game_AdaptiveA,π (1k)):
1. A key (pk, sk) is generated by running KeyGen(1k).
2. The adversary A is given input 1k and oracle access to

PEKS_Enc(.), H1(.), H2(.) and Trapdoor(.) and outputs
a pair of strings s0, s1 of the same length, say m.

3. b ← {0, 1} and then a ciphertext c ← PEKS_Enc(sb)
is computed and given to A. We call c the challenge
ciphertext.

4. The adversary A continues to have oracle access to
PEKS_Enc(.), H1(.), H2(.) and Trapdoor(.) and outputs
a bit b′.

5. The output of the experiment is defined to be 1 if b′ = b,
and 0 otherwise. In case Game_AdaptiveA,π (1k) = 1,
we say that A succeeded.

It is easy to observe that if a scheme is secure under
Definition 3, then it is also secure under Definition 2. This
is because from the point of view of an adversary, if oracle
access of these two hash functions is withdrawn from Defi-
nition 3, then this becomes Definition 2. Also reducing these
two oracle access amounts to reduce the degree of freedom
of an adversary in terms of fetching information from oracle
and thus adversary cannot get more information than what
he could with Definition 3. We record this trivial fact in the
following theorem without proof.
Theorem 1: If a PEKS scheme is secure under Defini-

tion 3, then it is also secure under Definition 2.

So it suffices to show that our scheme is secure under
Definition 3. Consider the following definitionwhich is based
on Definition 3.
Definition 4: A PEKS scheme, denoted by π =

(KeyGen,PEKS_Enc,Trapdoor, Search), is said to be adap-
tively secure under chosen plain text attack if for all proba-
bilistic polynomial time adversaries A, there exists a negli-
gible function negl such that Pr[Game_AdaptiveA,π (1k) =
1] ≤ 1

2 + negl(k), where the probability is taken over the
random coins used byA, as well as the random coins used in
the game.

In the next theorem, we prove that our scheme 5PEKS is
adaptively secure. The proof relies on the hardness of Com-
putational Diffie-Hellman Problem (CDH). Now we provide
a variant of CDH problem for a multiplicative group which is
suitable for our scheme.

1) COMPUTATIONAL DIFFIE-HELLMAN PROBLEM (CDH)
Let (G, ◦) be a multiplicative abelian group. Also let g be the
generator of G and let x, y ∈ Z such that a = gx , b = gy and
c = gz. The CDH problem is as follows:
given a, b, g as input, compute gxyz. CDH is said to be

intractable if all polynomial time algorithms have a negligible
advantage in solving CDH.

Suppose A is a polynomial size adversary that has
advantage negl(λ) in breaking 5PEKS , i.e., Pr[Game_
AdaptiveA,5PEKS (1

k) = 1] ≤ 1
2 + negl(λ). SupposeA makes

at most nH2 hash function queries to H2 and at most and at
most nT trapdoor queries. Here we construct a simulator S
and in Theorem 2 we show that A solves the CDH problem
with probability at least ε′ = negl(λ)

e×nT×nH2
, where e is the base of

the natural logarithm. The construction of simulator and the
proof technique of Theorem 2 is similar to that of [1] but in
a different setting on strings instead of keywords and also the
proof is done against CDH assumption.

2) THE SIMULATOR S
Let g be the generator of G. Let the simulator S is given g,
p1 = ga, p2 = gb, p3 = gc, p4 = gac. The
simulator S simulates the challenger and interacts with the
adversary A as follows:

S sets Apub = [g, p1].

1. (simulating H∗1): Whenever A queries for H1, S main-
tains a list 〈wj, hj, aj, cj〉 called list1 which is initially
empty. When A queries for wi, S responds as follows:

I. Ifwi already appears in list1, say 〈wi, hi, ai, ci〉, then
algorithm S responds with H∗1 (wi) = hi ∈ G.

II. Otherwise, S generates a random coin ci{0, 1} such
that Pr[ci = 0] = 1

nT+1
.

III. S picks a random ai ∈ Zp. If ci = 0, S sets hi =
p2 × gai ∈ G, otherwise hi = gai ∈ G.

IV. S adds 〈wi, hi, ai, ci〉 to the list and responds toA’s
query by setting H∗1 (wi) = hi ∈ G.

2. (simulating H∗2): Whenever A queries for H2(t) for a
new t , S picks a random value v from {0, 1}λ and sets

133282 VOLUME 7, 2019

K. R. Rao et al.: R-PEKS: RBAC Enabled PEKS for Secure Access of Cloud Data

H∗2 (t) = v and adds 〈t, v〉 to list2. If t is already in the
list, then S just sets H∗2 (t) = v.

3. (simulating trapdoor) : To get the simulated trapdoor
corresponding to wi, S sets hi = H∗1 (wi). If ci = 0,
it stops. Otherwise, S sets the trapdoor ti = pai1 .

Challenge Phase: A produces a pair of challenge strings
s0 = (w0,1, . . . ,w0,m) and s1 = (w1,1, . . . ,w1,m) which are
of same length, say, m.

I S computes H∗1 (wi,j) = hi,j for 0 ≤ i ≤ 1, 1 ≤ j ≤ m.
For i = 0 and 1, let the corresponding entries in list1 are
〈wi,k , hi,k , ai,k , ci,k 〉, where 1 ≤ k ≤ m.

