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Abstract During the past decades, the problem of finding leaks in Water Distribution 

Networks (WDN) has been controversy. The quicker detection of leaks prevents water loss 

and helps avoiding their economic and environmental consequences. On the other hand, 

increasing the speed of leak detection increases the false leak detection that imposes high 

costs. In this paper, we propose a real-time hybrid method using AI algorithms and 

hydraulic relations for detecting and locating leaks and identifying the volume of losses 

material. The proposed method relies on simple and cost-effective flow sensors installed 

on each junction in the pipeline network. We demonstrate how influential features for leak 

detection would be generated by using hydraulic equations like Hazen-Williams, Darcy-
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Weisbach and pressure drop. Through exploiting Decision Tree, KNN, random forest, and 

Bayesian network we build predictive models and based on the pipeline topology, we 

locate leaks and their pressure. Comparing the results of applying the proposed method on 

various leak scenarios shows that the proposed method in this paper, outperforms other 

existing methods. 

 

Keywords: WDN, Leak, Flow, Pressure, Machine Learning  

 

1 Introduction 

Pipeline systems, either single pipe or a pipe network, may transport oil, gas, water, etc. 

Leaks in pipes may occur due to improper pipe material, weak joints, earth movement, 

internal corrosion, corrosive soils, construction or utility digging, seasonal changes in 

temperature, heavy traffic load, tidal influence, water hammer, air entrapment, and so on. 

Leakage detection in pipeline networks is important because of the value of the material 

which flows in the pipe and the possible environmental damages that a leak may cause. 

Despite the importance of leakage detection and localization, still not all its related effects 

and aspects are studied [1]. In particular, leakage in WDNs may cause water scarcity, 

ground subsidence, and sinkholes that can be life threatening [2][3]. 

Many different methods for leakage detection are proposed that can be put in three 

basic categories. The first category consists of the methods that relies on gathering data 

from acoustic instruments [4], camera, ground penetrating radar (GPR), fiber optic [5] 

and alike. The main problem with such methods can be counted as scalability, installation 

and maintenance costs and high power consumption.  

Van Hieu et al. in [6] used wireless sensors and external acoustic instruments to detect 

leaks. Their method mainly relies on the fact that when a leak happens in a pipe an 

acoustic sound occurs. However, noise may drastically affect their system. Moreover, its 

time complexity is high and is expensive to deploy. Khalif et al. in [7] used an internal 

acoustic instrument named “hydrophone”. Hydrophones are pushed into the pipe network 

and move with the flow. They send the acoustic waves through the sensors that are 

deployed on the pipes. Applicability of this method depends on the pipe diameters and 

material. Moreover, applying this method over a large-scale water network is expensive 

and processing its generated signals is time consuming. Huang et al. [8]  in 2007 presented 

a method that uses fiber optic as a tool for gathering information. In each pipe, an acoustic 

pressure induces an optical phase signal on the optical fiber fixed on the surface of the 

pipe. By finding phase differences from two points with the same length, leaks are 

detected. This system is expensive and when a part of a fiber optic encounters a problem, 

the whole pipe cannot be monitored. Sinha et al. [4] proposed  three different methods 

through using vision based systems to detect leaks. Similar to closed circuit television 

(CCTV) their proposed method monitors inside a pipe. Another vision based method they 

proposed, uses laser that is deployed on top of the pipeline. The third method is in the 

form of vision based ultrasonic inspection – Sonar - in which a beam of very high 

frequency coherent sound energy, which is above the human hearing range, is used. The 

sound waves travels into the object that is to be inspected. Based on the reflection of the 

sound waves, issues with the pipe can be detected. Ultrasonic wave reflects most easily 

when it crosses an interface between two materials that are perpendicular to the wave. 

Hence, cracks that lie perpendicular to the wave are easily detected, but cracks that lie 

parallel to the beam usually are not identified by an ultrasonic examination. Evaluation 

of this method is often difficult. The main idea of Hunaidi et al. in [9] is using ground 



     

penetrating radars for leak detection. However, different types of the soil may affect the 

signal penetration. Cody et al. in [10] have applied autoencoders on spectrograms of 

collected hydroacoustic data for leak detection in WDNs. The method however, is 

vulnerable to noise level of the baseline system. In [11]a pipe-in-pipe design integrated 

with wireless information and communication network is proposed for leak prevention 

and detection. Interpipe space in this method should be filled with insulation filler that 

has high wireless communication signal conductivity. In case of leakage from inner pipe, 

wireless communication within the interpipe space would be degraded and leak would be 

detected and located. Although this method can provide leakless pipeline, however it is 

too costly. In [12] vibration sensors are employed and using SVM leakage is detected. 

Although the method is efficient, however due to the limited effective range of the 

sensors, a large number of sensors should be used in a WDN. Noises (e.g. those that are 

generated by opening water-taps) that normally occur in an urban WDN, may negatively 

affect the performance of the proposed method. 

 

Methods in the second category are transient-based which are more popular since 

transient flow may bring more information when a leak happens in a network. The main 

idea behind these methods is comparing transient hydraulic parameters that are collected 

from sensors with the calculated parameters of the steady-state equations. Observing the 

differences between collected and calculated parameters helps identifying abnormal 

situations.  

Al-khomairi in [13] by trial and error found the minimal squares of deviations between 

observed and computed pressure by the equation of motion and continuity pipe. However, 

he considered only a single pipe and ignored noises. Taylor et al. in [14] presented a 

procedure that utilizes transient state pressure to detect leakage in piping systems. 

Transient flow, causes by opening or closing a valve, is analyzed in the time domain by 

the method of characteristics, which is widely used in solving the hyperbolic partial 

differential equations that describe transient-state flow in pipes. The results are then 

transformed into frequency domain by the fast Fourier transform. This method is used to 

develop a frequency response diagram at the valve end. It can be used for comparing the 

frequency response diagram of a modeled system without leaks with the frequency 

response diagram developed by gradually opening or closing a valve at the downstream. 

Although diagram checking instead of using hydraulics equation is a good idea but noises 

in the background may affect the diagrams which demands for more time to check and 

validate. In [15] it is shown that detecting leaks based on leak-reflected signals, while 

there is noise or leak is slight is not applicable. Instead, the use of leak-induced damping 

which is less sensitive to noise is proposed.  However it is shown that the accuracy of this 

method is even lower than other damping based methods [15]. 

