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ABSTRACT 

Streaming technologies such as VoIP are widely embedded into commercial and 

industrial applications, so it is imperative to address data security issues before the 

problems get really serious. This thesis describes a theoretical and experimental 

investigation of secure covert communications over streaming media using dynamic 

steganography. A covert VoIP communications system was developed in C++ to 

enable the implementation of the work being carried out.  

A new information theoretical model of secure covert communications over streaming 

media was constructed to depict the security scenarios in streaming media-based 

steganographic systems with passive attacks. The model involves a stochastic 

process that models an information source for covert VoIP communications and the 

theory of hypothesis testing that analyses the adversary‘s detection performance. 

The potential of hardware-based true random key generation and chaotic interval 

selection for innovative applications in covert VoIP communications was explored. 

Using the read time stamp counter of CPU as an entropy source was designed to 

generate true random numbers as secret keys for streaming media steganography. A 

novel interval selection algorithm was devised to choose randomly data embedding 

locations in VoIP streams using random sequences generated from achaotic process.  

A dynamic key updating and transmission based steganographic algorithm that 

includes a one-way cryptographical accumulator integrated into dynamic key 
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exchange for covert VoIP communications, was devised to provide secure key 

exchange for covert communications over streaming media. The discrete logarithm 

problem in mathematics and steganalysis using t-test revealed the algorithm has the 

advantage of being the most solid method of key distribution over a public channel. 

The effectiveness of the new steganographic algorithm for covert communications 

over streaming media was examined by means of security analysis, steganalysis 

using non parameter Mann-Whitney-Wilcoxon statistical testing, and performance and 

robustness measurements. The algorithm achieved the average data embedding rate 

of 800 bps, comparable to other related algorithms. The results indicated that the 

algorithm has no or little impact on real-time VoIP communications in terms of speech 

quality (< 5% change in PESQ with hidden data), signal distortion (6% change in SNR 

after steganography) and imperceptibility, and it is more secure and effective in 

addressing the security problems than other related algorithms. 

  

Keywords: Covert communications, hardware random key, key distribution, 

steganography, VoIP 
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CHAPTER 1 Introduction 

This chapter first gives a brief overview of what the PhD project involves. It then 

describes the main motivation for carrying out the research project, research 

problems to be addressed, and a significant contribution the research has made to 

the scientific knowledge in the related fields of covert communications and 

steganography. Finally, the chapter covers the outline of the thesis, providing a 

general description of successive chapters. 

 

1.1 Overview 

According to the authorities, the main threats to UK national security are terrorism, 

espionage, cyber threats, and other threats such as the proliferation of weapons of 

mass destruction and organised crime. Among them, cyber threats have immediate 

impact on the UK‘s national information and communications technology (ICT) 

infrastructure. 

The expansion of the Internet provides countless opportunities for cyber crime to be 

committed. Cyber crime occurs in a networked environment such as the Internet, 

Cloud, the Internet of Things (IoT), etc. It includes the following criminal activities: 

Computer hacking and cracking; Malware and automated computer attacks: 

developing and / or spreading malicious code (e.g. virus and Trojans); Digital piracy, 
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online fraud, intellectual property theft; Spamming (sending unwanted or junk e-mails); 

Network intrusion; Networked based or network enabled crime such as phishing, 

identity theft, IPR crime, distribution of child pornography; Online extremism, cyber 

terror, and cyber warfare. The challenges arising from the growth of cyber crime need 

to be dealt with. 

The UK economy largely depends on its ICT infrastructure to digitally support 

businesses, commerce and private citizens. As the Internet permeates all levels of 

society, hostile actors are seeking to take advantage of people‘s increasing Internet 

dependency to launch cyber terrorism, state or industrial cyber espionage, and cyber 

crime. Hence, advanced security countermeasures and technologies are urgently 

sought to counter these cyber threats. 

Information security and privacy technologies, such as encryption, digital signatures, 

authentication, enterprise key management, and biometric identification systems, are 

based on classical cryptography. However, these cryptographic technologies are 

being challenged by increasingly sophisticated attack tactics due to a sharp increase 

in computing power. It is generally believed that one promising solution to the data 

protection problem is digital steganography, which is the science of concealing a 

message or information within other non-secret text or data. 

Digital steganography complementing advanced cryptography, such as true random 

key generation, advanced encryption standard, and dynamic key distribution and 

management, is expected to lead the way in counteracting the latest cyber attacks, 

including quantum adversaries. 
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1.2 Motivation and Research Problem 

Data security is of great interest to businesses and governments alike and has 

received increasing attention in recent years. Finding a solution to the data protection 

problem is one of the greatest challenges faced by cyber security researchers today. 

As the Internet permeates every level of the infrastructure of a country, society and 

organisation, cyber attacks are increasing at an alarming rate. The ICT infrastructure 

has been a great support to the industries that are information intensive in one way or 

the other, which are considered one of the most important economic sectors for a 

variety of reasons. 

The ICT dependent industries include financial services (insurance industry), creative 

(advertising, fashion, film, music, video games), education, health care, hospitality, 

professional services, software, and tourism industries, as well as some 

manufacturing and agriculture industries. 

Financial services encompass a wide range of businesses that manage money, 

including credit unions, banks, credit-card companies, insurance companies, 

accountancy companies, consumer-finance companies, stock brokerages, 

investment funds, individual managers, and some government-sponsored enterprises. 

So it matters to individuals, organisations and governments.  

Among these industries, the financial services industry is under real threat from an 

exponential rise in the scale and significance of cybercriminal capability. Hence, 

cutting-edge technologies are urgently sought by academics and engineers to protect 
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data against advanced social engineering and evolving sophisticated attack tactics. 

To date, modern cryptography is widely used for data protection in a pervasive 

computing environment, such as networked systems and the Internet. Classical 

security measures are built on encryption, which is the activity of converting data or 

information into code in such a way that only the intended recipient can determine its 

meaning.  

Whilst encryption algorithms are based on computational hardness assumptions, 

encryption is facing challenges due to a sharp increase in computing power that has 

led to decryption of several encryption algorithms, indicating possible vulnerabilities in 

the encryption primitives. It is generally recognised that a major drawback to 

encryption is that the existence of encrypted data is not hidden. 

As a revival, quantum cryptography can detect attempts at hacking but the 

communication range only reaches about 93 miles, far short of the distance 

requirements needed to transmit information with modern computer and 

telecommunication systems. Moreover, it is not yet clear whether there is a 

commercial market for this extremely expensive technology. 

Digital steganography aims to hide confidential data well so that unintended 

recipients would not even notice the existence of the hidden confidential data. It is 

otherwise regarded as a promising technology to complement cryptography in 

addressing data protection issues. 

The Internet enables Voice over Internet Protocol (VoIP) to provide reliable, global, 

low-cost and/or even free services, so many users communicate with each other daily 
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using VoIP products, leading to increasing traffic of VoIP streams transmitted over the 

Internet. As an interesting subject in the field of information security, steganography 

or covert communication works by hiding messages in inconspicuous cover objects 

(e.g. VoIP streams) that are then sent to the intended recipient. Steganography can 

provide an additional layer of security in addition to encryption by embedding the 

encrypted message into steganographic carriers, which helps individuals or 

organisations protect sensitive information. It can be used in academic, commercial 

and military applications. For example, a message can be steganographically 

embedded into the least significant bits of frames on a CD. Covert steganographic 

channels can be used to bypass the censorship in a hostile environment. The covert 

channel can also be used by the adversary as a possible means of information 

exchange. A message can be concealed before distribution by splicing it to the end of 

a copy of a normal audio or video. A disgruntled employee may use steganography to 

ship out the most commercially sensitive information. 

 

1.3 Research Questions 

Covert VoIP communication is based on steganography and cryptography. The basic 

process of a covert VoIP communication scenario consists of two phases: signalling 

phase and conversation phase. The signalling phase sets up and negotiates VoIP 

session parameters between the communicating parties. Mutual authentication is 

used to convince parties of each other‘s identity and to exchange session keys. In the 

conversation phase, the sender embeds encrypted secret data into covert objects 

and sends it to the receiver. After receiving and extraction, the receiver decrypts the 
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massage using the same key and obtains the secret message. 

In the process of covert VoIP communications, several issues need to be addressed 

to provide security, including a model for covert steganographic communication over 

streaming media, secure keys, data embedding interval selection, and secure 

dynamic key updating and transmission. Chapters 4 - 6 constructed a theoretical 

model and devised algorithms for covert VoIP communication systems to solve these 

problems correspondingly. 

Early research in digital steganography focused on image steganography, which 

covered a variety of topics that are well summarised by Cox et al. (Cox et al., 2008) 

and Ker (Ker, 2014). Since the era of evolving network applications and mobile 

communications (3G/4G/5G), research has shifted to steganography in streaming 

media, like Voice over Internet Protocol (VoIP), which acts as a resilient covert 

communications channel to protect data transmitted over the Internet and in a cloud 

environment. 

The current literature in streaming media steganography is somehow extensive. 

Related work has been devoted to devising steganographic algorithms while the 

security offered by number-based secret keys has been sidestepped due to technical 

complexity. In reality, the successfulness of steganographic algorithms used for data 

protection relies largely on the secret keys and the transmission of keys between the 

communicating parties. Unfortunately, the secret key generated by a 

pseudorandom-number generator is not that secure, and given enough time and 

computational power, the key would be unencrypted by malicious attackers. 
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Security in transmission of secret keys is more crucial for streaming media 

steganography due to the timing and loss of packets, i.e. it requires continuous 

embedding and the necessary synchronisation of sender and receiver. Thus far, there 

has been no proven secure key transmission method that could be put into use for 

streaming media steganography. Hence, this research is intended to fill the gap in this 

area of research and increase knowledge as it addresses this challenging and 

important problem. 