II S randomly selects b← {0, 1}.
III S responds to the challenge {[B1], [B2], . . . , [Bm]}

where S choses Bi’s randomly from {0, 1}λ.
IV A can continue to issue trapdoor queries for strings other

than s0 and s1.
Before going into the Theorem 2, here we will prove some

inequalities which are crucial for the theorem.
Lemma 2: Let us consider the following events :
ε1 : The event denoting S does not abort whileA is making

trapdoor queries.
ε2 : The event denoting S does not abort whileA is making

challenge.
ε3 : The event denoting A queried against at least one of

the strings s0 and s1.
Then, (1) P[ε1] ≥ 1

e , (2) P[ε1] ≥
1
nT

and (3) P[ε3] ≥
2× negl(λ).

Proof:
1. Since in list1, the distribution of ci’s are independent

of the distribution of hi’s, we have P[onetrapdoorquery
triggeringabort] = 1

(nT+1)
. So,

P[ε1] = (1− P[one trapdoor query triggering abort])nT

=

(
1− 1

(nT+1)

)nT
≥

1
e .

2. P[S will abort during challenge] = P[ci,k = 1 : i ∈

{0, 1}, k ∈ {1, . . . ,m}] =
(
1− 1

nT+1

)2m
≤ 1− 1

nT
.

So, P[ε2] ≥ 1− p[S will abort during challenge] = 1
nT
.

3. Let ε3 be the event denoting A queried against at least
one of the strings s0 and s1. P[A breaks the scheme] =
P[b = b′]
= P[(b = b′)|ε3]P[ε3]+ P[(b = b′)|ε′3]P[ε

′

3]
≤

1
2P[ε3]+

1
2 .

FromDefinition 4, negl(λ) ≤ |P[b = b′]− 1
2 | =

1
2P[ε3].

Thus P[ε3] ≥ 2ε.

Theorem 2: 5PEKS is adaptively secure against chosen
keyword attack in the random oracle model assuming CDH
is intractable.

Proof: It may be noted that the challenge implicitly
defines B1 as H∗2

(
H∗1 (wb,1)

ac
)
. Now,

B1 = H∗2
(
H∗1 (wb,1)

ac)
= H∗2

(
g(b+ab)ac)

)
So similar computation for wb,k , k = 2, . . . ,m indicates

that this is a valid PEKS for the string sb.

Output Phase: Eventually,A outputs the guess b′ ∈ {0, 1}.
Then S picks a random pair (t, v) from list2 and outputs t

(p4)ab

as its guess for gabc, where ab is the value used in the chal-
lenge phase. A must have issued the query for either s0 or s1
as otherwise A’s view on the PEKS will be independent of
s0 or s1 and thusA cannot have the advantage of ε in breaking
the scheme. Therefore with probability 1

2 , list2 contains an
entry (t, v) such that t = gac(b+ab). Let ε0 be the event
denoting that S selects this pair (t, v). Then P[ε0] = 1

nH2
, and

then S outputs t
(p4)ab

=
gac(b+ab)

gabac = gabc. It is easy to check

that P[S solves CDH] = P[ε0]×P[ε1]×P[ε2]×P[ε3]. So,
from Lemma 2, P[S solves CDH] ≥ negl(λ)

e×nT×nH2
.

3) DISCUSSION ON ADAPTIVE SECURITY OF 5PEKS
The basic idea behind the security proof of Theorem 2 is
that the adversary A is allowed to ask for PEKS encryptions
and trapdoors of multiple keywords and strings chosen adap-
tively. This is formalized by allowing A to interact freely
with an encryption and trapdoor oracle. So from A’s point
of view, encryption and trapdoor functionality comes as a
black-box that encrypts keywords and strings of A’s choice
using the secret key which is unknown toA. Since keywords
are mapped into finite field elements using the hash func-
tion H1 and the final output of PEKS encryption maps the
encrypted keyword to {1, 0}∗ using the hash function H2,
A is also provided with the oracle access of these two hash
functions. When A queries its oracle by providing it with
a keyword as input, the PEKS encryption oracle returns a
ciphertext as the reply. Since PEKS encryption is randomized,
the oracle uses fresh random coins each time it responds to
a query. The definition of security requires that A should
not be able to distinguish the encryption of two arbitrary
keywords or strings of same lengths, even when A is given
access to PEKS_Enc(.), Trapdoor(.), H1(.) and H2(.). The
security of our scheme relies on the CDH assumption, i.e., so
long as the CDH assumption holds, we need to show that A
cannot win the game defined in Definition 3 with a prob-
ability much more than 1

2 . In the proof, we constructed a
simulator S, who simulates the challenger in such a way so
as to solve CDH. We have shown that if adversary A wins
the game defined in Definition 3, then S solves the CDH
in non-negligible probability. Thus if CDH is believed to be
insolvable, reasonably we may infer that A cannot win the
game of Definition 3.

B. SECURITY OF R-PEKS: DATA CONFIDENTIALITY BY
SECURE ACCESS
In this section, we show that R-PEKS ensures hosted data
confidentiality, i.e., protection of access privilege during
string search.
Definition 5: R-PEKS is said to have secure access under

the injection of faulty roles if R-PEKS access only the
files within the scope of the user’s privilege during string
search.