Other methods that can be put in the third category, rely on hydraulic sensor data and 

can be referred to as real-time leak detection methods. Shorter time intervals and low 

power consumption to collect and transfer data can be counted as the advantages of these 

methods. Sensors used in these methods are cheaper and more flexible to deploy than the 

sensors of the methods discussed in the previous categories. Data would be collected from 

different types of sensors like underground wireless sensor or smart meters.  In real-time 

monitoring, quantitative parameters like flow and pressure and qualitative parameters 

such as turbid would be accessible through related sensors. Various sensors for measuring 

flow, temperature, pressure and turbid exist at reasonable prices. Depending on the 

application and the required data, sensors’ costs, installation and maintenance fees, one 

or more of such sensors would be exploited. The main idea behind these methods is using 



     

the historical data gathered by sensors to predict future values of parameters by data 

mining models.  

Cuguer´o-Escofet et al. in [16] developed a model-based method for leak detection 

relying on Mont-Carlo. Soldevilla et al. in [17], [18] proposed a method for leak detection 

in Water Distribution Networks (WDNs) based on the use of classifiers (KNN, Bayesian) 

and pressure models. In their proposed method first, pressure data is gathered. Then, in 

the second step, a classifier (K-NN and Bayesian) is applied to obtain residuals with the 

aim of determining the leak locations. They claim that by using the recursive method, 

obtained results would be improved in shorter time since data can be kept up-to-date as 

the new data is available. The method was tested using the data generated by a simulator 

and the tests were conducted in different scenarios with various pressures and classifiers. 

Mashford et al. in [19] described a method for detecting and sizing leaks in a pipe 

network by processing pressure values obtained from a number of sensing points in the 

network using Support Vector Machines (SVMs). Buchberger et al. in [20] presented a 

method for detecting leaks in the residential service zone of WDNs that uses continuous 

measurements of flow rate during the low water use time (winter nights). This method 

uses statistical analysis based on computing the mean and standard deviation of measured 

flow. There are limitations for implementing this algorithm like possibility or 

impossibility of recording data in short time intervals e.g. seconds. Moreover, this method 

can only detect if leak has happened in the WDN but cannot recognize the number and 

placement of the leaks. Mazzolani et al. in [21] proposed a method for estimating leakage 

in WDNs by using flow parameters. They presented a bottom-up methodology for leakage 

assessment in WDNs, based on a physically consistent formulation of the nonlinear 

regression problem and using only WDN inflow readings in a data assimilation approach. 

Their tests were performed on two synthetic WDNs. Obtained results verified the main 

assumptions of their proposed methodology. However, the main disadvantage of this 

method backs to the initial trust in the health of the WDNS, which is hard on large scale 

WDNs. The critical drawback of this work however, is the complexity of acquiring values 

of the required parameters that decreases the reliability of its results. Extensive reviews 

of recent advances on leak detection would be found in [1], [2], [22], [23]. 

We argue that any practical solution for leak detection should be able to detect 

multiple leaks in pipe networks and should identify in what pipe the leaks have happened. 

Also, it should be easily scalable and its deployment and maintenance costs should be 

reasonable. Toward this aim, in this paper, a novel model-based approach for leak 

detection in pipe networks is presented.  

Transient-based methods, which rely on hydraulic equations, cannot solely be used in 

real applications. This is based on the fact that such methods cannot be easily extended 

to large systems. Noises in background can drastically affect their performance, and 

despite their complexity, they are not as effective as expected. In our proposed method, 

we benefit the use of hydraulic equations and the historical and real-time sensor data. We 

use hydrology relations to generate several features that are more sensitive for detecting 

leaks in pipe networks. In effect, by using hydraulic equations on one hand and setting 

the relation between flow data and daily demand in WDNs on the other hand, we find 

discriminating and more sensitive features like velocity for detecting and predicting leaks. 

 In order to test the effectiveness of the proposed method we use the data set that is 

gathered from a real WDN. The data set is used to simulate the WDN. The proposed 

methodology is then validated on different scenarios that are devised with the simulator. 



     

It should be noted that the proposed method is not tested on an actual WDN. The obtained 

results show the superiority of our proposed method over other existing methods. We will 

demonstrate that our proposed method can not only detect and locate a single leak in a 

single pipe but also can detect and locate multiple leaks in a large WDN with an 

acceptable accuracy. Moreover, the proposed method is fast and demands for less 

computational power. Also it is revealed that the method can detect not only burst type 

leaks but also is able to detect and localize small background leaks. Hence, using the 

proposed method and relying on simple and cheap low power consumption sensors that 

have reasonable installation and maintenance expenses, we can expect a healthy WDN. 

This paper is organized as follows. In section 2, we review the hydrology related 

equations and basic principles of hydraulics. In section 3, we discuss our proposed 

method. Section 4 is devoted to the experimental results and the comparison of the 

proposed method with other works. Section 5 concludes the paper. 

 

2 Preliminaries 

In this section, we review important hydraulic principles that we have benefitted in our 

proposed method for leak detection.  

 

Hazen-Williams 

The Hazen-Williams equation is an empirical equation that has long been used for 

calculating the friction loss in pipe network protection systems. The Hazen-Williams head 

loss in terms of flow rate expression is used to establish a relationship between flow rate 

of fluid and the head loss for steady state situation. The Hazen-Williams equation in SI 

unit is as follows, 

𝑉 = 0.848 𝐶 𝑅ℎ
0.63𝑆0.54   (1) 

 

where, V denotes the velocity,  𝑅ℎ indicates hydraulic radius, S shows the slope of the 

energy grade line  and C is the  Hazen-Williams coefficient. Notably, in Eq. (1), C specifies 

the pipes roughness and is not a function of Reynolds number, as in other pressure loss 

equations. The Hazen-Williams formula has the advantage of being simple [24]. In our 

work, we use this equation for calculating the velocity as a notable feature. 

 

Darcy-Weisbach 

Darcy–Weisbach equation is proposed for finding head-loss [25]. Like velocity, head loss 

has an important role in our proposed method for leak detection. Darcy-Weisbach equation 

in SI unit is, 

ℎ𝑓 = 𝐹 × (
𝐿

𝐷
) × (

𝑣2

2𝑔
)   

 

(2) 

 

where ℎ𝑓 and F respectively denote head loss (m) and friction factor. L and D indicate 

length of pipe work (m), and inner diameter of pipe work (m) respectively. v shows the 

velocity of fluid (m/s) and g is the acceleration due to the gravity (m/s²). 