As quantum technologies have advanced in recent years, existing steganographic / 

cryptographic techniques have had to be modified in order to cope with quantum 

adversaries. This research is expected to make a major technological breakthrough in 

hardware-based true random key generation and dynamic key updating and 

transmission, which would combat quantum adversaries. The research attempts at 

revealing the potential of true random key generation and dynamic key updating and 

transmission for innovative applications in the field of covert VoIP communications 

using streaming media steganography. 

There are some key problems associated with covert VoIP communications, such as 

lack of a practical information theoretical model, true random key generation, and 

secure dynamic key updating and transmission, in an attempt to solve the uncertainty 

of the data embedding rate of streaming media packets and ensure the integrity of the 

secret message to be hidden using streaming media steganography.  

This project addresses the following research questions: 

A. How can an information theoretical model of secure covert communication 
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depict the security scenarios in streaming media-based steganographic 

systems? 

Previous modelling work has considered private key steganography or public key 

steganography, with passive or active attacks, in static cover objects such as texts, 

images and audio files. However, existing information theoretical models for 

steganography in static cover objects cannot be put into use for steganography in 

streaming media (like VoIP) because of the required continuous data embedding 

process and the necessary synchronization of sender and receiver due to packet loss 

in communications over streaming media. Hence, a new information theoretical 

model of secure covert communications over streaming media is required to take into 

account the characteristics of communications over streaming media like VoIP. 

An information source might be modelled as a stochastic process, but it is 

complicated and time consumable in practice. A stochastic process can be used to 

model an information source for covert VoIP communications using streaming media 

steganography, to decide whether the resultant probability distributions of cover 

objects (i.e. streaming media) meet the requirements of the theoretical model. 

B. How does hardware-based technology generate true random numbers as 

secret keys for covert VoIP communication using digital steganography to 

ensure the security of cryptographic systems? 

Cryptographical keys play a fundamental role in using steganography and 

cryptography to achieve a covert communications channel to protect data from 

sophisticated cyber attacks. Presently, cryptographical keys used for covert 
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communications over streaming media are pseudorandom numbers generated by 

software that uses a predictable process to yield pseudorandom numbers. 

Pseudorandom keys are subject to compromise due to a sharp increase in 

computational power, which means the data encrypted with the pseudorandom keys 

is not secure. 

A true random number generator or hardware random number generator is a device 

that generates true random numbers from a physical process, rather than by means 

of an algorithm. Secret keys generated by a true random number generator play an 

important role in ensuring the confidentiality of the data to be hidden using digital 

steganography during covert communications over streaming media. 

C. How does a one-way cryptographic accumulator work along with dynamic 

key updating and transmission, which is integrated with the data embedding 

and extraction processes in covert VoIP communications? 

As steganography underpinning covert communications over streaming media 

require the secure transmission of a series of secret keys, this project needs to 

provide a fundamental understanding of how dynamic key updating and transmission 

can work along with data encryption, data embedding and data extraction (parts of 

digital steganography) in covert communications over streaming media like VoIP, in a 

timely manner to cope with cyber attacks and potential quantum adversaries. 

There is currently no proven secure key transmission method that could be put into 

use for streaming media steganography. To advance knowledge, this research 

proposes a novel dynamic key updating and transmission based steganographic 
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algorithm, consisting of a one-way cryptographic accumulator, for covert 

communications over streaming media.  

D. How can a statistical test be used to analyse the adversary’s detection 

performance? 

Non parameter Mann-Whitney-Wilcoxon statistical testing and T-test can be used to 

analyse the adversary‘s detection performance on distinguishing between an 

innocent cover object and a modified stego object containing a hidden message. 

 

1.4 Research Aim 

There are some key problems associated with covert VoIP communications, such as 

the theoretical model, the uncertainty problem of the embedding rate of media 

packets and the integrity of the secret message. 

The aim of this project is to examine the characteristics of time-variance of data 

payloads in the process of covert communications using digital steganography in 

streaming media, with a special emphasis on constructing an information theoretical 

model for covert communications over streaming media like VoIP. Through devising a 

secure dynamic key updating and transmission protocol based on a one-way 

cryptographic accumulator and a series of secret keys that are generated by a 

hardware based true random number generator, applicable to covert communications 

over streaming media, the project intends to explore a new approach to improving the 

integrity, secrecy and robustness of the secret message being hidden, thereby 

addressing the non-integrity problem of the secret message to be protected. 
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Specifically, the objectives of this research include: 

A. Develop an information theoretical model for covert steganographic 

communication over streaming media; 

B. Devise a new algorithm that uses hardware as the entropy source to generate true 

random keys as dynamic keys to be used by covert VoIP communications; 

C. Select data embedding locations in real-time media streams for covert VoIP 

communications; 

D. Devise a secure dynamic key agreement and updating algorithm based on 

One-way accumulation, which is applicable to covert VoIP communications. 

 

1.5 Research Methodology 

The research methodology includes using an information-theoretic model to guide 

devising a steganographic algorithm, building a covert communications platform, 

conducting performance testing, and carrying out security evaluation on the proposed 

algorithm. The full details of the methodology used in this research are as follows: 

A. Collect and analyse a large amount of experimental data from in-house covert 

VoIP communications experiments. 

B. Construct a new information theoretical model for secure covert communications 

over streaming media, depicting the security scenarios in streaming media-based 

steganographic systems with passive attacks. 

The model includes three components: a stochastic process that models an 
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information source for covert VoIP communications using streaming media 

steganography, the theory of hypothesis testing that analyses the adversary‘s 

detection performance, and a discrete prediction model of high precision that 

simulates the characteristics of time-variance of streaming data payloads. 

C. Investigate ways in which hardware entropy sources can be used to generate true 

random numbers as secret keys for covert communications using streaming media 

steganography, to ensure the data they protect remains absolutely secure. 

D. Devise a dynamic key updating and transmission based steganographic algorithm 

that includes a one-way cryptographical accumulator integrated with dynamic key 

exchange for covert communications over streaming media. The new algorithm can 

protect data from cyber attacks, such as the man-in-the-middle attacks, which 

threaten almost all existing steganographic algorithms. 

E. Examine how the proposed true random numbers and dynamic key distribution 

based steganographic algorithm can work with covert communications over 

streaming media. 

F. Devise a true random keys and dynamic key updating and transmission based 

steganographic algorithm for covert communications over streaming media. 

G. Accomplish security analysis of covert communications using dynamic 

steganography in streaming media, by means of steganalysis using non parameter 

statistical analysis. 

H. Carry out performance and security measurements and evaluation on covert 

communications over streaming media, studying the factors that mostly affect covert 
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VoIP communications that are underpinned by dynamic steganography in streaming 

media. 

 

1.6 Contributions 

The emergence of a pervasive computing environment, such as networked systems 

and the Internet, poses new challenges for the security of information systems, which 

are widely used at every level of the UK society.  

This research provides a novel technological approach to data protection for networks 

and IT systems, which would contribute to the development of the cyber security 

sector and digital creative industries around the world, in an attempt to solve real 

security problems in the financial, banking, and creative industrial sectors. 

The research has several contributions to the field of streaming media steganography 

which can be summarised as follows: 

A. Due to the required continuous data embedding process and the necessary 

synchronisation of sender and receiver in streaming media communications, existing 

information theoretical models of steganography in static cover objects cannot be put 

into use for streaming media steganography underpinning covert VoIP 

communications.  

Research into developing an information theoretical model for covert communications 

using steganography in streaming media is still in its infancy. To meet the 

requirements, this research constructs a new information theoretical model of secure 

covert communications over streaming media by taking into account the 
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characteristics of streaming media like VoIP. 

B. Most cryptographical keys are generated by software that uses a predictable 

process to yield pseudorandom numbers. Pseudorandom keys are subject to 

compromise, which means data encrypted with such keys is not secure. So far, no 

literature has been found on the use of true random keys to enhance the security of 

streaming media steganography for covert communications, and a novel feature of 

this research is the utilisation of hardware as an entropy source to generate true 

random keys, in order to secure streaming media steganography underpinning covert 

communications over streaming media. 

C. There is currently no proven secure key transmission scheme that could be put 

into use for covert VoIP communications using streaming media steganography. To 

advance knowledge, this research devises a novel dynamic key updating and 

transmission based steganographic algorithm for covert communications over 

streaming media, which involves a specially designed one-way cryptographic 

accumulator and dynamic key exchange integrating with the data embedding and 

extraction processes. 

D. Two minor contributions of this research are the use of a stochastic process to 

model an information source for covert VoIP communications using streaming media 

steganography, and the use of the theory of hypothesis testing to analyse the 

adversary‘s detection performance on distinguishing between an innocent cover 

object and a modified stego object containing a hidden message. 

E. The last contribution of this research is its methodology. It presents a new 
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steganographic approach that seamlessly integrates advanced encryption standard, 

true random key generation, and dynamic key updating and transmission with the 

data embedding and extraction processes, thereby realising secure covert 

communications over streaming media and achieving a great data embedding 

capacity comparable to other related steganographic algorithms. 

 

1.7 Thesis Outline 

Chapter 1 of this thesis provides introductory material, consisting of a brief overview 

of the research project, the main motivation for carrying out the project, research 

problems being addressed, and a significant contribution the research is made to 

scientific knowledge in the field of digital steganography. 

Chapter 2 includes an in-depth discussion of how VoIP communications work and 

security issues that may occur in a VoIP communications system. It involves 

components of VoIP (end-user equipment, network components, call processor, 

gateways, and protocols), limitations of the best-effort IP service, i.e. packet loss, 

end-to-end delay, and packet jitter, and protocols for real-time conversational 

applications, such as Real-Time Transport Protocol (RTP) and Session Initiation 

Protocol (SIP). It then presents security analysis of VoIP communications, identifying 

a few types of malicious attacks to which VoIP communications might be subjected, 

along with possible countermeasures. 

Chapter 3 describes a number of computer and network security concepts related to 

designing steganographic systems, examines the basic hardware and software 
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components that make up a steganographic system, and discusses classifications of 

steganographic methods, properties and evaluation criteria of steganography such as 

undetectability, imperceptibility, security, capacity and robustness. The chapter covers 

various attacks on steganographic communications and provides a summary and 

synthesis of published information on steganography in streaming media. 