VOLUME 7, 2019 133283

K. R. Rao et al.: R-PEKS: RBAC Enabled PEKS for Secure Access of Cloud Data

In the next theorem, we prove that our R-PEKS access only
the files based on the roles during string search which ensures
hosted data confidentiality by secure access.
Theorem 3: Even when the data user colludes with a CSP

by the injection of faulty roles, they are unable to access the
hosted data by string search over any file that is not in the
scope of the data user’s assigned roles/privileges

Proof: In R-PEKS, let P be the set of all permissions.
Let ri ∈ Ru and rj /∈ Ru. Also let user u access the
permission set P(ri) through the assigned role set Ru , i.e.
CheckAccess(u,P) = P(ri). So, P(ri) = {p : p ∈ P, (u, ri) ∈
UA ∧ (p, ri) ∈ PA}.
From the role mining algorithm, there is a threshold δ, such

that |assigned_permissions(ri)∩ assigned_permissions(rj)|
≤ δ. Therefore the similarity rate ranges from 0 to δ. Accord-
ing to [32], we carry out the security mutation analysis by
focusing on fault injection of roles, done by CSP while
colluding with the data user, as given below :

Original search request of user u is served by the
data owner by presenting this request as R-Search
(∗,CheckAccess(u,P)). Since ri ∈ Ru, R-Search
(∗,CheckAccess(u,P)) should be transformed into
R-Search(∗,P(ri)).
Under the fault injection assumption, let ri be replaced

by CSP to a faulty role, say rj. Thus original search
request, i.e., R-Search(∗,CheckAccess(u,P)) transforms in to
R-Search(∗,P(rj)), where P(rj) = {p : p ∈ P, (u, rj) ∈
UA ∧ (p, rj) ∈ PA}. There are two possibilities:
Case 1: |assigned_permissions(ri) ∩

assigned_permissions(rj)| > 0
Case 2: |assigned_permissions(ri) ∩

assigned_permissions(rj)| = 0
In Case 1, string search is performed on files common

to ri and rj. In Case 2, no operation is performed. Suppose
the actual number of files identified for a string search on
a user without faulty injection is F. Also let us assume
that the same number of files are identified for successive
k-1 searches on the same string. Finally, let the number of
identified files for the same string search caused by the
fault injection of roles on the kth iteration of search is δ.
If files returned after search are the files that are accessible
according to role ri, we call it a success. If T is the expected
number of files satisfying a particular search string after
k iterations, then we define score S, on success as S =
(k−1)∗F+δ

T
. It is easy to check that S ≤ 1. This is because

searches for user u are performed using trapdoors generated
from u’s private key on data encrypted by u’s public key.
So from the PEKS privacy, under no situations, the files
corresponding to the permissions [assigned_permissions(rj)
− assigned_permissions(ri)] will respond to the search, even
if they contain the query string as these files are not encrypted
using u’s public key. Thus these files never contribute in S.
If S < 1, then the system is under attack by the injection

of a faulty role that affected the string search. If S = 1,
then δ = F and it is a fuzzy state. In such cases, the string
search is not affected even though the system is under attack.

Therefore in all the above cases, the R-PEKS scheme is
secure under Definition 5, which ensures a high level of
hosted data confidentiality when data user collude with the
CSP by injecting the faulty role during the string search.

VII. EXPERIMENTAL RESULTS
In this section, we present an experimental set-up by gener-
ating the RBAC model on the PEKS environment. We also
provide the performance analysis of our proposed model on
the TIMIT dataset [33]. Finally, we validate the correctness
of our model, i.e. the data confidentiality using test automa-
tion framework [34]. The implementation is done on Intel
Core(TM) i5−7500with 16GBRAMusing Java inWindows
platform. For the cryptographic primitives, ‘Jpair’ library is
used.

A. CREATION OF RBAC CONFIGURATION USING RMINER
The creation of RBAC configuration using RMiner [35] is
achieved in two phases. Firstly, we generate UP (see Sub-
section IV-C) and secondly, we generate roles and its assign-
ments to users as well as permissions, based on the UP. The
required objects to generate a UP are taken from the TIMIT
speech corpus [33], which is a phonemically and lexically
transcribed speech of American English speakers of different
dialects. This dataset is comprised of 42 distinct phonetic
symbols giving rise to an average of approximately 200words
in 4607 files in a document of size 19MB. For the experimen-
tation purpose, we considered file-level access, i.e., each file
is treated as an object and each object is assigned permission,
which is either 1 (grant) or 0 (deny) under two operations,
namely encryption and search. It is assumed that if a file
has permission for encryption then it also has permission
for a search. Further, we have incorporated 500 users in the
implementation. The users and files are given as an input
to RMiner [35], which is a role mining tool used for the
generation ofUP and for the creation of RBAC configuration,
i.e., UA and PA (see Subsection IV-C). The generated UP for
the given number of users and permissions is listed in Table 2.
Also, in Table 2, the parameters presented in fourth, fifth,
sixth and seventh rows are given as input and the rest is
generated by the RMiner tool.