 



     

Pressure drop 

Pressure drop is the difference of the pressure in two points in a WDN. In hydraulics, 

pressure corresponds to density, elevation and gravity and is calculated as [25],   

𝑝 = 𝜌𝑔∆ℎ𝑓 (3) 

 

Pressure drop however is calculated as, 

∆𝑝 = 𝐹 × (
𝜌𝐿

𝐷
) × (

𝑣2

2
) 

(4) 

where, 

𝜌 = density (kg/𝑚3) 

P = pressure (Pa) 

ℎ𝑓 = head loss (m) 

F = friction factor 

L = length of pipe work (m) 

D = inner diameter of pipe work (m) 

v = velocity of fluid (m/s) 

g = acceleration due to gravity (m/s²)  

 

3 Proposed Method 

Our proposed method for detecting leaks relies on both historical and real-time data —that 

are gathered from sensors— and other features that we generate through using hydraulic 

equations discussed in Sec. 2.   

Fig. 1 depicts the schema of our proposed method that is consisted of 3 stages, namely 

Preprocessing, Modeling and Evaluation. We will describe each stage in details in the 

following. 

 

 

Fig. 1 Overview of the proposed method 

 

3.1 Preprocessing 

The aim of this stage is cleaning and putting the data in the format that is required by the 

next stages.  

3.1.1 Raw data conversion 



     

As per our method, the input data should include at the least, flow rate (liter per second) 

in each pipe, time stamp of the gathered data (collected from the flow sensors installed 

on WDN) and the WDN topology. Our proposed method requires a flow sensor be 

installed at each junction. Each junction and each pipe in the WDN should be identified 

with a unique id. By the topology of WDN, however we expect the junctions at each pipe, 

the length and diameter of the pipes and the elevation (position) of each junction be given.  

Table 1 as an example, shows the topology of a WDN.  In the table, Element and ID both 

denote pipes in the network. Scaled length is the length of the pipe, start and end nodes 

signifies the beginning and ending of the pipe with respect to their corresponding 

junctions. For instance, pipe P-2 connects the joints J-2 and J-3. The pipe P-2 is made up 

of ductile iron with the diameter of 350.8mm and its Hazen-William coefficient is 130. 

Junctions of the WDN shown in Table 1, however, are demonstrated in Table 2. At each 

junction a flow sensor is installed and its sensed data is collected in the junction’s 

corresponding demand collection. In Table 2, Element and ID respectively represent a 

junction label and identifier. Elevation denotes the height at which the junction is 

installed. 

An excerpt of flow rate that is recorded at junction J-2 is shown in the Figure 2. To 

reduce the volume of data, we define a time interval in which the median of the recorded 

flow rate will be calculated. This is due to the fact that sensors, record data very frequently 

which causes redundant data. More precisely, given ∆𝑡 denote the time interval and 

assuming the data collection has started from time t1, then for sensor Jx, the raw data will 

be divided into time windows of the length ∆𝑡. In each window the median of the flow 

rate will be calculated as the representative of the window and the time stamp based on 

∆𝑡 will be assigned to the median, i.e., 

𝑚𝑒𝑑𝑖𝑎𝑛(𝑓𝑡1

𝐽2 , 𝑓𝑡2

𝐽2 , … , 𝑓𝑡𝑛

𝐽2) = 𝑓𝑡̅1

𝐽2  (5) 

𝑚𝑒𝑑𝑖𝑎𝑛(𝑓𝑡𝑛+1

𝐽2 , 𝑓𝑡𝑛+2

𝐽2 , … , 𝑓𝑡𝑛+𝑛

𝐽2 ) = 𝑓𝑡̅1+Δ𝑡 
𝐽2  (6) 

. 

. 

. 
 

𝑚𝑒𝑑𝑖𝑎𝑛(𝑓𝑡𝑘𝑛+1

𝐽2 , 𝑓𝑡𝑘𝑛+2

𝐽2 , … , 𝑓𝑡𝑘𝑛+𝑛

𝐽2 )=𝑓𝑡̅1+𝑛Δ𝑡   
𝐽2  (7) 

where 𝑓𝑡𝑛

𝐽2 denote the flow rate recorded at junction  𝐽2 at the time 𝑡𝑛 and  𝑓𝑡̅1+𝑛Δ𝑡

𝐽2  is the 

median of the flow rate at junction 𝐽2 in the time interval Δ𝑡 = [𝑡𝑘𝑛+1, 𝑡𝑘𝑛+𝑛], 𝑘 ≥ 0. ∆𝑡 

can be identified experimentally based on the nature of the sensor and how frequent it 

collects data. We argue that reducing the flow rate as described, would also make the 

system tolerant to the missing values. That is, in the time interval of  ∆𝑡, from the data 

generated by each flow sensor, only the median value of the flow rate is kept. 

The output of this stage is the reduced flow rate at each junction considering the time 

interval ∆𝑡 accompanied with the topology of the WDNs (Length of pipes, pipe’s 

diameter, junction elevation, material and Hazen-William Coefficient).  For instance, the 

flow rate in pipe P-1 measured at the junction R-1 (reservoir 1 where the flow is toward 

J-2) that would be delivered to the next stage is shown in Table 3. In this example, ∆𝑡 is 

set to 1 hour. 

 

 

 



     

 

Table 1 Topology of a sample WDN 

Element ID Length  
(Scaled)(m) 

Start Node Stop Node Diameter 
(mm) 

Material Hazen-Williams 
 C 

P-1 33 49 R-1 J-2 1000.80 Ductile Iron 130 

P-2 35 12 J-2 J-3 350.80 Ductile Iron 130 

P-8 44 16 J-4 J-3 255.58 Ductile Iron 130 

P-10 48 17 J-7 J-8 310.48 Ductile Iron 130 

P-11 50 4 J-8 J-9 35.48 Ductile Iron 130 

P-12 52 17 J-9 J-10 210.48 Ductile Iron 130 

 

 

 

Table 2 Junction description of the WDN described in Table 1. 

 

 

 

Table 3 Reduced flow rate at R-1, calculated in the phase 1 of stage 1. 

Element Timestamp Flow(l/s) 

P-1 12:00:00 AM 1682.23 

P-1 1:00:00 AM 1682.23 

P-1 2:00:00 AM 4336.593 

P-1 3:00:00 AM 5486.387 

P-1 4:00:00 AM 7211.245 

P-1 5:00:00 AM 7285.164 

P-1 6:00:00 AM 7629.999 

 

 

Element ID Elevation(m) Demand Collection 

J-2 32 70 <Collection: 1 item> 

J-3 34 69 <Collection: 1 item> 

J-4 36 70 <Collection: 1 item> 

J-7 45 0 <Collection: 1 item> 

J-8 47 60 <Collection: 1 item> 

J-9 49 50 <Collection: 1 item> 

J-10 51 65 <Collection: 1 item> 



     

 

Fig. 2 Recorded flow rate data at Junction J-2 and its conversion to the reduced flow rate. 