Chapter 4 focuses on covert communications over VoIP streaming media. After 

introducing some basic terminology and concepts, the chapter discusses Cachin‘s 

definition of steganographic security to identify the limitations of its usage in 

streaming media steganography. It then describes a new framework for modelling 

secure covert VoIP communications, and of using this information theoretic model in 

a steganography underpinning covert VoIP communications system. It also examines 

AES-128, data embedding and data extraction algorithms that are applicable to 

covert VoIP communications. Covert VoIP communications experimental set-up and 

evaluation criteria, e.g. the steganographic bandwidth, undetectability, the packet loss 

rate, the perceptual evaluation of speech quality value, and the signal-to-noise ratio, 

are discussed in the second half of the chapter. 

Chapter 5 explores the potential of hardware based true random key generation and 

chaotic logistic map for innovative applications in covert VoIP communications over 

streaming media. It then investigates ways in which hardware entropy sources can be 

used to generate true random numbers as secret keys for streaming media 

steganography underpinning covert communications, to ensure the data they protect 

remains absolutely secure. 

The chapter also describes, tests, and analyses the true random keys based 
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steganographic algorithm that underpins covert VoIP communications, comparing the 

steganographic bandwidth, undetectability, the packet loss rate, the perceptual 

evaluation of speech quality value, and the signal-to-noise ratio, etc., which are 

measured using a Digital Speech Level Analyser. Security analysis using non 

parameter M-W-W statistical test is utilised to prove the security of the new algorithm. 

Chapter 6 covers novel techniques for using one-way cryptographical accumulators 

to realise dynamic key updating and transmission for covert VoIP communications. 

This includes the areas of key distribution and management and security analysis 

using t-test, which become complicated when streaming media are acted as cover 

objects for steganography. It then examines a dynamic key updating and 

transmission based steganographic algorithm that can protect data from cyber 

attacks, such as the man-in-the-middle attacks, which threaten almost all existing 

steganographic algorithms.  

This chapter also demonstrates the effectiveness of the proposed steganographic 

algorithm, discussing the effect of increased complexity of the algorithm, at variable 

embedding interval distances, on performance and security. It then examines the 

algorithm by varying the size of the data to be hidden and protected, to determine the 

robustness of the algorithm in terms of data embedding capacity. 

Chapter 7 ‗Conclusions and Future Perspectives‘ begins at the overview of the project 

and summarises research findings and innovations. It then looks at research 

limitations in the design of the study, such as difficulty in designing an effective 

mechanism for resisting tampering attacks. Finally, it points out the potential 

directions for future research.  
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CHAPTER 2 VoIP Communications and Security 

Streaming media communication such as Voice over Internet Protocol (VoIP) is one 

of the most popular real-time services on the Internet. This chapter discusses how 

VoIP works and the security issues that may occur in a VoIP communication system. 

After introducing the background, features and components of VoIP, it presents the 

principles of VoIP communication. Then, it describes the limitations of the best-effort 

IP service and the key technologies to deal with a variety of problems of VoIP. This 

chapter also covers the security analysis of VoIP communications and identifies some 

types of security issues and possible countermeasures.  

 

2.1 Introduction to VoIP 

VoIP is a digital transmission technology which provides a real-time voice 

communication service on the basis of the Internet. It is a telephone application 

implemented on the Internet Protocol (IP) network through the Transmission Control 

Protocol (TCP) / IP protocol. Therefore, VoIP is also called IP phone or network 

phone. 

VoIP can be achieved on any networks based on an internet protocol, such as the 

Internet, Intranet and Local Area Networks (LANs). VoIP applications include 

Personal Computer (PC) to PC connection, PC to Public Switched Telephone 
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Network (PSTN) or PSTN to PC connection and PSTN to PSTN connection 

(Nagirireeddi, 2008). Its main services include voice services and real-time fax 

services over IP-based networks, interactive voice response (IVR) services 

implemented on the Web, and a variety of communication services such as E-mail 

and real-time telephone. VoIP services operate on an Internet protocol to transmit 

compressed voice samples as frames and messages as a group of bytes over an IP 

data network (Nagirireeddi, 2008). In VoIP applications, voice from end-user 

equipment is converted into a signal level, digitised, compressed as voice payload, 

and sent as IP packets.  

The public switched telephone network is mainly based on circuit switching, and the 

cost is high. With the development of network and the advancement of voice coding 

technology, voice communication is gradually developing to low-cost integrated 

communication based on IP packet switching. VoIP has achieved breakthrough 

progress and substantial application. This kind of voice communication on the 

network improves the quality and reliability of voice transmission, promotes the 

utilisation of network resources, and reduces the cost of voice communication. 

Therefore, VoIP has become one of the fastest growing and most popular 

technologies in the world. 

Compared with traditional voice communication, VoIP technology has many unique 

advantages. Features such as low cost, extensibility, full use of network resources 

and in line with the development trend of the integration of three networks 

(Telecommunications network, Broadcast network and the Internet), make VoIP 

gradually occupy the traditional telephone business market and become one of the 
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most popular technologies in the computer science field. 

A. Low cost 

Low cost is one of the main advantages of VoIP. The VoIP system connects PSTN 

and the Internet mainly through an IP telephony gateway, thus realising three kinds of 

calls between computer and telephone, i.e., PC to PC, PC to PSTN or PSTN to PC 

and PSTN to PSTN (Nagirireeddi, 2008). Since the VoIP network is organised by 

devices such as gateways and connected to users by PSTN, a low-cost IP network is 

used instead of an expensive long-distance transportation network mainly based on 

‗copper core‘, thereby greatly reducing communication costs. 

The VoIP system also minimises the cost of business communications for enterprises. 

Industry sectors and large enterprises (such as government, bank, etc.) mostly have 

dedicated data communication networks and telephone communication networks due 

to information constriction. The data communication network usually needs to lease 

DDN special line etc., and the telephone communication network usually needs to 

build telephone switches and rent relay stacks of telecommunications. Not only do 

they have to pay for the rental of the line, but they also have to bear higher costs for 

use and maintenance. The development of information technology has made it 

possible for these industry users and large enterprises to build a dedicated IP 

broadband network for the integrated transmission of voice, data and image services, 

thereby reducing their communication costs. 

B. Extensibility 

VoIP adopts an open transport protocol architecture, which facilitates connectivity and 
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standardisation among vendors‘ products. The IP communication network can 

support the transmission of multimedia information such as voice, image and data at 

the same time, which is conducive to the integration of multimedia services 

(Nagirireeddi, 2008). In addition, for industry users and large enterprises, VoIP 

systems have easy-to-add features and extensibility, which simplifies the 

communication management of enterprises. 

C. Full use of network resources 

The traditional telephone network PSTN transmits voice in a circuit-switched manner 

with a transmission bandwidth of 64 Kb/s. A VoIP system uses digital signal 

processing technology to compress speech signals into 6.3Kb/s or lower, so the 

required bandwidth is greatly reduced, thus improving the efficiency of the physical 

link. In addition, the packet switching technology adopted by VoIP realises statistical 

multiplexing of channels and improves utilisation of network resources. The VoIP 

system has also improved the quality of voice calls, and its voice quality is not lower 

than that of Global System for Mobile communications (GSM) mobile phones, which 

meets the requirements of various users. 

D. Conformity to the development trend of the integration of three networks 

VoIP technology is in line with the trend of integration of telephone network, radio and 

television network and data network, and has a considerable market prospect. 

 

2.2 Components of VoIP 

The components of VoIP include: end-user equipment, network components, call 
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processors, gateways and protocols, as shown in Figure 2.1. 

 

Figure 2. 1 Component of VoIP 

 

2.2.1 End-user Equipment 

End-user equipment is used for communications between a VoIP system and another 

terminal. The connection to the network on which VoIP runs can be either physical 

cable or wireless. The end user equipment can be a telephone on the desk or a 

softphone installed on a PC or mobile devices. Functions include voice and video 

communication, and may contain instant messaging, surveillance and monitoring 

functions (Ranch Network, 2004). Different types of user terminals generate voice 

data with various storage structures, so they need certain data conversion to form a 

unified IP packet to transmit on the same network. This process is usually 

accomplished by a gateway or an adapter in the VoIP system for data conversion. 

Developing terminals with uniform standards and specifications can reduce the cost 
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of data conversion. 

 

2.2.2 Network Components 

Network components include cables, routers, switches and firewalls (Ranch Network, 

2004). Usually a new VoIP system is installed on an existing IP network，and its 

impact on the IP network is greater than merely adding more data traffic. The 

increased traffic is more urgent than most of the other supported data traffic to reach 

the destination. Switches, routers, and firewalls are needed to identify and act on 

VoIP data to ensure that the latency stays at a low level. Additional security measures 

such as encryption complicate the process. 

 

2.2.3 Call Processor 

Call processor functions include phone numbers to IP translation, call setup, call 

control, user authorisation, and signal coordination, which may help control 

bandwidth (NIST, 2004). Call processors are usually a piece of software running on 

popular operating systems. This leaves it open to possible network attacks, including 

the vulnerabilities of the given operating system, vulnerabilities of applications and 

other applications running on the operating system. 

 

2.2.4 Gateways 

The gateway mainly provides an interface between IP network and traditional PSTN 
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to realise VoIP voice communication. The gateway can support a variety of telephone 

lines, such as digital relay stack, analogue telephone line and PBX connection line. It 

can also offer voice coding compression, data structure conversion, signalling 

conversion, call control, dynamic routing calculation and other functions. 