We use HPRoleMinimization algorithm of RMiner, which
provides the most compact and optimal solution in the cre-
ation of RBAC configuration compared to other algorithms
in the RMiner tool. The total time taken by RMiner algorithm
is 46.43 seconds.
Remark 12: R-PEKS system is independent of the under-

lying dataset as long as the language of the dataset has a finite
number of alphabets and can be recorded and stored in the
cloud. It may be noted that the image dataset can be stored
in the cloud although its atomic data blocks are pixels, such
datasets are not conformable to R-PEKS. R-PEKS trivially
works on plain English text files. In this paper, we choose the
TIMIT dataset to test and verify that R-PEKS can also work
on a nontrivial dataset. Another reason for selecting such data
lies in the fact that there is a growing trend in the voice data

133284 VOLUME 7, 2019

K. R. Rao et al.: R-PEKS: RBAC Enabled PEKS for Secure Access of Cloud Data

TABLE 2. Statistics of the generated RBAC components for TIMIT speech
dataset [33] using RMiner.

processing industries. In these type of organizations, they
gather and store voice data over a public cloud for various
commercial applications and research, where access to voice
data (i.e., privilege) can be subject to frequent modifications.
Such applications lack in privacy-preserving access to voice
data, especially in a multi-user environment without compro-
mising data confidentiality, data integrity, and anonymity of
users.

B. PERFORMANCE ANALYSIS ON PEKS AND R-PEKS
All performances are analyzed based on the average time
taken by 5 different users to perform encryption and
search. These are illustrated on the speech dataset by com-
paring with the existing models. For the analysis purpose,
RBAC is instantiated with PEKS proposed in [4] and further,
it is referred to as r-PEKS.

1) PERFORMANCE OF PEKS
In the next lemma, we provide a complexity analysis of our
scheme.
Lemma 3: Using 5PEKS , the number of group operations

for searching a query of l-word string in one ciphertext doc-
ument C is O

((
|C|
λ

)
+ (l − 1)

)
.

Proof: It is easy to observe that each block of the
form [B] is of size λ bits. Thus in the encrypted document
C , the number of blocks is |C|

λ
. To detect the first block

requires O
(
|C|
λ

)
group operations. Since the blocks are not

shuffled, to detect rest of the l − 1 blocks, l − 1 group
operations are needed. Thus the number of group operations
is O

((
|C|
λ

)
+ (l − 1)

)
.

Figure 3 compares the average PEKS encryption time
for our PEKS scheme against PEKS of [4]. We plotted the
graph by considering the average time in seconds along
Y-axis against the number of files needed to encrypt along
X-axis. For both schemes, the graph reflects a linear growth
with an increase in the number of files. However, the average
time taken by our PEKS scheme is 1 second to 5 seconds to
encrypt 50 files (on an average of size little over 200kB) to

FIGURE 3. Comparison of encryption time for our PEKS and PEKS [4].

FIGURE 4. Comparison of search time for our PEKS and PEKS [4].

250 files (on an average of size little over 1MB) which is very
much less compared to the existing PEKS [4] where it took
38 seconds to 188 seconds for the same operation.

Figure 4 represents the performance of searching over
encrypted files. We plotted the average time of search (in sec-
onds along Y-axis) against the number of encrypted files
(along X-axis). The graph shows a linear growth with an
increase in the number of files. The average time taken by
our PEKS scheme to search over 50 to 250 encrypted doc-
uments is 0.5 seconds to 2.5 seconds which is 97% efficient
compared to the performance of PEKS of [4], where they took
18 seconds to 88 seconds for the same search operation.

2) PERFORMANCE OF R-PEKS AND PEKS
We note that both the PEKS schemes can have a better
performance when integrated with RBAC. Now, we discuss
the enhancements of R-PEKS over our PEKS. In Figure 5,
we provide a comparison of R-PEKS and our PEKS search
performance.

We plotted the graph by considering the average time of
search (in seconds along Y-axis) against the available number
of files (along X-axis) using R-PEKS and our PEKS scheme.

VOLUME 7, 2019 133285

K. R. Rao et al.: R-PEKS: RBAC Enabled PEKS for Secure Access of Cloud Data

FIGURE 5. Comparison of search time for R-PEKS and PEKS.

In all the cases, the graph shows a linear growth with an
increase in the number of files, however, the rate of growth
reflects the efficiency of R-PEKS against the PEKS scheme.
In PEKS, since the search is not refined by privileges (i.e.,
by roles), the search is performed among all the existing
files. So the average search time using our PEKS scheme for
any percentage of matching files is 2.5 seconds on 250 files.
Since R-PEKS is a selective search, the string search request
is performed only on the privileged files. So the average
search time using R-PEKS is 0.25 seconds, 0.5 seconds and
1.25 seconds when the assigned roles contain 10%, 20% and
50% privileged files over 250 files respectively. So effectively
from the user’s point of view, R-PEKS will be faster compare
to PEKS. This explains the efficiency of R-PEKS over our
PEKS by 90% when the required data is present only in 10%
files over 250 files.

3) PERFORMANCE OF DIFFERENT PEKS SCHEMES WITH
RBAC
In [11], the authors proposed the idea of generating synthetic
datasets to evaluate the performance of role mining algo-
rithms. Towards this, we have generated the two synthetic
datasets presented in Table 3 and Table 4 to compare the
performance of R-PEKS. Both the synthetic datasets consist
of five parameters, namely, number of users (#U), number of
roles (#R), number of permissions for each user (#P), maxi-
mum number of permissions for a role and scope of privileges
(range of files). In the first synthetic dataset, the user’s scope
of privileges is a varying parameter and other parameters
are constant as shown in Table 3 and the corresponding
comparison study is presented in Figure 6. In the second
synthetic dataset, the user’s permission is a varying parameter
and other parameters are constant as shown in Table 4 and the
corresponding comparison study is presented in Figure 7.