 

3.1.2 Feature generation  

In this phase, we generate new features from raw data using hydraulic equations discussed 

in Sec 2. In subsequent sections we will show how influential these features are. 

To generate velocity and head-loss, we use Eqs. (1) and (2) respectively. Calculating 

velocity based on Hazen-Williams Eq. (1), needs knowing the hydraulic radius, the slope 

of the energy grade line and Hazen-Williams coefficient - we expect WDN topology 

contains C for each pipe. To calculate Eq. (1), first we should calculate the slope of energy 

line as, [25] 

𝑆 =  
ℎ𝑓

𝐿
  

(8) 

where h, f and L respectively denote head-loss, friction factor and length of the pipe. 

Hydraulic radius, however is calculated as, [25] 

𝑅ℎ =
𝐴

𝑃
  

(9) 

where A is the cross-sectional area and P is the wetted perimeter. For a pipe flowing full, 

hydraulic radius is equal to  𝑅ℎ = 𝐷/4  that D denotes the inner diameter of the pipe [25]. 

Head-loss, the other important feature we relies on, is generated by using the Darcy-

Weisbach Eq. (2). To calculate the head-loss, friction factor should be found with 

reference to the moody diagram shown in Figure 3. To do so, initially Reynolds number 

and Relative Roughness should be calculated, 

𝑅𝑒 =
𝑉𝐷

𝑣
 

(10) 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑟𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠 =
𝑒

𝐷
 (11) 

where, 

Re = Reynolds number 

D =  inner diameter (m) 

V =  velocity (m/s) 

ν  =  kinematic viscosity of the fluid (m2/s). 

e  =  pipe roughness (mm) 

https://en.wikipedia.org/wiki/Kinematic_viscosity
https://en.wikipedia.org/wiki/Fluid


     

 

Fig. 3 The Moody diagram for the Darcy-Weisbach friction factor f [25] 

 

We calculate the Relative roughness and Reynolds number to find the friction factor. 

For example, with the relative roughness of 0.004 and the Reynolds number equal to 3 ∗

104  using the black line near 0.004 and moving on it to cross the vertical line at 3 ∗ 104  

Reynolds number, the friction factor would be 0.03. Table 4 shows the results of applying 

this phase on the data shown in Table 3.  

 

Table 4 Velocity and Headloss calculated for R-1 shown in Table 3 

Element Timestep Flow(l/s) 
Velocity 
(equation 1) 

Headloss 
(equation 2) 

P-1 12:00:00 AM 1682.23 0.021415 4.57281E-08 

P-1 1:00:00 AM 1682.23 0.021415 4.57281E-08 

P-1 2:00:00 AM 4336.593 0.055206 2.64145E-07 

P-1 3:00:00 AM 5486.387 0.069844 7.52105E-07 

P-1 4:00:00 AM 7211.245 0.091802 1.03465E-06 

P-1 5:00:00 AM 7285.164 0.092743 1.13971E-06 

P-1 6:00:00 AM 7629.999 0.097133 1.04528E-06 

 

3.1.3 Feature selection 

Feature selection is frequently used as a preprocessing step in machine learning. Feature 

sets sometimes contain several irrelevant and redundant features which impose negative 

effects on the performance of learning methods [26]. Feature selection in effect, is the 

process of choosing a subset of original features in order to optimally reduce the feature 

space according to certain evaluation criteria [27]. The heuristic methods that explore 

search space are commonly used for attribute subset selection. These methods are 



     

typically greedy in nature [28]. Removing features with low variance, removes less 

effective data and reduces dataset dimension and the volume of sample sets. Therefore, 

setting a threshold for variance of each feature can be an approach for feature selection. 

All features whose variance does not meet a predefined threshold would be removed. By 

default, all zero-variance features should be removed, i.e. features that have the same 

value in all samples and consequently do not make any distinction. 

As is shown in Figure 4, many features (including Velocity, Headloss) were generated 

based on flow rate and the water network specifications. However, by using the feature 

selection algorithm we keep more sensitive features. Velocity and Headloss are found as 

dominated features. The element (i.e. pipe), ID (Identifier of the pipe) and Length (Length 

of the pipe) are also kept from the topology.  

 

 

 

 

 

 

 

 

 

4 Data Modeling 

Since leak detection in water network is an imbalanced problem, we should use 

predictors that are based on classification models. The imbalanced problems are highly 

related to cost-sensitive learning. The costs of error for each class are not equal in 

imbalanced problems [29]. Therefore, choosing a suitable model and appropriate 

evaluation metrics can help making good decisions that would result in time and cost 

reduction. 

We use different classifiers, namely, K-nearest-neighborhood (KNN), Decision Tree, 

Random Forest (ensemble method) and Bayesian. KNN is one of the most popular 

classifiers which is a supervised learning algorithm. The KNN classification algorithm 

predicts the test data’s category according to the K training samples which are the nearest 

neighbors to the test sample, and embeds it in the category which has the largest category 

probability [30]. Decision trees are constructed in top-down recursive divide-and-conquer 

manner.  They start with a training set of tuples and their associated class labels. The 

training data are recursively partitioned into smaller subsets as the tree is being built [29]. 

An ensemble for classification is a composite model, made up of a combination of 

classifiers. An individual classifier vote and a class label prediction is returned by the 

ensemble based on the collection of votes. Random Forest classifier is an ensemble of 

decision trees that let each of the trees vote for a class label. Bayesian classifiers are 

statistical classifiers that can predict class membership probabilities such as the 

probability that a given tuple belongs to a particular class. Each of these classifiers has 

pros and cons that are discussed in Table 5. 

Fig. 4 Feature generation and feature selection 

Selected Features 

 Water Network Topology 



     

 

Table 5 Comparison of classifiers KNN, Decision Tree, Random Forest and Bayesian Network 

[31]-[32] 

 Pros Cons 

KNN Robust when using small k 

Easy to implement 

 

Each test data may be close to many points, 

 

Random Forest Improved predictive performance, 

 

Hard to analyze output 

Decision tree Data classification without much 

calculations, 

Tree splitting is locally greedy, 

 

Bayesian Fast and efficient computation,  

Quick training 

Impractical for data sets with many features 

 

 

The test data should be prepared and delivered to each classifier based on the classifier’s 

requirements. The performance of this phase is determined by comparing its predicted 

classes with the actual classes. To make these models more practical and useable, their 

parameters should be tuned based on the quality of results and measures. To be more 

precise, the parameters we have considered for the mentioned models are discussed in the 

following. 