According to functionality, gateways are classified into three groups: signalling 

gateways (SG), media gateways (MG), and media controllers (NIST, 2004). The roles 

of gateways include handling call origination, detecting and conducting analogue to 

digital conversion. Signalling gateways are normally used to manage the signal traffic 

between an IP network that supports VoIP and a switching circuit network, while the 

media signals between these two networks are managed by media gateways. The 

media gateway controller is utilised to manage the traffic between signalling gateways 

and media gateways. MGCP (rfc2705) and Megaco are the most common gateway 

protocols that are used for VoIP. They are composites or derivations of previously 

ones but are now less used protocols (NIST, 2004). 

The IP gateway is the core device of VoIP. The routing management function of the 

gateway maps the area code of each area to the gateway IP address of the 

corresponding area. When a user makes a call, the gateway maps the telephone area 

code to the corresponding IP address according to the database information, and 

adds this IP address to the IP packet, choosing the best route, so that the IP packet 

can reach the destination gateway through the network with a small delay. In areas 

where the Internet has not been extended or gateways have not yet been set up, 

voice communication over an IP network can be realised by setting up routing and 

connecting the nearest gateway through the telephone network. 
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2.2.5 Protocols 

A VoIP system mainly uses three kinds of protocols: signalling protocol, media 

protocol, and IP protocol. The signalling protocol is used to establish connections 

between two communicating parties (terminals); the media protocol handles the 

real-time communication of audio or video; and the IP protocol is used for VoIP voice 

transmission. 

 

2.3 VoIP Communications 

2.3.1 Principles of VoIP Communication 

VoIP transmits voice information on an IP network to realise real-time voice 

communication. As shown in Figure 2.2, the basic transmission process of VoIP is 

collecting the original sender's voice, converting the original voice signal into a digital 

signal by analogue-to-digital conversion, compressing and encoding the digital signal 

through a voice compression algorithm, encapsulating the compressed voice data 

according to the standard of TCP/IP, and sending the encapsulated IP packet to the 

receiver over an IP network (NIST, 2004). The receiver decodes and decompresses 

the received voice data packets to obtain the original analogue voice signal, so as to 

realise the real-time communication of voice information on the network. 

The simplest form of VoIP system consists of two or more VoIP-enabled devices and 

IP networks, which are interconnected through IP networks. VoIP devices convert the 

analogue speech signals into IP data streams and send data streams to the 
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destination, which in turn convert IP data streams into analogue speech signals. The 

network between VoIP communication devices must support IP transmission, which 

can be any combination of IP routers and network links. 

 

Figure 2. 2 The basic transmission process of VoIP 

The transmission process of VoIP on the network is mainly divided into seven stages 

(NIST, 2004): 

A. Analogue signal-digital signal conversion (ADC) 

The original voice obtained by voice acquisition is an analogue signal, while the voice 

transmitted over an IP network should be digital signals. So the original voice signal 

must be converted to a digital signal through analogue-to- digital conversion, that is, 

digitalisation. Figure 2.3 shows the principle of PCM. Pulse code modulation (PCM) 

converts an analogue signal with continuous time and values into a digital signal with 

discrete time and values for transmission in the channel. Digital signals are generated 

by sampling, quantizing and coding the continuously changing analogue signals, that 

is, a pulse code modulation process. Since the pulse code modulation is particularly 

suitable for services requiring a large data transmission rate and high bandwidth, it is 

currently used in VoIP communication systems. 
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Figure 2. 3 The principle of PCM 

B. Compression coding 

Due to the limitation of the channel bandwidth, the voice signal needs to be 

compressed after being digitally encoded (NIST, 2004). Speech compression coding 

includes three forms, namely waveform coding, parameter coding and hybrid coding. 

Waveform coding is the direct conversion of waveform to digital code stream, which is 

divided into time domain waveform coding and frequency domain waveform coding. 

Parametric coding is to extract the characteristic parameters of speech from the 

transform domain of a speech signal, and then transform them into digital streams to 

compress and encode the speech signal. Hybrid coding is a combination of waveform 

coding and parameter coding. It has low bit rate in network transmission, good 

speech quality after decoding at the receiving end and moderate coding algorithm 

delay, but this coding method is more complicated. Most codecs have specific frame 

lengths, and voice packets are compressed according to the frame lengths. At 

present, there are commonly used speech coding standards such as G.729, IYU-T, 

and G.711. In a VoIP communication system, the voice coder of sender and receiver 

must use the same compression coding algorithm to ensure that the receiver can 

successfully recover the original voice signal. 

C. IP data encapsulation  
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After the analogue-to-digital conversion and compression encoding, voice data 

packets enter the network processor, and need to be IP-encapsulated before they 

can be transmitted on the IP network (NIST, 2004). The network processor adds an IP 

header, timing and other information to the compressed voice packet, and then 

transmits the encapsulated IP packet to the receiving end over the network. An IP 

network typically adopts a connectionless User Datagram Protocol (UDP) 

transmission approach that does not form a connection. It requires data to be placed 

in variable-length datagrams or packets, accompanied by addressing and control 

information for transmission over the IP network. This method can reduce the time of 

establishing connection and transmission, and reduce the delay in the transmission 

process, thereby reducing the impact on the quality of VoIP voice communication. 

D. Network transmission  

In a VoIP communication system, voice data packets received from the sender are 

transmitted over an IP network to the receiver (NIST, 2004). The change of data 

packet transmission time on the network forms the jitter. The node on the network link 

checks the address of each voice packet before forwarding the datagram to the next 

station in the destination path route. The network links used by VoIP can be any 

access mode or topology that supports IP data streams.  

E. IP data decapsulation 

After receiving the IP datagram, the VoIP receiver‘s device starts IP data 

decapsulation processing, removes the IP header and other information, and obtains 

the compressed encoded voice data packets.  
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F. Speech decoding 

The original digitised voice data can be obtained by decompressing and decoding the 

voice packets after IP decomposition using the voice decoder with the same 

compression encoder algorithm as the sender. 

G. Digital signal-to-analogue signal conversion (DAC) 

The original analogue voice can be obtained by decoding the obtained digital voice 

data with the corresponding decoding algorithm of the sender, the voice data can then 

be transmitted to the sound card by the playback driver, and the original analogue 

signal can be obtained by the loudspeaker broadcast (NIST, 2004). 

In short, voice data transmission on a VoIP network includes voice analogue signal to 

digital signal conversion, compression coding, IP encapsulation, network forwarding 

transmission, IP decapsulation and decompression decoding to restore the original 

analogue voice signal, so as to realise voice transmission on an IP network. 

 

2.3.2 The Limitations of Best-Effort Service 

The Internet Protocol provides a best-effort service which is to make its best effort to 

transmit datagrams from sender to receiver as quickly as possible. The Internet 

protocol is a connectionless transmission mechanism, which does not guarantee the 

quality of service. According to CISCO‘s Internetworking Technology Handbook, 

‗Quality of Service (QoS) refers to the capability of a network to provide better 

services to selected network traffic over various technologies, including Frames Relay, 

Asynchronous Transmission Mode (ATM), Ethernet and 802.1 networks, SONET, and 
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IP-routed networks that may use any or all of these underlying technologies (Cisco, 

2004). The main factors that affect VoIP quality of service are packet loss, delay and 

jitter. In the process of VoIP transmission, the voice signal is transmitted to the 

receiver over an IP network after compression coding. Therefore, VoIP real-time 

voice communication applications are very sensitive to packet loss, delay and jitter. 

An IP network only provides the best-effort voice packet transmission, which cannot 

guarantee the quality of voice communications. Packet loss, delay and jitter have 

seriously impacts on the quality of voice communications using VoIP. 

A. Packet Loss 

A packet is lost either if it never arrives at the receiver or if it arrives after its scheduled 

playout time (Kurose & Ross, 2000). Packet loss is one of the important factors 

affecting the quality of VoIP communications. Packet loss caused by channel 

congestion, corrupted packets rejected and hardware failures may result in IP 

datagrams losing or arriving too late to reach the receiver. The retransmission 

mechanisms of TCP can reduce packet loss, but it is considered to be unacceptable 

in real-time voice communications such as VoIP applications due to the increase of 

delay. In addition, when packet loss occurs, the TCP congestion control mechanism 

will reduce the transmission rate of the sender and affect the voice intelligibility of 

VoIP. Therefore, a VoIP system usually runs over UDP and does not retransmit when 

packet loss occurs. 

Packet loss is usually considered to be the interval in the communication process. In 

VoIP communication, according to the encoding and transmission mode of voice and 

the concealment technology of packet loss, a certain extent of packet loss can be 
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tolerated. Loss recovery schemes are used to preserve acceptable audio quality in 

the presence of packet loss. The common loss anticipation schemes include forward 

error correction (FEC), Interleaving and so on. Through forward error correction 

technology, some redundant information is transmitted along with the original voice 

information, so that some lost original voice information can be recovered from the 

redundant information, thereby reducing the impact of packet loss on voice quality. 

Interleaving can mitigate the effect of packet loss with no increasing bandwidth 

requirements of a stream (Kurose & Ross, 2000). In addition, changes in coding 

schemes and network tuning mechanisms can also help reduce packet loss (Mehta et 

al., 2004). When the network packet loss rate is too high, VoIP voice quality will be 

seriously affected, and the receiver will hear the voice with chaotic noise. In order to 

ensure the acceptable quality of VoIP communications, the random packet loss rate 

needs to be less than 5%. 

B. Latency 

Latency is defined as the time it takes for data to reach its destination from its source. 

The person who talks into the microphone is the data source, and the listener at the 

other end is the data destination. This is the one-way delay. Round trip delay is the 

total of the one-way delay and the time it backs to the originating client. In the US, 

PSTNs have a round trip delay of less than 150 ms (Mehta et al., 2004). According to 

the 1996 ITU, the delay limits of one-way end-to-end transmission of G.114 are: 

Less than 150 ms: acceptable for most user applications and not perceived by a 

human listener; 
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150 to 400 ms: acceptable when the administrators are aware of the transmission 

time impact on the transmission quality of user applications; 

More than 400 ms: unacceptable for general network usage (Mehta et al., 2004). 