In Figure 6 and Figure 7 we plot the average time (along
Y-axis) needed by the users to encrypt the documents and
to access the data by searching (along X-axis) based on the
values tabulated in Table 3 and Table 4 respectively. Figure 6
reflects a linear growth of the average time of encryption
against the scope of privileges (range of files). Figure 6 shows
that for R-PEKS, average time varies from 0.5 seconds to

TABLE 3. Users with the varying scope of privileges for a constant
number of permissions.

FIGURE 6. Comparison of encryption and search time for r-PEKS and
R-PEKS on the varying scope of privileges for a constant number of
permissions.

FIGURE 7. Comparison of encryption and search time for r-PEKS and
R-PEKS on a varying number of permissions for a constant scope of
privileges.

1.7 seconds, whereas for r-PEKS, the average time varies
from 8 seconds to 9.2 seconds over the scope of privi-
leges varying from 50 to 250 for a constant 10 number of
permissions. In the case of searching, R-PEKS takes con-
stant average time of 0.1 seconds whereas r-PEKS takes
3.6 seconds respectively under the same scope of privi-
leges and permissions as mentioned in Table 3. Therefore,
the above comparison reveals that the efficiency of R-PEKS
over r-PEKS during encryption and search are 81% and 97%
respectively.

Figure 7 reflects a linear growth with the increase in the
number of permissions for a constant scope of privileges.
Further, the average time needed for encrypting 50 files in
a scope of 80 privileges using R-PEKS and r-PEKS is around

133286 VOLUME 7, 2019

K. R. Rao et al.: R-PEKS: RBAC Enabled PEKS for Secure Access of Cloud Data

FIGURE 8. Test automation framework to determine the correctness of role based file access
for string search using R-PEKS.

TABLE 4. Users with varying number of permissions for a constant scope
of privileges.

2.5 seconds and 40 seconds respectively. The average time
needed to search the data over the 50 encrypted files using
R-PEKS and r-PEKS is 0.5 seconds and 17.5 seconds
respectively. Above comparison reveals that the efficiency of
R-PEKS over r-PEKS during encryption and search are 93%
and 97% respectively.
Remark 13: The basic difference between the encryption

scheme of [14] and R-PEKS is that our scheme is SE where
one can directly search in encrypted data, whereas [14] uses
traditional encryption where such searching is not possible.
Since comparing performances of traditional encryption with
SE won’t reveal much, we did the comparisons between our
scheme and another BDH based PEKS scheme.

4) AUTOMATION OF SECURE ACCESS BY R-PEKS
In this section, we determine the functional correctness of
our proposed model on accessing only permitted files using
R-PEKS in a single-user and multi-user environment. To val-
idate this experimentally, we have carried out the testing by
developing a test automation framework, which can spawn
100 parallel users having different roles in every 30 seconds
as shown in Figure 8. In the logger block of Figure 8, the user
behavior patterns are saved for analysis.

To determine the correctness, 10 different users are
retrieved randomly from the log and all the user behavior
patterns are monitored. After one hour of the experiment,
the data that are saved in the logger are studied which reveals
not a single instance of unauthorized access.

VIII. COMPARISON WITH OTHER SCHEMES
A. COMPARISON WITH SCHEME IN [36]
In [36], the authors proposed a MUSE scheme with efficient
access control for cloud storage, where the keyword index
and trapdoor can be generated with the help of a proxy
server. To achieve this authors constructed a new MUSE
scheme, where the keyword index and trapdoor can be gen-
erated with the help of an additional proxy server. It may be
noted that in our scheme, we need not generate any such index
and thus is free from the additional index management and is
also free from the risk of leakage from the index.

Also in [36], the core mathematical construct for the
searchable encryption is bi-linear mapping, which is a com-
putationally intensive module. It may be noted that the
scheme proposed in this paper is the PEKS scheme which is
free from such bi-linear mapping. To the best of our knowl-
edge, this is the only such PEKS scheme which is free from
bi-linear mapping and is much more efficient and easy to
implement.

The search complexity of the scheme proposed in this
paper is the number of finite field operation which is linear
in |C| for a cipher file of size |C|. Although the complexity
analysis of the search is not explicitly mentioned, but from
Algorithm 4 of [36], it is clear that search complexity is O(n)
where n is the number of keywords in a cipher file.
Since we are doing sentence search where each word is of
length λ, n in [36] is equivalent to |C|

λ
, where |C| is the size

of the cipher file. So, when expressed in our notation, the
search complexity of [36] is also linear in |C| but operations
are in the elliptic curve which is costly compared to finite
field operations.

B. COMPARISON WITH SCHEME IN [37]
In [37] authors proposed a template of adaptively secure
searchable encryption scheme with access control without
any practical instantiation and so the comparison seems dif-
ficult. However, we observed that their scheme is based
on the SSE of [21]. One problem in SSE is that adaptive
security and string search cannot be achieved simultaneously.

VOLUME 7, 2019 133287

K. R. Rao et al.: R-PEKS: RBAC Enabled PEKS for Secure Access of Cloud Data

In this paper, we emphasis on a customized search under three
application scenarios by enforcing a string search without
compromising the security. So the scheme of [37] cannot be
adapted for the application scenarios which are considered in
this paper.