 Decision Tree: 

o criterion: criteria are “gini” for the Gini impurity and “entropy” for the information 

gain. 

o splitter: Supported strategies are “best” to choose the best split not “random” from 

the best chooses. 

 Random forest classifier: 

o n_estimators: the number of trees in the forest ( n = 100 ) 

  k-nearest neighbors: 

o n_neighbors: Number of neighbors to use (n = 5) 

 Gaussian Naive Bayes: 

o priors: Prior probabilities of the classes (none) 

When the model is trained it can detect in which pipe a leak has happened. An example 

is shown in Fig. 5. Test data depicted in Fig.5(A) shows if pipes have had a leakage 

(Target=1) or not (Target=0). Junctions corresponding to the pipe are identified by 

knowing the WDN topology through application of the “finding junctions” module - Fig. 

5(B).  Relying on the WDN topology and the corresponding sensor data, then we calculate 

the pressure drops at the leaks by using equation 2 and 3 -Fig. 5(C-D). 

 



     

  

 

 

 

5 Experiments 

In order to test the proposed method, we have relied on a real data set. However, since 

the data set was offline it was not possible to test all plausible leaks. Hence, initially we 

simulated the WDN using Water GEMS simulator. The simulator modeled the WDN and 

then we introduced different leak scenarios in the WDN. In the following we describe the 

used dataset and the simulator and then will discuss different scenarios that we have 

developed for testing the proposed method. 

 

5.1 Data set 

We use the Vitens company data set of the open challenge 2015 that describes the water 

distribution networks of Leeuwarden city in Netherland [33]. This data set contains data 

of flow, pressure, temperature, turbid, conductivity and acidity. We transfer the cubic 

meter per hour unit of flow to liter per second.  In our proposed method we do not use 

temperature, turbid, conductivity and acidity features since the number of the sensors that 

were used in Leeuwarden water network for collecting such information were few. 

Moreover, installing such sensors in any WDN imposes high costs. Our proposed method 

is aimed to provide the highest accuracy for leak detection with the least cost. 

Each sensor data in the dataset is accompanied by a timestamp that shows the time the 

data item is gathered. Moreover, there are some comments in the dataset that gives 

information about location, engineering units and sensor accuracy. A sample record from 

the dataset of Vitens Company is shown in Figure 6. Comments in the file of data set 

contain valuable information that help identifying the types of sensors, exact location of 

sensors, engineering units, start and ending date of collecting data and finally the time 

resolution. 

Fig. 5 Building leaking model, (A) preparing test data containing leaking and healthy pipes               

(B) Identifying junctions associated with pipes , (C), (D) Determining pressure drop at the leakages  

 



     

 

Fig. 6 The sample of recorded data from Vitens  

 

5.2 Simulator 

One of the general, comprehensive and simple water distribution modeling applications 

is Water GEMS [34]. For modeling a water network with Water GEMS first pipes, 

junctions and reservoirs should be initialized by using tools in the application and 

information from dataset. Then inputs like demand and the pipe materials should be 

provided.   

In order to reconstruct the pipeline network, first we located the junctions and sensors 

on the google map using the information provided in the dataset. Fig.7 shows locations 

of the sensors on the pipeline network of the Leeuwarden city. Using the Water GEMS 

functionality the map was put as a background layer for drawing the topology.  Fig.8 

shows the abstract map of the WDN that is generated by the simulator. As can be seen in 

Fig. 8 this network consists of one reservoir, 27 pipes and 18 junctions. It should be 

noticed that a flow sensor is installed on each junction. 

                                                                                      

 

Fig. 7 sensor location in Leeuwarden city in Netherland 

 

We set the Water GEMS parameters related to the junctions and pipes using the data 

read from the dataset as, 



     

Junction: General (ID, label), Geometry (x, y), Demand (Demand Collection), Physical 

(Elevation, Zone), Water Quality, Active Topology (True, False) 

Pipe: General (ID, label), Geometry (collection), initial setting (open/close), Physical 

(Elevation, Diameter, Material, Hazen-Williams C, Length) 

Feeding Water GEMS with the data read from the dataset, the WDN was simulated. 

Figure 9 for instance, shows the flow in a typical day at the junction J-2 generated by the 

simulator. 

 

 

Fig. 8 water network topology 

 

 

Fig. 9 24 hour Flow pattern in j-2 

 

5.3 Scenarios 

In order to test the performance of the proposed method in this paper, we have devised 8 

different leak scenarios that depict most possible leaks in a WDN. As the WDN is in the 

residential area, any spot in the WDN can be a leak location and all pipes can be assumed 

as a damaged pipe. In these 8 scenarios, we have considered all the different situations 

and have investigated them. For instance, we have devised different scenarios with long 

and short length pipes, different pressure (burst and slight leaks) or various leak distance 

from the sensors. Scenarios are shown in Table 7. In order to show how effective the 

proposed method is, for each scenario we calculate the accuracy, precision and f-score. 

In general, accuracy tells the percentage of data that are correctly classified by our model. 

Therefore, it would be a proper metric when classes are evenly distributed. However, 

since our data is imbalanced, we calculate precision to show its exactness. F-Score, as the 

harmonic mean of precision and recall are also reported. Table 6 shows the confusion 
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matrix and accuracy, precision, recall and F-Score are calculated using equations (12)-

(15). Obtained results for each scenario is depicted in the last column of Table 7.  