This means that the tolerable delay range for one-way delay is 75 ms to 400 ms. As 

the users of the US telephone system want to achieve a delay of less than 150 ms, 

150 ms is assumed as the threshold of cumulative delay of VoIP system, and packets 

that are delayed by more than the threshold will be lost. 

Different components of a VoIP system and the underlying IP network as well as other 

sources lead to delay. Constraints on the time of transmitting packets affect security 

solutions. Most security measures are combined by methods that are applicable to 

various parts of the VoIP system, which usually add delay. Encryption is one of the 

main concerns. Encryption and decryption have a significant impact on delay, which 

largely depends on the size of the key as well as the complexity of the algorithm. In 

general, the larger the key that is used to encrypt the data, the more secure the data 

is, but the more time it takes to encode and decode the data (Greenstreet et al., 2004). 

A balance between the desired security and the quality of VoIP communications must 

be struck. One of the greatest challenges of VoIP security solutions is to implement 

security solutions with minimal delay to ensure that quality of service meets 

organisational standards. Safety is often sacrificed for better quality. 

C. Jitter 

Due to the network status and other factors, the delay of data packets is a random 

queuing, which means the time from sender to receiver may fluctuate in different data 
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packets. This fluctuation in delay causes jitter. 

Jitter can be caused by a long delay before the arrival of packets, which may lead to 

packet disorder. If the receiver in a VoIP system ignores the presence of jitter, it may 

cause the audio quality become unintelligible. As most VoIP communication is based 

on User Datagram Protocol, out-of-order packets cannot be re-assembled at the 

protocol level. However, with the support of the application, sequence numbers and 

timestamps enable the disordered packets to be re-assembled at the application layer 

to reduce jitter. It takes time to reassemble packets, and packets that need more time 

to arrive may cause packet loss to maintain the transmission of received packets. 

The network layer can reduce the jitter generated by the network by creating a 

variable-length buffer, sorting the incoming data packets and transmitting them to the 

application program (Kuhn et al., 2004). The buffers can accommodate multiple voice 

packets, and users can choose buffers of different sizes according to their needs. In 

general, jitter decreases as the size of buffer increases, but when exceeding a certain 

size, it will lead to more packet loss. In the process of converting an IP packet into 

data, the decoder decompresses the encoded data packet and generates a new 

voice packet, which is sent to the decoding buffer after being operated in the same 

length as the decoder. 150 ms is used as the maximum latency for a VoIP system, the 

buffer needs to be cleared every 150 ms to reduce other latency. As some packets 

may delay longer than this, the buffer may be cleared before a group of packets is 

reassembled, leaving a gap, therefore resulting in packet loss. Another way to reduce 

jitter is to use the QoS features of routers, switches, and firewalls (Kuhn et al., 2004). 

The best-effort service of an IP network imposes limitations of packet loss, delay, and 
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jitter on VoIP communications. In VoIP communication, the delay must be less than 

400 milliseconds, the jitter should not exceed 50 milliseconds, and the packet loss 

rate should not exceed 5% to ensure the quality of service of VoIP (Rizal, 2014). 

 

2.3.3 Key Technologies of VoIP 

Since the best-effort connectionless service provided by the traditional IP network 

cannot provide the guarantee of service quality, there are limitations such as packet 

loss, delay and jitter. VoIP real-time voice service has higher requirements on these 

parameters, some key technologies must be adopted to ensure the quality of service 

of VoIP. 

The key technologies of VoIP include coding technology, real-time transmission 

technology, quality of service (QOS) guarantee technology, network transmission 

technology, signalling technology, echo cancellation technology and so on. 

A. Coding technology 

Voice compression is an essential technique for interactive voice communication 

systems such as VoIP. Voice compression reduces the network bit rate or bandwidth 

on the communication channel (Nagirireeddi, 2008). Since IP networks have 

limitations on network bandwidth, compression rate is one of the important 

parameters of voice in VoIP systems. VoIP uses a variety of compression coding 

techniques to minimise the bandwidth requirements of communications. The main 

coding technologies currently used include G.711, G.722, G.729 and G.723 defined 

by ITU-T. G. 729 and G. 723 are used to reduce the bandwidth requirements of VoIP 
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systems. G.729 can compress the sample speech from 64Kb/s to 8Kb/s with virtually 

undistorted quality (Nagirireeddi, 2008). In packet switching networks, the quality of 

service cannot be guaranteed. The speech coding needs adaptability of coding rate 

and coding scale, which makes the speech coding more flexible. Therefore, the 

standard of G.729 speech coding has been extended from 8 Kb/s to 6.4 Kb/s ~ 11.8 

Kb/s, and the quality of speech has changed with the change of speech coding. At the 

lowest bandwidth of 6.4Kb/s, the voice quality is acceptable, so G. 729 is suitable for 

a VoIP communication system. G.723 is the lowest rate speech coding algorithm that 

has been currently standardised (Nagirireeddi, 2008). It uses 5.3/6.3 Kb/s dual-rate 

speech coding, which has higher speech quality but larger delay. G.722 coding is 

used to improve speech quality and provide better speech perception than PSTN. In 

addition, mute detection is also one of the key technologies for reducing bandwidth in 

VoIP. Mute detection can effectively eliminate the silent signal, so that the occupied 

bandwidth of speech signal can be further reduced to about 3.5 Kb/s (Nagirireeddi, 

2008). In codec selection, the main parameters to be considered are bit rate, quality, 

delays, and complexity (process and memory) requirements (Nagirireeddi, 2008).  

B. Real-time transmission technology 

As real-time voice communication, VoIP requires real-time transmission technology. 

The real-time transmission technology mainly uses the Real-time Transport Protocol 

(RTP). RTP is a protocol that provides end-to-end real-time data transmission 

including audio (Nagirireeddi, 2008). RTP includes two parts: media data and control 

information such as time parameters. The control part is called RTCP. RTCP is used 

to convey the end-to-end quality of the data stream in an RTP session (Nagirireeddi, 
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2008). Statistics including packet loss rate, delay, jitter and number of packets sent 

help the session monitor the connection status. Voice in a VoIP system is sensitive to 

delay, and RTP can help the end-to-end real-time voice to be delivered properly. RTP 

can provide time tag and synchronisation mechanism to control data flow. It enables 

the receiver to reconstruct the sender‘s data packet and provide quality of service 

feedback for the receiver. It provides an important real-time transmission technology 

for VoIP. 

C. Quality of Service Assurance Technology 

VoIP mainly uses Resource ReSerVation Protocol (RSVP) and Real-time Transport 

Control Protocol (RTCP) to control network congestion and provide quality of service 

guarantee. The Resource ReSerVation Protocol is a protocol for quality integration 

services on the Internet. RSVP allows hosts to request special quality of service over 

the network for the transmission of special application data streams. The real-time 

transmission control protocol is used to monitor the quality of service and ensure the 

quality of VoIP calls. 

D. Network transmission technology 

The network transmission technologies used in VoIP mainly include Transmission 

Control Protocol (TCP), User Datagram Protocol (UDP), gateway interconnection 

technology, network management technology, routing selection technology, charging 

technology and security authentication technology. VoIP uses RTP to provide 

end-to-end real-time data transmission services. The RTP header contains the 

identifier, a sequence number, transmission monitoring and timestamp of the payload 
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data. According to the reasons mentioned in Section 3.3.2 of this chapter, VoIP 

applications usually use TCP to establish reliable connections in the call 

establishment phase, while UDP is used to transmit voice fast in the voice 

communication phase. In VoIP systems, UDP packets are usually used to carry RTP 

protocol data units. Shorter data units can reduce latency. IP, UDP and RTP headers 

are calculated according to the minimum length, and the VoIP voice packet overhead 

is very large. The VoIP format using the RTP protocol inserts multiple voices into the 

voice data segment in this manner, thus increasing the transmission rate 

(Nagirireeddi, 2008). 

E. Signalling Technology 

Signalling technology ensures the smooth implementation of telephone calls and 

voice quality (Nagirireeddi, 2008). The signalling protocols used by VoIP mainly 

include H.323 series of ITU-T and the Session Initiation Protocol (SIP) of the IETF. 

H.323 is a protocol suite set up by the International Telecommunication Union (ITU)，

which provides the foundation for IP-based real-time communications such as audio, 

video and data communications (IEC, 2004). It specifies the components, protocols, 

and procedures providing multimedia communications over packet-based networks. 

Various configurations of video, audio and data exist in H.323. There are some 

possible configurations, such as audio only, audio and video, video and data, as well 

as audio, video and data. H.323 does not specify packet networks and transport 

protocols (IEC, 2004). 

H.323 defines four types of network components: Terminals, Gateways, Gatekeepers, 
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and Multi-point Control Units (MCUs) (Kamara & Kohno, 2006). Terminals refer to the 

end-user equipment. Gateways use protocol conversion and media format 

conversion to process communications between different networks. Gatekeepers 

provide a number of services: addressing, authorisation and authentication, as well 

as accounting and call routing. MCUs handle conferencing. The ITU specifies an 

H.323 zone consisting of terminals, gateways, Multi-point Control Units, and a 

gatekeeper that manages this zone. 

H.323 protocols include H.320 for ISDN, H.321 for B-ISDN and H.324 for PSTN 

terminal (Nagirireeddi, 2008). H.323 provides interoperability between devices, 

between high-level applications, and between providers. It does not rely on network 

structure, independent of operating system and hardware platform, and supports 

multipoint functional multicast and bandwidth management. 

The process of establishing H.323 call includes three kinds of signalling, namely 

Registration Admission Status (RAS) signalling, H.225 call signalling and H.245 

control signalling. RAS signalling is used to process registration, authorisation, 

bandwidth change, status and disconnection between terminals and gatekeepers 

(Nagirireeddi, 2008). H.225 call control signalling is used to establish a connection 

between two H.323 terminals. H.245 signalling channel is built between two terminals 

or a terminal and a gatekeeper. It is mainly used to transmit control messages 

between them, including capacity exchange, mode parameter request and control 

information. 