IX. CONCLUSION AND FUTURE WORK
RBAC enabled PEKS is the most suitable and efficient solu-
tion for secure search applications in a multi-user setting
where user-permissions assignments are updated frequently.
Towards this, we have designed R-PEKS. We have designed
a new PEKS, called 5PEKS for this. In the threat model,
we have considered honest-but-curious CSP as well as data
users and have analyzed the security requirements. Finally,
we have shown R-PEKS to be secure under the definition
of adaptive security and also provides hosted data confiden-
tiality by secure access. The experiment is conducted on the
TIMIT speech dataset [33] to evaluate the performance of
our proposed model. We have shown that with respect to
the PEKS of [4] for string identification, our PEKS scheme,
i.e., 5PEKS is efficient by 97%. We have also shown that
using R-PEKS, a user can gain up to 90% efficiency on
searching when the share of data pertaining to him is 10%
of the whole cloud data. For the comparison study, we also
have implemented PEKS of [4] with RBAC and named it r-
PEKS. With the generated synthetic dataset, we have shown
that the efficiency of R-PEKS against r-PEKS is up to 87% for
encryption and 97% for searching.We have developed the test
automation framework and have determined the functional
correctness of R-PEKS by it. It might be of interest to explore
how PEKS can be integrated with dynamic user-permission
assignments using the least privilege user-role assignment
problem for better performance and security.

REFERENCES
[1] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano, ‘‘Public key

encryption with keyword search,’’ in Proc. 23rd Int. Conf. Theory Appl.
Cryptograph. Techn., Cham, Switzerland, 2004, pp. 506–522.

[2] H. Yin, J. Zhang, Y. Xiong, L. Ou, F. Lil, S. Liao, and K. Li, ‘‘CP-ABSE:
A ciphertext-policy attribute-based searchable encryption scheme,’’ IEEE
Access, vol. 7, pp. 5682–5694, 2019.

[3] I. G. Ray, Y. Rahulamathava, and M. Rajarajan, ‘‘A new lightweight
symmetric searchable encryption scheme for string identification,’’ IEEE
Trans. Cloud Comput., to be published. doi: 10.1109/TCC.2018.2820014.

[4] I. G. Ray and M. Rajarajan, ‘‘A public key encryption scheme for string
identification,’’ in Proc. 16th IEEE Trustcom/BigDataSE/ICESS, Sydney,
NSW, Australia, Aug. 2017, pp. 104–111.

[5] H. Cui, Z. Wan, R. H. Deng, G. Wang, and Y. Li, ‘‘Efficient and expressive
keyword search over encrypted data in cloud,’’ IEEE Trans. Depend. Sec.
Comput., vol. 15, no. 3, pp. 409–422, May/Jun. 2018.

[6] L. Y. Zhang, Y. Zheng, J. Weng, C. Wang, Z. Shan, and K. Ren, ‘‘You can
access but you cannot leak: Defending against illegal content redistribution
in encrypted cloud media center,’’ IEEE Trans. Depend. Sec. Comput., to
be published. doi: 10.1109/TDSC.2018.2864748.

[7] D. R. Kuhn, E. J. Coyne, and T. R. Weil, ‘‘Adding attributes to role-based
access control,’’ IEEE Comput., vol. 43, no. 6, pp. 79–81, Jun. 2010.

[8] K. He, J. Guo, J. Weng, J. Weng, J. K. Liu, and X. Yi, ‘‘Attribute-
based hybrid Boolean keyword search over outsourced encrypted data,’’
IEEE Trans. Depend. Sec. Comput., to be published. doi: 10.1109/TDSC.
2018.2864186.

[9] Z. Shen, J. Shu, and W. Xue, ‘‘Keyword search with access control over
encrypted cloud data,’’ IEEE Sensors J., vol. 17, no. 3, pp. 858–868,
Feb. 2017.

[10] J. Benaloh, M. Chase, E. Horvitz, and K. Lauter, ‘‘Patient controlled
encryption: Ensuring privacy of electronic medical records,’’ in Proc.
16th ACM Workshop Cloud Comput. Secur., Chicago, IL, USA, 2009,
pp. 103–114.

[11] J. Vaidya, V. Atluri, J. Warner, and Q. Guo, ‘‘Role engineering via pri-
oritized subset enumeration,’’ IEEE Trans. Depend. Sec. Comput., vol. 7,
no. 3, pp. 300–314, Jul./Sep. 2010.

[12] Q. Wang, M. He, M. Du, S. S. M. Chow, R. W. F. Lai, and Q. Zou,
‘‘Searchable encryption over feature-rich data,’’ IEEE Trans. Depend. Sec.
Comput., vol. 15, no. 3, pp. 496–510, May/Jun. 2018.

[13] C. Van Rompay, R. Molva, and M. Önen, ‘‘Secure and scalable multi-user
searchable encryption,’’ in Proc. 6th Int. Workshop Secur. Cloud Comput.,
Incheon, South Korea, 2018, pp. 15–25.

[14] K. Riad, R. Hamza, and H. Yani, ‘‘Sensitive and energetic IoT access
control for managing cloud electronic health records,’’ IEEE Access, vol. 7,
pp. 86384–86393, 2019.

[15] L. Zhou, V. Varadharajan, and H. Hitchens, ‘‘Achieving secure role-based
access control on encrypted data in cloud storage,’’ IEEE Trans. Inf.
Forensics Security, vol. 8, no. 12, pp. 1947–1960, Dec. 2013.

[16] E.-J. Goh, H. Shacham, N. Modadugu, and D. Boneh, ‘‘SiRiUS: Securing
remote untrusted storage,’’ in Proc. 10th Annu. Netw. Distrib. Syst. Secur.
Symp., San Diego, CA, USA, 2003, pp. 1–25.