 

Table 6 Confusion Matrix [29] 

 Predicted class 

Yes        No 

Actual 

class 

 

Yes 

 

No 

TP FN 

FP 

 

TN 

 

 

Accuracy =
TP + TN

P + N
 

(12) 

Precision =
TP

TP + FP
   

(13) 

Recall =  
TP

TP + FN
 

(14) 

F score =  
2 × precision × recall

percision + recall
 

(15) 

 

Table 7  Scenario Description and results of applying the proposed method 

(a) 

   
Number 

of Leaks 

Leaking 

pipe 
junctions 

pressure 

(Kpa) 

Demand 

Flow 
(L/S) 

Results 

sc
e
n

a
r
io

-1
 

Train 

Data 

Day-

1 
1 P-25 (j-18, j-20) 1 1 

Model accuracy Precision recall f score 

RF 93.4 100 92.9 96.3 

Dtree 91.7 100 91.07 95.3 

KNN 91.7 93.02 98.4 95.6 

Bayes 95.8 100 95.2 97.5 
 

Test 

Data 

Day-

2 
1 P-10 (j-7, j-8) 1 1 

 

(b) 

 

 
  

Number 

of 

Leaks 

Leaking 
pipe 

junctions 
pressure 
(Kpa) 

Demand 

Flow 

(L/S) 

Results 

S
c
e
n

a
r
io

-2
 Train 

Data 

Day-

1 
3 

p-33 (j-4, j-7) 200 200 Model accuracy Precision recall f score 

RF 94.7 100 93.92 96.8 

Dtree 93.6 100 92.6 96.1 

KNN 92.27 97 93.9 95.4 

Bayes 96.13 100 95.5 97.7 
 

p-13 (j-10, j-11) 200 200 

p-21 (j-17,j16) 200 200 

Test 
Data 

Day-
2 

1 p-35 (j-7, j-20) 200 200 

 



     

 

(c) 

    
Number 
of Leaks 

Leaking 
pipe 

junctions 
pressure 

(Kpa) 

Demand 

Flow 

(L/S) 

Results 

S
c
e
n

a
r
io

-3
 Train 

Data 
Day-

1 
4 

P-10 (j-7,j-8) 1 1 
Model accuracy Precision recall f score 

RF 94.2 100 93.2 96.5 

Dtree 91.58 100 90.24 94.8 

KNN 89.6 94.07 93.92 94 

Bayes 96.2 100 95.6 97.7 
 

P-2 (j-2,j-3) 2 2 

P-32 (j-12,j-16) 1 1 

p-12 (j-9,j-10) 1 1 

Test 

Data 

Day-

2 

2 P-31 (j-17,j-11) 1 1 

P-17 (j-10,j-14) 1 1 

 

(d) 

    
Number 

of Leaks 

Leaking 

pipe 
junctions 

pressure 

(Kpa) 

Demand 
Flow 

(L/S) 

Results 

S
c
e
n

a
r
io

-4
 

Trai
n 

Data 

Day-1 4 

P-10 (j-7,j-8) 1 1 

Model accuracy Precision recall f score 

RF 96.4 100 94.4 97.4 

Dtree 94.3 100 91.04 95.3 

KNN 78.18 76.99 93.7 84.5 

Bayes 96.9 100 95.2 97.5 
 

P-2 (j-2,j-3) 1 1 

P-32 (j-12,j-16) 1 1 

P-12 (j-9,j-10) 1 1 

Test 
Data 

Day-2 6 

P-35 (j-7,j-20) 1 1 

P-24 (j-20,j-19) 1 1 

P-14 (j-11,j-12) 1 1 

P-20 (j-16,j-14) 1 1 

P-8 (j-4,j-3) 1 1 

P-26 (j-2,j-21) 1 1 

 

(e) 

    
Number 

of 

Leaks 

Leaking 

pipe 
junctions 

pressure 

(Kpa) 

Demand 
Flow 

(L/S) 

Results 

S
c
e
n

a
r
io

-5
 

Train 

Data 

Day-

1 
1 P-33 (j-4,j-7) 1 1 

Model accuracy Precision recall f score 

RF 99.15 100 98.6 99.3 

Dtree 94.3 100 94.8 97.3 

KNN 76.6 73.18 99.8 84.4 

Bayes 96.4 94.7 100 97.3 
 

Test 

Data 

Day-

2 
6 

P-35 (j-7,j-20) 1 1 

P-24 (j-20,j-19) 1 1 

P-14 (j-11,j-12) 1 1 

P-20 (j-16,j-14) 1 1 

P-8 (j-4,j-3) 1 1 

P-26 (j-2,j-21) 1 1 

 

 

 

(f) 



     

   
Number 
of Leaks 

Leaking 
pipe 

junctions 
pressure 

(Kpa) 

Demand 

Flow 

(L/S) 

Results 

S
c
e
n

a
r
io

-6
 

Train 
Data 

Day-
1 

1 P-33 (j-4,j-7) 1 1 
Model accuracy Precision recall f score 

RF 95.3 100 93.7 96.7 

Dtree 88.3 100 84.3 91.5 

KNN 76.9 76.61 99.1 86.4 

Bayes 89.9 100 86.4 92.7 
 

Test 

Data 

Day-

2 
4 

P-35 (j-7,j-20) 50 35 

P-24 (j-20,j-19) 90 70 

P-14 (j-11,j-12) 70 45 

P-20 (j-16,j-14) 60 40 

 

(g) 

   
Number 

of Leaks 

Leaking 

pipe 
junctions 

pressure 

(Kpa) 

Demand 
Flow 

(L/S) 

Results 

S
c
e
n

a
r
io

-7
 

Train 

Data 

Day-

1 
4 

P-35 (j-7,j-20) 50 35 Model accuracy Precision recall f score 

RF 96.14 100 95.8 97.8 

Dtree 86.7 100 85.69 92.2 

KNN 92.7 94.9 97.3 96.1 

Bayes 100 100 100 100 
 

P-24 (j-20,j-19) 90 70 

P-14 (j-11,j-12) 70 45 

P-20 (j-16,j-14) 60 40 

Test 
Data 

Day-
2 

1 P-33 (j-4,j-7) 1 1 

 

(h) 

   

Number 

of 
Leaks 

Leaking 

pipe 
junctions 

pressure 

(Kpa) 

Demand 

Flow 
(L/S) 

Results 

S
c
e
n

a
r
io

-8
 

Train 
Data 

Day- 

1 
No leak 

Model accuracy Precision recall f score 

RF 72 71.5 95.2 81.6 

Dtree 72.3 71.87 92.9 81 

KNN 79.1 75.46 99.6 85.8 

Bayes 79.1 75.46 99.6 85.8 
 

Day- 
2 

No leak 

Day- 

3 
1 P-31 (j-17,J-11) 1 1 

Day- 

4 
2 

P-17 (J-10,j-14) 1 1 

P-30 (J-18,J-8) 1 1 

Test 

Data 

Day-

5 
6 

P-35 (j-7,j-20) 1 1 

P-24 (j-20,j-19) 1 1 

P-14 (j-11,j-12) 1 1 

P-20 (j-16,j-14) 1 1 

P-8 (j-4,j-3) 1 1 

P-26 (j-2,j-21) 1 1 

 

To implement scenario-1 shown in Table 7(a), we intentionally applied one leak in the 

pipe (P-25)  that is between the junctions  (j-18, j-20) with the pressure of 1 Kpa and 

demand leak of 1 L/s. The pressure, represents the pressure at the leak and Demand Flow 

indicates the waste of water in the unit of Liter per second. After building the model, we 

generated the test data by adding a leak in the pipe (P-10) between junctions (j-7, j-8) 

with the same pressure of 1 Kpa and demand leak of 1 L/s. The results are shown in Table 

7(a). The proposed method has been able to identify the leak one hour after the leakage 

is initiated. However, the evaluation of the measurements are based on the data gathered 

for the whole 27 pipes in 24 hours. In scenario-1 with all models, accuracy is the lowest 



     

measure and f-score is the highest. In terms of f-score, which is the combination of recall 

and accuracy, performance of Bayesian and KNN are equal and slightly higher than the 

other models.  As we mentioned, F-score is the proper measure for this kind of problems. 