Due to the reliability and easy management of H.323 protocol set, it is widely used in 

multimedia communication on the network. However, H.323 also has some limitations, 
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such as not supporting multi-cast multicast conferences, and does not support call 

forwarding. It takes a long time to establish a call. 

Session Initiation Protocol (SIP) is a signalling protocol that was developed by the 

Internet Engineering Task Force (IETF), which is used to set up and close two-way 

communications sessions (Goode & Bur, 2002). SIP operates on the application layer 

and it is used with a number of different protocols. TCP can provide higher security 

with SSL/TLS, whereas UDP can achieve faster and lower latency connections. 

The main components of an SIP system include a user agent (UA), a proxy server, a 

registrar server and a redirect server. The user agent software includes the client and 

the server components. The client is responsible for outgoing calls, and the server 

ensures that incoming calls are received. The proxy server forwards data traffic, the 

registrar server is responsible for authenticating requests, and the redirect server is 

used to resolve information for the user agent client (Qiu & Qi, 2003). 

The endpoint starts by connecting with a proxy and / or a redirect server which is 

responsible for resolving the destination number to an IP address. Then it sends back 

the information to the originating endpoint that transmits information directly to the 

destination. One of the security advantages of SIP is that it uses only one port (Kuhn 

et al., 2004). 

For SIP, the main security concerns are information integrity, confidentiality, 

authentication, non-repudiation, and privacy. No new security measures have been 

specially designed for SIP, and SIP uses the security technologies offered by the 

Hypertext Transfer Protocol (HTTP) for web pages, the Simple Mail Transfer Protocol 
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(SMTP) for email systems, and Internet Protocol Security (IPSec) for the network 

layer. 

Full encryption provides the best signal confidentiality, but as some proxies have to 

read and/or modify some SIP message fields, other possible methods should be 

considered. If the proxy is trustable, the best security solution is to perform encryption 

at the transport layer and/or the network layer. IPSec technology is used to realise full 

packet encryption at the transport layer and the network layer. TSL had been used but 

has been deprecated later on (Ramsdell, 2004). Full encryption requires that every 

end point can support the encryption approach. 

The 401 and 407 response codes as well as header fields are used in HTTP 

authentication. It provides a stateless challenge-based scheme for authentication, in 

which the challenge and user credentials are transmitted in the header fields. When a 

proxy or a user agent receives a request, it may issue a challenge to confirm the 

sender‘s identity. Once the identity is confirmed, the recipient also needs to verify that 

the requester has been authorised (Ramsdell, 2004). 

For email systems, the early Pretty Good Protocol (PGP) has been replaced by 

Multipurpose Internet Mail Extensions (MIME), which is then extended to 

Secure/Multipurpose Internet Mail Extensions (S/MIME). S/MIME can enhance 

security for SIP because MIME bodies are carried by SIP. MIME contains 

components that are able to provide integrity and encryption for MiME data (Kuhn et 

al., 2004). As described in rfc2633, S/MIME can be used for ‗authentication, message 

integrity and non-repudiation (using digital signatures) and privacy and data security 

(using encryption)‘ (Ramsdell, 2004). As network components need to use data in the 
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header field, S/MIME is very useful if full encryption of the package seems 

impossible. 

User identification is accomplished by comparing the certificate belonging to the user 

with the header information. The verification of the integrity of the message is to 

match the information in the external header field with that in the internal header field. 

In general, the Session Description Protocol (SDP) is encrypted using S/MIME, but it 

may require the encryption of certain header components. The header privacy in SIP 

is achieved by means of MIME type messages/SIP to encapsulate the entire 

message. For anonymous purposes, it needs to decrypt messages before the 

certificate to be identified and subsequently validated (Ramsdell, 2004). 

F. Echo Cancellation Technology 

Echo is one of the important factors that affect the quality of VoIP voice 

communication. In a telephonic voice conversation, echo is the return of a person‘s 

speech with delay, with a reduced or modified sound level, and with a certain amount 

of distortions (Nagirireeddi, 2008). Echoes in voice communication include acoustic 

echo and electrical echo. Acoustic echo is generated through an acoustic medium of 

a speakerphone or hands-free phone functionality. Electrical echoes are normally 

created in the two-to-four-wire telephone conversation hardware hybrids 

(Nagirireeddi, 2008). Echo cancellation technology mainly uses digital filter 

technology to eliminate the echo interference, which has a great impact on the call 

quality and guarantee the call quality (Nagirireeddi, 2008). In IP packet based 

networks with large delay, echo cancellation technology is particularly important. 
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VoIP uses real-time voice transmission, which easily results in poor voice quality. 

Among the many factors that affect voice quality, echo is one of the most critical 

factors. Echoes in a VoIP system include the echo of the speaker and the echo of the 

listener. The speaker‘s echo refers to hearing her or his own voice during the 

conversation, and the receiver‘s echo refers to hearing the speaker‘s voice repeatedly. 

When the echo coincides with the original voice, it does not affect the normal 

conversation. However, when the echo does not coincide with the original voice, the 

listener can easily perceive the existence of the echo, thus affecting the quality of 

voice calls. Packet switching technology is used in voice transmission over the 

Internet. The encoding, compression and packaging of voice signals cause large 

echo delay and jitter. In order to improve the quality of voice, echo processing is 

required in the process of voice transmission on the Internet. The IP Telephony 

Gateway must have an echo cancellation function. Devices such as echo 

suppressors can be used to reduce the impact of echo on the quality of the call. 

In a VoIP system, voice samples from the sender are compressed using compression 

codecs such as G.711, G.722, G.729 and G.723, and then framed as payloads. The 

size of the payload varies with the compression codec, compression rate option, and 

payload duration (Nagirireeddi, 2008). The compressed payloads are framed as 

RTP/UDP/IP packets and sent on the IP network. In real VoIP systems, voice payload, 

RTP, RTCP, quality of service (QoS) mechanisms, voice quality monitoring, 

bandwidth management and other parameters work together to provide better 

end-to-end packet delivery services over the Internet. 
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2.4 Security Analysis of VoIP Communications 

Since VoIP reduces the cost of audio communication and promotes the utilisation of 

network resources, it has a great application value in long-distance communication 

and enterprise internal communication, thus it has flourished in the field of 

telecommunications. However, most VoIP communication systems are operated on 

public networks, especially on the Internet, they are therefore vulnerable to various 

security threats on the network they run  (Yildiz et al., 2016; Chikha et al., 2016; 

Vera-del-Campo et al., 2015). Common VoIP security threats include DoS attacks, 

eavesdropping and tampering. 

This section will discuss the security issues and possible countermeasures of VoIP 

according to the VoIP security taxonomy defined by Voice over IP Security Alliance 

(VoIPSA). 

 

In 2005, the Voice over Internet Protocol Security Alliance (VOIPSA) developed a 

classification of VoIP security (Zar et al., 2005). This Taxonomy defines many 

potential security threats to VoIP deployments, services, and end users (Zar et al., 

2005). VOIPSA classifies VoIP security threats into six categories: social threats, 

eavesdropping, Interception and Modification, Service abuse, Intentional Interruption 

of Service, and Other Interruptions of Service. 

The main security issues of VoIP include Network Address Translation, denial of 

service, database, Web server, additional VoIP services provided by vendors, 

protocol stack, access to public and unknown networks, physics and power and so 
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on. 

NAT allows one network address to be translated into another address at a gateway 

between two networks so that the packet has a valid source address on the network it 

is on (Tucker, 2007). In general, NAT (rfc1621) is used to translate a private IP 

address into a public Internet routable IP address. Ports may also be converted. NAT 

is normally only a concern if end-user devices connect directly with an external 

network or if they connect to an internal network from an external network (Kuhn et al., 

2004). 

NAT is regarded as a layer of security because it conceals a real address on the 

internal network from the public network (Kuhn et al., 2004). As the routing device 

used may not know the actual IP address of the end-user device, NAT can become a 

problem. The header field contains the information that defines the endpoint. So 

routing devices must be capable of reading the header field, and in some cases (i.e. 

when using proxy firewall) altering it (Kuhn et al., 2004). However, this is hampered 

when using encryption. 

The desirable solution is not to use NAT if possible. Without using NAT, the problem 

mentioned above is solved, although other problems may arise. When NAT is needed, 

it must take care when selecting applications and proxy firewalls that realise the 

implementation, and public network services are alternatives. 

Denial of service is caused by preventing the service from being delivered (Tucker, 

2007). Denial of service can be caused by unavailable bandwidth or unavailable VoIP 

components. There are many factors that can lead to a DoS; for example, the 
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network is too congested to provide the bandwidth required to support the application; 

the server cannot handle the traffic; the operation of unrelated services reduces 

available service resources; malicious programs, e.g. viruses and Trojans; other 

malicious programs aiming at causing DoS; or hacking activities (NIST, 2004). 

For a denial of service as a result of bandwidth constraints, a possible solution is to 

increase bandwidth and / or isolate VoIP traffic to get priority service (Tucker, 2007). 

There are various ways that can be used to prevent the server from not working, 

helping reduce the denial of service caused by component failures, such as clustering. 

The components of the VoIP system supplied by the vendor should be evaluated, so 

as to remove any unnecessary parts. The size of the server should be planned in 

advance to support the desired services and expected traffic, therefore increasing the 

percentage of expected growth. 

It is difficult to defend against malicious programs and malicious activities, but 

appropriate patches should be applied in a timely manner and virus protection should 

be installed with frequent updates. In addition, installation designers should consider 

host-based firewalls, intrusion detection software or intrusion prevention suite (Tucker, 

2007). 

An excellent approach to defending against DoS attacks of public servers is to locate 

the device with publicly available IP addresses behind a firewall or other device that 

only allows communications from trusted sources (Tucker, 2007). In addition, 

measures such as strengthening the operating system in use, removing all 

unnecessary services and applications from servers and workstations, and patching 

can also effectively defends against the DoS. 
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Other concerns of a VoIP system that need to focus on include Web servers, 

databases, protocol stacks, additional VoIP services provided by vendors, access to 

public and unknown networks, physical security, electrical power, and so on. 