[17] S. Wang, S. Jia, and Y. Zhang, ‘‘Verifiable and multi-keyword searchable
attribute-based encryption scheme for cloud storage,’’ IEEE Access, vol. 7,
pp. 50136–50147, 2019.

[18] S. Wang, J. Ye, and Y. Zhang, ‘‘A keyword searchable attribute-based
encryption scheme with attribute update for cloud storage,’’ PLoS ONE,
vol. 13, no. 5, 2018, Art. no. e0197318.

[19] S.Wang, Y. Zhang, andY. Zhang, ‘‘A blockchain-based framework for data
sharing with fine-grained access control in decentralized storage systems,’’
IEEE Access, vol. 6, pp. 38437–38450, Jun. 2018.

[20] S. Wang, D. Zhang, Y. Zhang, and L. Liu, ‘‘Efficiently revocable and
searchable attribute-based encryption scheme for mobile cloud storage,’’
IEEE Access, vol. 6, pp. 30444–30457, 2018.

[21] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, ‘‘Searchable symmet-
ric encryption: Improved definitions and efficient constructions,’’ J. Com-
put. Secur., vol. 19, no. 5, pp. 895–934, Jan. 2011.

[22] Z. Liu, Z. Wang, X. Cheng, C. Jia, and K. Yuan, ‘‘Multi-user searchable
encryption with coarser-grained access control in hybrid cloud,’’ in Proc.
4th Int. Conf. Emerg. Intell. Data Web Technol., Xi’an, China, Sep. 2013,
pp. 249–255.

[23] B. Cui, Z. Liu, and L. Wang, ‘‘Key-aggregate searchable encryption
(KASE) for group data sharing via cloud storage,’’ IEEE Trans. Comput.,
vol. 65, no. 8, pp. 2374–2385, Aug. 2016.

[24] W. Sun, S. Yu, W. Lou, Y. T. Hou, and H. Li, ‘‘Protecting your right:
Attribute-based keyword search with fine-grained owner-enforced search
authorization in the cloud,’’ in Proc. 33rd Annu. IEEE Conf. Comput.
Commun., Toronto, ON, Canada, Apr./May 2014, pp. 226–234.

[25] Y. Yang, X. Liu, and R. Deng, ‘‘Multi-user multi-keyword rank search over
encrypted data in arbitrary language,’’ IEEE Trans. Depend. Sec. Comput.,
to be published. doi: 10.1109/TDSC.2017.2787588.

[26] G.Wang, C. Liu, Y. Dong, P. Han, H. Pan, and B. Fang, ‘‘IDCrypt: Amulti-
user searchable symmetric encryption scheme for cloud applications,’’
IEEE Access, vol. 6, pp. 2908–2921, 2017.

[27] W. Shen, J. Qin, J. Yu, R. Hao, and J. Hu, ‘‘Enabling identity-based
integrity auditing and data sharing with sensitive information hiding for
secure cloud storage,’’ IEEE Trans. Inf. Forensics Security, vol. 14, no. 2,
pp. 331–346, Feb. 2019.

[28] M. Liu, Y. Zhao, and S. Chen, ‘‘eCK-security authenticated key agreement
protocol based onCDH assumption,’’ inProc. 2nd IEEE Int. Conf. Comput.
Commun., Chengdu, China, Oct. 2016, pp. 213–216.

[29] J. Katz and Y. Lindell, Introduction to Modern Cryptography. Boca Raton,
FL, USA: CRC Press, 2014.

[30] D. R. Stinson, Cryptography: Theory and Practice. Boca Raton, FL, USA:
CRC Press, 2005.

[31] R. Sandhu, D. F. Ferraiolo, and D. R. Kuhn, ‘‘The NIST model for role-
based access control: Towards a unified standard,’’ in Proc. 5th ACM
Workshop Role-Based Access Control, Berlin, Germany, 2000.

[32] D. Xu, M. Tu, M. Sanford, L. Thomas, D. Woodraska, and W. Xu, ‘‘Auto-
mated security test generation with formal threat models,’’ IEEE Trans.
Depend. Sec. Comput., vol. 9, no. 4, pp. 526–540, Jul./Aug. 2012.

[33] TIMIT Acoustic-Phonetic Continuous Speech Corpus. Accessed: 2007.
[Online]. Available: http://www.fon.hum.uva.nl/david/ma_ssp/2007/timit/
train/dr5/fsdc0/

133288 VOLUME 7, 2019

http://dx.doi.org/10.1109/TCC.2018.2820014
http://dx.doi.org/10.1109/TDSC.2018.2864748
http://dx.doi.org/10.1109/TDSC.2018.2864186
http://dx.doi.org/10.1109/TDSC.2018.2864186
http://dx.doi.org/10.1109/TDSC.2017.2787588

K. R. Rao et al.: R-PEKS: RBAC Enabled PEKS for Secure Access of Cloud Data

[34] L. Wybouw-Cognard, ‘‘Test automation framework,’’
U.S. Patent 9 925 872, Aug. 22 2002.

[35] R. Li, H. Li, W. Wang, X. Ma, and X. Gu, ‘‘RMiner: A tool set for
role mining,’’ in Proc. 18th ACM Symp. Access Control Models Technol.,
Amsterdam, The Netherlands, 2013, pp. 193–196.

[36] Z. Lv,M. Zhang, andD. Feng, ‘‘Multi-user searchable encryption with effi-
cient access control for cloud storage,’’ in Proc. 6th Int. Conf. Availability,
Rel. Secur., Singapore, Dec. 2014, pp. 366–373.