In scenario-2 there are 3 leaks in train data and 1 leak in test data. In scenario-3 we have 

devised 4 leaks in different parts of the city in train data but in the test data, two leaks are 

assumed. In scenario-4, the number of leaks in train data is 4 but there are 6 leaks in test 

data. In scenario-5 the number of leaks in train data is 1 whereas there are 6 leaks in test 

data. Scenarios 6 and 7 have different leaks in train and test data with varying pressures 

and demand flows. In scenario-8 we considered data of 4 days for training. Results 

obtained for each scenario is shown in Table 7. 

Figures 10-13 summarizes the accuracy, precision, recall and f-measures calculated for 

all the scenarios. Accuracy shows how well the classifier can find the leaks.  As can be 

seen in Fig. 10 most of the accuracy measures are high which is due to the imbalanced 

problem. Sensitivity (recall) and precision are more reasonable measures for evaluation 

of the performance of the proposed method.  

From Fig. 11 it can be observed that random forest and decision tree are more reliable 

and KNN is good in the early scenarios that have more leaks in train data than test data. 

Although high precision is good but is not enough since if we detect a leak that actually 

has not happened, its associated costs would be high, because of digging the earth and 

time and effort that should be consumed. Recall or sensitivity depicts the leaks that are 

detected among all the actual leaks.  If a leak happens that the system cannot find it, 

financial costs and environmental damages can be important issues to be considered. 

Therefor recall would be an appropriate measure. 

All the obtained f-scores are shown in Fig. 13. In this figure, it is noticeable that 80.5% 

of the models are getting results above 92 percent in all scenarios. The best result achieved 

in most of the scenarios is by Naïve Bayesian Model that is in [85.8,100]. Random Forest 

as an ensemble shows to be a reliable model. Decision Tree remains steady in all the 

scenarios. However, the KNN decreases in scenarios 5, 6 and 7, which means 

performance of this model directly depended on the number of leaks in train data. All the 

models for scenario 8 have provided poor results that can be explained due to the poor or 

inadequate training data. Pros and cons of the used classifiers are summarized in Table 9. 

 

Fig.10 Accuracy of leak detection of all scenarios 
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Fig.11 Leak detection Precision of all scenarios 

 

 

Fig.12 Leak detection Recall of all scenarios 

 

   

Fig.13 Leak detection F-score of all scenarios 
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The average of all measures for all the scenarios for each model is shown in Table 8. 

As can be seen in Table 8 the highest f-score is achieved by using Bayesian model and in 

general Bayesian model has outperformed other models. 

 

Table 8 Average of all measures for all scenarios for each model 

  RF DTree KNN Bays 

precision 96.4375 96.48375 85.15375 96.27 

Recall 94.715 90.33 96.965 95.9375 

f-score 95.3 92.9375 90.275 95.775 

accuracy 92.66125 89.0975 84.63125 93.80375 

 

Table 9 Comparison of classifiers KNN, Decision Tree, Random Forest and Bayesian Network 

With respect to leak detection problem in WDNs 

 Pros Cons 

KNN 
More accurate with the imbalanced 

data 

Under average performance with balanced 

data 

Random Forest robust and trustable in different 

circumstances 

Degraded performance with imbalanced data. 

Decision tree Good precision Poor Recall   

 

Bayesian Effective and robust  - 

 

 

 

5.4 Comparison 

We have compared our proposed method with Soldevila et al.[18] and Buchberger et al. 

[20]. In Soldevila et al. [18] method, leaks in Water Distribution Networks (WDNs) are 

detected based on classifiers (KNN, Bayesian) and pressure models. Table 10 shows the 

results obtained by applying the method of [18] on our preprocessed data of scenarios 

described in Table 7. It shows that our proposed method outperforms the method of [18]. 

The performance of our method is better which is due to the preprocessing and effective 

feature generation.  

 

Table 10  Average accuracy of [18] and proposed method on the scenarios of Table 7. 

Proposed 

Method-KNN 

(accuracy) 

Proposed 

Method-

Bayesian 

(accuracy) 

Soldevila-KNN [13]  

(Accuracy) 

Soldevila- 

Bayesian[13]  

(Accuracy) 

84.63125 93.80375 74.19 83.87 

 



     

Buchberger et al. in [20] have presented a leak detection algorithm that uses statistical 

computations and analysis on the sequence of flow as the data set is truncated 

progressively. The similarity of our proposed method and their method is that both 

methods are using Flow as the main feature.  As discussed before, Buchberger et al.’s 

method has many limitations. Notably it can only detect if leak has happened in the WDN 

but cannot recognize the number and placement of the leaks. Table 11 compares the 

results of our proposed method with [20] on all the defined scenarios. As can be seen, our 

proposed method is faster and more accurate. Also we have been able to locate the leaks 

and determine the pressure at each leak. Both algorithms were run on the computer with 

Intel Core i5, 2.30 GHz CPU, and RAM 4.00 GB. As a comprehensive comparison Table 

12 reports the difference and similarity of our proposed method with Soldevila et al.[18] 

and Buchberger et al.[20] 

 

Table 11 Comparing our method and [20] for the 8 scenarios  (QL in the Buchberger et al.[18] denotes Flow( L/s) and P in 

our method stands for Pressure (Kp) ) 

Scenario Leaks Our proposed method 
Buchberger et al.’s 

method [18] 

1 1 leak for Test Real time,  
1 leak detected 

Run time: 6.99699 sec. 

Leaking Pipe: (J-7, J-8) 
Leak P: 0.3276Kp 

 

1 leak detected 
QL == 361.2159 

 

Run time: 263.23099 sec. P:1 Kpa F:1 L/s 

2 1 leak for Test Real time,  

1 leak detected 

Run time: 8.375 sec. 