When storing and retrieving the required information, some nodes of the VoIP 

component need database to complete various functions of the VoIP system 

(Rosenberg et al., 2004). It should apply the database security principle, such as 

changing the default administrator password, patching when there are patches 

available, and accessing to the database, particularly from sources rather than from 

the VoIP system. 

A web browser is a common feature of end-user devices, and it used to offer 

additional functionality and increased productivity (Tucker, 2007). A VoIP server can 

have a web browser interface that provides management functionalities (Kuhn et al., 

2004). It needs to patch the device when a new patch is available and use as strong 

authentication as possible. 

As each vendor has its own implementation of VoIP, it may require any number of 

devices to run on a server to support its product (Tucker, 2007). Patches should be 

updated in real time and all unnecessary services should be turned off. If there is a 

great risk, it should apply encryption and / or consider protection measures by other 

equipment, such as a firewall. As voice applications and operating systems have 

similar vulnerabilities, they should also be patched frequently. 

When a VoIP system locates within a secure network and only has access to the 

public network through a network gateway, the gateway is a vulnerability that needs 
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to be considered. So a hardened gateway should be deployed behind the appropriate 

firewall, and the gateway is aware of the protocols used. 

VoIP must deal with the protocol it supports, so it needs some network protocol stack 

implementation. Detailed instructions about how to implement protocol stacks are 

normally provided by vendors or purchased from other vendors. For the latter, the 

same vulnerabilities are inherited from a specific vendor's protocol stack purchased 

(Collier & Mark, 2004). When patches are available, patching is necessary. 

The components of a VoIP system should be physically secure. The ownership 

specifies permission to gaining access to the component. With physical access, there 

are many ways to compromise a VoIP device depending on the device used and the 

underlying operating system. Good security measures include removing a disk and 

CD-ROM option from the boot list and using a password to protect the configuration. 

Denial of service occurs when a component is not available. A separate power source 

and an uninterruptible power supply (UPS) should be in place to defeat the DoS in 

case of power loss. 

In a word, VoIP system security should start with solid security on the internal network 

(Tucker, 2007). It should be protected against threats from attached hostile networks 

and those from internal networks as well. The security policy should consider any 

specific VoIP requirements. The payload of the VoIP system should be adapted to the 

relevant network and server to ensure that the appropriate resources are available. 

Carrying out a risk analysis of each component and process can identify 

vulnerabilities and threats. This provides the information that is required to determine 
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appropriate measures. Making a balance between security and the business needs of 

a organisation is key to the success of the VoIP deployment (Tucker, 2007). 

2.5 Summary 

This chapter explores how VoIP communications work and discusses the security 

issues that may occur in the VoIP communication process. VoIP technology has many 

advantages such as low cost, extensibility, better use of network resources and so on, 

thus it has become one of the most popular communication technologies in the world. 

The components of VoIP include end-user equipment, network components, call 

processors, gateways and protocols. Each component of VoIP works in a 

coordinating way to provide high quality of service. 

The basic VoIP transmission process is that a VoIP device converts the analogue 

speech signals into IP data streams and sends the data streams to the destination, 

which in turn converts the data streams into analogue speech signals. Since the 

Internet Protocol network provides a best-effort service which does not guarantee the 

quality of service, VoIP communication faces the problems such as packet loss, delay 

and jitter. Key technologies such as coding technology, real-time transmission 

technology work together to provide better end-to-end packet delivery service. 

Security issues could occur in each component of VoIP. The Voice over Internet 

Protocol Security Alliance developed a classification of VoIP security. The main 

security issues of VoIP include network address translation, denial of service, 

database, Web server and so on, and some countermeasures could help defend VoIP 

against malicious attacks to which VoIP communications might be subjected. 
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According to the principles and security analysis of VoIP communication, the effect of 

packet loss, latency and jitter needs to be addressed in the process of covert VoIP 

communications, as well as security issues such as passive adversary and 

man-in-the-middle attacks to provide the availability and security of VoIP 

communication.   
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CHAPTER 3 Steganography 

The security concerns of computer and network systems have traditionally been 

addressed using tools from cryptography. Cryptography is a mature field with 

decades of development and steganography is the little and much younger sister of 

cryptography. Digital steganography is regarded as a promising technology to 

complement cryptography in addressing data protection issues. This chapter 

presents the principles of digital steganography. It starts with a description of 

computer and network security, followed by defining steganography and identifying its 

main components. The classification of steganographic methods and steganographic 

evaluation criteria are also briefly described in this chapter. The attacks on 

steganographic communication are examined to show the importance of the current 

research. The chapter provides a summary and synthesis of related work in 

streaming media steganography. 

 

3.1 Computer and Network Security 

Computer security is the protection afforded to an automated information system in 

order to attain the applicable objectives of preserving the confidentiality, integrity, and 

availability of information system resources, including hardware, software, firmware, 

information/data, and telecommunications (Guttman & Roback, 1995). These three 
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concepts are often referred to as the CIA triad (Figure 3.1). The three concepts 

embody the fundamental security objectives for both data and computing services. 

 

Figure 3. 1 CIA triad (Guttman & Roback, 1995) 

Confidentiality. Confidentiality is one of the most important properties of secure data 

and service, which preserves authorised restrictions on information access and 

disclosure, including means for protecting personal privacy and proprietary 

information. A loss of confidentiality is the unauthorised disclosure of information 

(FIPS 199, 2004).  

Confidentiality covers both data confidentiality and privacy (Stalling & Brown, 2018). 

The former ensures that private or confidential information is not made available or 

disclosed to unauthorised individuals. The latter ensures that individuals can control 

or influence what information related to them may be collected and stored and by 

whom that information may be disclosed. 

Confidentiality is the protection of transmitted data from passive attacks. With respect 

to the content of data transmission, several levels of protection can be identified. The 

broadest service protects all user data transmitted between two users over a period of 
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time. For example, when a TCP connection is set up between two systems, this broad 

protection prevents the release of any user data transmitted over the TCP connection. 

Narrower forms of the service can also be defined, including the protection of a single 

message or even specific fields in a message (Stallings & Brown, 2018). These 

refinements are less useful than the broad approach and may even be more complex 

and expensive to implement. The other aspect of confidentiality is the protection of 

network traffic flow from analysis. This requires that an attacker be unable to observe 

the source and destination, frequency, length, or other characteristics of the traffic on 

a communications facility. 

For network security, confidentiality means only the sender and intended receiver 

should be able to understand the contents of the transmitted message (Kurose & 

Ross, 2000). Because eavesdroppers may intercept the message, this necessarily 

requires that the message be somehow encrypted so that an intercepted message 

cannot be understood by an interceptor. This aspect of confidentiality is probably the 

most commonly perceived meaning of the term secure communication. Cryptographic 

techniques for encrypting and decrypting data can be used to provide data 

confidentiality. 

Integrity. The integrity of data and system includes guarding against improper 

information modification or destruction, and ensuring information non-repudiation and 

authenticity. A loss of integrity is the unauthorised modification or destruction of 

information (Stalling & Brown, 2018). 

Integrity covers two related concepts, namely data integrity and system integrity 

(Stalling & Brown, 2018). The former assures that information (both stored and in 
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transmitted packets) and programs are changed only in a specified and authorised 

manner, and the latter assures that a system performs its intended function in an 

unimpaired manner, free from deliberate or inadvertent unauthorised manipulation of 

the system. 

As with confidentiality, integrity can apply to a stream of messages, a single message, 

or selected fields in a message.  The most useful and straight forward approach is 

total stream protection (Stallings, 2017). 

A connection-oriented integrity service, one that deals with a stream of messages, 

assures that messages are received as sent with no duplication, insertion, 

modification, reordering, or replays (Stallings, 2017). The destruction of data is also 

covered under this service. Therefore, both message stream modification and denial 

of service are addressed in the connection-oriented integrity service. On the other 

hand, a connection less integrity service, one that deals with individual messages 

without regard to any larger context, generally provides protection against message 

modification only. 

There is a distinction between service with and without recovery. The integrity service 

relates to active attacks and is concerned with detection rather than prevention 

(Stallings, 2017). If a violation of integrity is detected, then the service may simply 

report this violation, and some other portion of software or human intervention is 

required to recover from the violation (Stallings, 2017). Alternatively, there are 

mechanisms available to recover from the loss of integrity of data. The incorporation 

of automated recovery mechanisms is, in general, the more attractive alternative. 
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The communicating parties want to ensure that the content of their communication is 

not altered, either maliciously or by accident, in transit. Extensions to the check 

summing techniques that are encountered in reliable transport and data link protocols 

can be used to provide such message integrity (Kurose & Ross, 2000). Digital 

signatures and end-point authentication are important cryptographic tools of providing 

message integrity. 

Availability. The availability of data and services ensures timely and reliable access 

to and use of information. A loss of availability is the disruption of access to or use of 

information or an information system (Stalling & Brown, 2018). Availability assures 

that systems work promptly and service is not denied to authorised users. 

Both X.800 and RFC 4949 define availability to be the property of a system or a 

system resource being accessible and usable upon demand by an authorised system 

entity, according to performance specifications for the system (i.e. a system is 

available if it provides services according to the system design whenever users 

request them) (Stallings, 2017). A variety of attacks can result in the loss of or 

reduction in availability. Some of these attacks are amenable to automated 

countermeasures, such as authentication and encryption, whereas others require 

some sort of physical action to prevent or recover from loss of availability of elements 

of a distributed system. 