[37] N. Löken, ‘‘Searchable encryption with access control,’’ in Proc. 12th Int.
Conf. Availability, Rel. Secur., Reggio Calabria, Italy, 2017, Art. no. 24.

K. RAJESH RAO received the B.E. degree in com-
puter science and engineering from Visvesvaraya
Technological University, Belgaum, in 2008, and
the M.Tech. degree in computer science and infor-
mation security from the Manipal Institute of
Technology, Manipal, India, in 2012. He is cur-
rently pursuing the Ph.D. degree. Hewas a Visiting
Researcher with the Information Security Group,
City, University of London, U.K., from 2018
to 2019. He is currently an Assistant Professor-

Senior with the Department of Information and Communication Technology,
Manipal Institute of Technology. His research interests include but is not
limited to cloud security, access control models, and applied cryptography.

INDRANIL GHOSH RAY received the B.Sc.
degree (Hons.) in mathematics from Calcutta Uni-
versity, in 2000, the MCA (Master of Com-
puter Applications) degree from the University of
Kalyani, in 2003, and the Ph.D. degree in com-
puter science from the Indian Statistical Institute,
in 2016. He worked in software industry for six
years as a Software Engineer and a Senior Soft-
ware Engineer. He has been a Research Associate
with the Information Security Group, School of

Engineering and Mathematical Sciences, City, University of London, U.K.,
since June 2016. His research interest includes but is not limited to homo-
morphic encryption and its application in privacy preserving, cloud comput-
ing, searchable symmetric encryption, public key encryption with keyword
search, MDS codes and its applications in lightweight cryptography, and
algebraic immunity of S-Boxes based on power mappings.

WAQAR ASIF received the B.Eng. and M.S.
degrees from well-reputed institutions in Pakistan,
in 2009 and 2012, respectively, and the Ph.D.
degree from the Department of Electrical and
Computer Engineering, City, University of Lon-
don, in 2016, where he is currently a Research
Fellow. Before moving to U.K., he was a Lecturer
with Bahria University, Pakistan, for a year. He
secured multiple merit-based scholarships, which
include an Erasmus Mundus STrongTies Scholar-

ship for one-and-half years for Cyprus, where he was a Researcher with
Frederick University. His research interests include but is not limited to
graph theory, sensor networks, network performance metrics, blockchain,
and network privacy.

ASHALATHA NAYAK received the B.Tech. and
M.Tech. degrees in computer science and engi-
neering from Mangalore University, Karnataka,
India, and the Ph.D. degree from the School of
Information Technology, IIT Kharagpur, in the
area of model-based testing. She is currently a
Professor and the Head of the Department of Com-
puter Science and Engineering, Manipal Insti-
tute of Technology, Mahe, Manipal, India. Her
research interests include semantic web, software

testing, intelligent agents, and cloud security.

MUTTUKRISHNAN RAJARAJAN is currently
a Professor of security engineering with the
City, University of London, U.K., where he
currently leads the Information Security Group.
He is a Visiting Researcher with the British
Telecommunication’s Security Research and Inno-
vation Laboratory. His research interests include
privacy-preserving data analytics, cloud comput-
ing, the Internet of Things security, and wireless
networks. He has published well over 300 articles

and continues to be involved in the editorial boards and technical programme
committees of several international security and privacy conferences and
journals. He is an Advisory Board Member of the Institute of Information
Security Professionals, U.K., and acts as an advisor to theU.K.Government’s
Identity Assurance Programme (Verify U.K.).

VOLUME 7, 2019 133289

	INTRODUCTION
	RELATED WORK
	ARCHITECTURE OF OUR PROPOSED MODEL - R-PEKS
	R-PEKS COMPONENTS
	PEKS: DEFINITIONS AND PRELIMINARIES
	DOCUMENT COLLECTIONS AND DATA STRUCTURES
	CRYPTOGRAPHIC PRIMITIVES
	PUBLIC KEY ENCRYPTION WITH SEARCHING

	OUR PEKS SCHEME
	RBAC MODEL

	R-PEKS DESIGN
	R-PEKS SCHEME

	SECURITY ANALYSIS
	SECURITY OF PEKS
	COMPUTATIONAL DIFFIE-HELLMAN PROBLEM (CDH)
	THE SIMULATOR S
	DISCUSSION ON ADAPTIVE SECURITY OF PEKS

	SECURITY OF R-PEKS: DATA CONFIDENTIALITY BY SECURE ACCESS

	EXPERIMENTAL RESULTS
	CREATION OF RBAC CONFIGURATION USING RMINER
	PERFORMANCE ANALYSIS ON PEKS AND R-PEKS
	PERFORMANCE OF PEKS
	PERFORMANCE OF R-PEKS AND PEKS
	PERFORMANCE OF DIFFERENT PEKS SCHEMES WITH RBAC
	AUTOMATION OF SECURE ACCESS BY R-PEKS

	COMPARISON WITH OTHER SCHEMES
	COMPARISON WITH SCHEME IN lv2014multi
	COMPARISON WITH SCHEME IN loken2017searchable

	CONCLUSION AND FUTURE WORK
	REFERENCES
	Biographies
	K. RAJESH RAO
	INDRANIL GHOSH RAY
	WAQAR ASIF
	ASHALATHA NAYAK
	MUTTUKRISHNAN RAJARAJAN