Leaking Pipe: (J-7, J-20) 
Leak P: 208.9875 Kp 

1 leak detected 

QL == 586.45 

Run time:162.585000038 

sec. P2:200 Kpa F2:200 L/s 

3 2 leak for Test Real time,  

2 leaks detected 

f-score = 97.7 
Run time: 7.49099993706 sec. 

Leaking Pipes: (J-14, J-10); 

(J-11, J-17) 
 

Leak P1: 2.63777 KP 

Leak P2: 1.3517 KP 
 

1 leak detected 

QL =1533.37 

Run time: 145.220000029 
sec.  

  
P1:1 Kpa 
P2:1 Kpa 

F1:1 L/s 
F2:1 L/s 

4 6 leak for Test Real time,  

6 leaks detected 

f-score = 97.5 
Run time: 7.52699995041 sec. 

 

 
Leaking Pipes: (J-19, J-20), (J-

14, J-16), (J-11, J-12), (J-7, J-20), 

(J-21, J-2), (J-4, J-3) 
 

Leak P1: 0.0905 KP 
Leak P2: 2.1366 KP 

Leak P3: 2.4376 KP 

Leak P4: 2.1814 KP 
Leak P5: 0.14805 KP 

Leak P6: 0.20726 KP 

1 leak detected 

QL = 1529.464 

Run time: 146.371999979 
sec. 

 

 
 

 

 
 

 
 

 

 
 

 

P1:1 Kp 
P2:1 Kpa 

P3:1 Kpa 

P4 :1 Kpa 
P5:1 Kpa 

P6:1 Kpa 

F1:1 L/s 
F2:1 L/s 

F3:1 L/s 

F4:1 L/s 
F5:1 L/s 

F6:1 L/s 

6 leak for Test 
Real time,  1 leak detected 



     

5 

P1:1 Kpa 

P2:1 Kpa 
P3:1 Kpa 

P4 :1 Kpa 

P5:1 Kpa 
P6:1 Kpa 

F1:1 L/s 

F2:1 L/s 
F3:1 L/s 

F4:1 L/s 

F5:1 L/s 
F6:1 L/s 

6 leaks detected 

f-score = 97.3 

Run time: 8.43400001526 sec. 

 

Leaking Pipe: (J-19, J-20), (J-14, 

J-16), (J-11, J-12) ,(J-7, J-20),     

(J-21, J-2), (J-4, J-3) 
 

Leak P1: 0.2584 Kp 

Leak P2: 0.0844 Kp 
Leak P3: 0.2265 Kp 

Leak P4: 23.49785 Kp 

Leak P5: 0.1223 Kp 
Leak P6: 0.2072 Kp 

 

 

QL = 1497.040 

Run time: 139.127000093 

sec 

 

6 4 leak for Test Real time, 

4 leaks detected 

f-score = 92.7 

Run time: 7.64899992943 sec. 
Leaking Pipe: (J-19, J-20), (J-14, 

J-16), (J-11, J-12), (J-7, J-20) 

 

Leak P1: 2.0746 Kp 
Leak P2: 33.8544 Kp 

Leak P3: 59.3092 Kp 

Leak P4: 13.8771 Kp 
 

1 leak detected 

QL = 1536.6783 

Run time: 139.628000021 
sec. 

 

P1:50 Kpa 

P2:90 Kpa 

P3:70 Kpa 

F1:35 L/s 

F2:70 L/s 

F3:45 L/s 

P4:60 Kpa F4:40 L/s 

7 1 leak for Test Real time, 1 leak detected 

f-score = 100 

Run time: 6.48099994659 sec. 

 

Pipe: (J-7, J-4) 
Leak P1: 1.39988 Kp 

 

1 leak detected 

QL = 496.592 

Run time: 128.111000061 

sec. 

 

 

P1:1 Kpa F1:1 L/s 

8 6 Test leaks Real time,  

6 leaks detected 

Run time: 14.87 sec. 

f-score = 87.6 

Pipe: (J-19, J-20), (J-14, J-16),  
(J-11,J-12), (J-7, J-20), (J-21, J-

2), (J-4, J-3) 
 

Leak P1: 0.1410 Kp 

Leak P2: 1.2866 Kp 
Leak P3: 4.0538 Kp 

Leak P4: 2.7240 Kp 

Leak P5: 10.166 Kp 
Leak P6: 0.3276 Kp 

1 leak detected 
QL = 816.12 

Run time:272.248 Sec. 

 

P1:1 Kpa 
P2:1 Kpa 

P3:1 Kpa 

P4 :1 Kpa 
P5:1 Kpa 

P6:1 Kpa 

F1:1 L/s 
F2:1 L/s 

F3:1 L/s 

F4:1 L/s 
F5:1 L/s 

F6:1 L/s 

 

 

Table 12 Comparing proposed method with [20] and [16] 

Method 
One leak 

detection 

Multiple leaks 

detection 

Leak  

prediction 
Run time 

Leak  

Location 

Our proposed method       Low   

Buchberger et al.[20]   
- - 

high 
- 

Soldevila et al.[18]       Low 
- 

  

6 Conclusion 



     

Leak detection in the pipeline network is a vital issue not only from financial perspective 

but also for the damages that can be imposed on the environment. There are many 

different methods to detect leaks that most of them have focused on detecting burst-type 

leakages[1]. In this paper we proposed a novel hybrid method that is transient-based and 

model-based for detecting leakages. The proposed method relies on historical data as well 

as real-time data that are gathered by flow sensors that are installed on the junction of 

pipeline network. By processing the gathered data and using hydraulics equations, new 

features of velocity and head loss are generated. By means of various classification 

algorithms we showed that our proposed algorithm is able to detect and locate single and 

multiple leaks in different pipes of a WDN with an acceptable f-scores. The proposed 

method is tested under different scenarios and leak conditions. The results show the 

superiority of this method over other methods in different aspects such as cost, time, leak 

locating and reliability. Due to the leakages applied -with different pressures and demand 

flows- in the tested scenarios, the proposed method shows its applicability in both burst-

type and background type leakages. Due to the required sensors, maintenance of the 

system is easy and low-cost, however, the proposed method, to function appropriately 

should be provided with the topology of WDN, pipes’ sizes and pipes’ materials which 

can be a burdensome. Moreover, the detection of leakages on the junction can be a 

limitation for our proposed method that is the subject of future works. 
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