An availability service is one that protects a system to ensure its availability. This 

service addresses the security concerns raised by denial-of-service attacks. It 

depends on proper management and control of system resources and thus depends 

on access control service and other security services. 
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3.2 Introduction to Steganography 

Information hiding is the use of human sensory insensitivity and the redundancy of 

the multimedia digital signal itself, to hide information in public host signals, such as 

image, audio, video or text document, without affecting the sensory effects and use 

value of the host signal (Cox et al., 2008). Currently, the branches of information 

hiding technology include covert channel, steganography, anonymity and copyright 

marking, and the two main branches of which are steganography and digital 

watermarking. Steganography is the act of concealed communication. The very 

existence of a steganographic message is secret (Cox et al., 2008). 

Electronic communication is increasingly subject to cyber attacks such as 

eavesdropping, tampering and malicious interventions. The information transmission 

security of electronic communication systems is mainly relied on cryptography, which 

includes encryption technology and data integrity authentication technology (Shen et 

al., 2007). Currently, encryption technology is facing some new challenges. On the 

one hand, with the enhancement of network computing capabilities, some encryption 

algorithms have been cracked. For example, the MD5 algorithm was successfully 

cracked by Wang et al. (Wang et al,. 2005).. On the other hand, as the information 

content is encrypted, its cryptographic form is a kind of exposure of the existence of 

the confidential information, thus the encryption method is easy to become the main 

target of attack. 

In the early 2010s there was an explosion of interest in steganographic systems for 
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the embedding of various digital contents in the field of information transmission 

security. Steganography is a method of embedding the secret data into a cover object, 

which should not cause unacceptable distortion and arouse observers‘ suspicions 

(Tang et al., 2014). Both steganography and encryption technology protect the 

confidentiality of the secret data, but there are significant differences in many aspects 

between them. The fundamental difference between steganography and the 

traditional encryption technology is that the encryption technology hides the "content" 

of the secret data, while steganography hides the "existence" of the secret data. The 

encryption technology emphasises that the secret data is changed to ‗beyond 

understandable‘, whilst steganography emphasises that the secret data is changed to 

‗invisible‘, such that unauthorised users know neither the existence of the secret data 

nor the details of it. Compared with the encryption technology, steganography does 

not attract the attacker's attention and reduce the probability of being attacked. 

Therefore, steganography is considered to be one of the most important technologies 

for information transmission security. 

In recent years, steganography has become a flourishing area of research with more 

and more practical applications in various fields. For example, military communication 

systems usually need to be protected at higher security levels. They require not only 

encrypting the messages exchanged, but also hiding the existence of the secret 

communication, which means attackers even cannot perceive the existence of the 

exchanged messages. To protect the intellectual property of digital products, 

merchants often embed their trademark or unique logo into digital products with 

steganography. There are also some other applications of steganography. 
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In early steganography literature, steganography was widely used in image (Yang et 

al., 2008; Lee & Chen, 2000; Marvel et al., 1999), audio (Darsana & Vijayan, 2011; 

Cvejic & Seppanen, 2002), and video files (Cetin et al., 2012). For image 

steganography, the common method was to modify the least significant bit (LSB) of 

pixels in an image using LSB-based algorithms. Since the Human Visual System 

(HVS) is not so sensitive, the differences between the original cover image and the 

stego image with a hidden secret message are imperceptible by human eyes. Audio 

steganography was used to embed a secret message into an AU, WAV, or MP3 audio 

file. It is generally recognised that audio steganography is more challenging than 

image steganography for the wider dynamic range of the Human Auditory System 

(HAS) in comparison with HVS. The basic LSB steganography was also widely used 

in audio and video files. With the rapid spread of the Internet applications, 

steganography has been increasingly applied to streaming media on the Internet. 

Many western universities and research institutes have vigorously conducted 

steganography research, such as Harvard, MIT, and Stanford University in the United 

States, UCL, University of Cambridge, and the University of Surrey in the UK, 

Otto-von-Guericke-Universität in Germany, the University of Toronto in Canada, and 

so on, as well as many large companies such as IBM, NEC, etc. The initial 

steganographic methods focused on the most common type of data hiding in 

storage-based multimedia files. Many research institutions and universities in the 

developing world are engaged in this field, such as the Key Laboratory of Information 

Security of Chinese Academy of Sciences, Beijing Institute of Electronic Technology 

and Applications, Shanghai Jiao Tong University, University of Science and 
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Technology of China, Beijing University of Posts and Telecommunications, Xidian 

University, Harbin Institute of Technology, Dalian University of Technology, Sun 

Yat-sen University, and so on. 

Research in network channel based steganography has yielded some landmark 

results. For example, Ahsan and Kundur first reported their studies of steganography 

in the TCP/IP header in 2002 (Ahsan & Kundur, 2002); Murdoch et al. carried out 

information hiding in ISN field in the TCP header on Linux and Open BSD (Murdoch & 

Lewis, 2005); Li et al. studied steganography based on the MAC network protocol  

(Li & Ephremides, 2005); Later, substantial effort has been directed to the most 

commonly used TCP/IP and other network protocols respectively (Zander, Armitage & 

Branch, 2007; Sellke et al., 2009), resulting in a variety of steganographic algorithms 

that embed the secret data in the protocol headers. Researchers at the Beijing 

University of Posts and Telecommunications and the Hunan University also 

conducted in-depth research in steganography using network channels; Researchers 

from the CAS Software Institute put forward a steganographic algorithm that embed 

the secret data in the TTL field in the IP header (Qu, Su & Feng, 2004). 

At present, although encryption technology is facing severe challenges, it is still the 

main means of securing information transmission on the network; in contrast, 

steganography technology has a slight disadvantage in terms of theoretical research, 

technology maturity, and practicality, but its potentiality to address security issues 

remains strong, especially in solving the key issues in the secure transmission of 

massive data on the network. It is believed that it will play an important role in the 

future information and communication system. 



59 

 

Steganography technology, also known as covert communications technology, has 

not yet been developed into a mature and practical stage. There are still key technical 

issues that need to be addressed, such as the enhancement of data embedding 

capacity, the fusion of steganographic algorithms, the data security storage and 

retrieval of encrypted data. Effective methods for hiding secret messages in static 

image and audio files (Cheng & Huang, 2001; Yuewei Dai et al., 2001) prompted 

further research in steganography for streaming media. 

 

3.3 Components of Steganography 

The first informal definition of a steganographic scheme was formulated by Simmons 

as the Prisoners‘ Problem (Simmons, 1983). Two prisoners, Alice and Bob, are the 

surveillance of a warden, Eve. The warden permits Alice and Bob to communicate, 

but all communications must go through the warden. If the warden thinks that Alice‘s 

message to Bob is innocuous, she may simply forward it to Bob. Alternatively, she 

may intentionally distort the content (e.g. apply lossy compression) in the hope that 

such a distortion will remove any secret message that might be present. If the warden 

thinks Alice‘s message to Bob hides a covert communication, then she may block the 

communication entirely. 
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Figure 3. 2 Steganographically embedding scheme 

This framework is depicted in Figure 3.2. The components of steganography include 

cover object, secret data, stego key, embedding process, stego object and extraction 

process. A number of different assumptions can be made regarding the channel, the 

source of cover object, and the embedding and extraction processes.  

 

3.3.1 Cover Object 

The cover object is an object in which the secret data is embedded (Cox et al., 2008). 

Unlike a digital watermark, a steganographic message is not related to the cover 

object in which it is hidden. Consequently, the steganographer is free to choose a 

particular cover object from the source of covers. The cover object can be an image, 

video clip, audio clip or other digital media, and the secret data is embedded in the 

redundancy in their representation format. The cover object has a specific embedding 

capacity depending on the media type and the embedding method, and the likelihood 

of being detected varies with different cover objects. For example, it is intuitively clear 

that noisy or highly textured images will better mask any embedding changes than 

high-quality images with little content (e.g. blue sky images). 
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In fact, it is possible to go a step further and choose the cover object such that it is 

correlated with the secret data. For example, if the secret data is an image, choose an 

image cover that is similar. The advantage of this is that the minimum number of bits 

needed to encode the secret data is now the conditional entropy of the secret data 

given the cover. This may be very much smaller than the entropy of the secret data 

itself. As a result, the fewer bits that are need to hide the secret data, the less likely 

the warden will detect the stego object. Furthermore, the information transferred by 

Alice to Bob can now be much greater than the number of bits embedded. This is 

because the cover object is now providing Bob with additional information. 

 

3.3.2 Secret Data 

The secret data could be any stream of binary representation that needs to be 

transmitted over an insecure channel without raising suspicion (Cox et al., 2008). The 

amount of secret data that can be embedded in the cover object depends on the 

capacity of the steganographic system. Generally, the probability of detection 

increases with the amount of the embedded data. 

 

3.3.3 Embedding Process 

The embedding process usually has three inputs: cover object, secret data, and an 

optional stego key. It uses a particular method, for example LSB replacement, to 

embed the secret data into the cover object and create the stego object as an output. 

Fundamentally, an embedding function can be based on three different principles, 
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namely (Cox et al., 2008): 

A. The cover objects are preexisting and the embedder does not modify the cover 

objects. This is referred to as steganography by cover lookup. 

B. The cover objects are generated based on the hidden message and the 

embedder does not modify the cover objects. This is referred to as cover 

synthesis. 

C. The cover objects are preexisting and the embedder modifies the cover 

objects. This is referred to as steganography by cover modification. 

The type of changes introduced by the embedder, together with the location of these 

changes within the cover object, have a major influence on how inconspicuous the 

embedded message is (Cox et al., 2008). Intuitively, changes of large magnitude 

(great percentage change) will be more obvious than changes of small magnitude 

(Fridrich, 2014). Consequently, most steganographic schemes ought to modify the 

cover object as little as possible. 

The location of the changes is controlled by the selection rule. There are three types 

of selection rules: sequential, (pseudo) random and adaptive (Cox et al., 2008). 

A sequential selection rule embeds the message bits in individual elements of the 

cover object in a sequential manner (Cox et al., 2008), for example, starting in the 

upper left corner of an image and proceeding in a row-wise manner to the lower right 

corner. Although the sequential selection rule is the easiest one to implement, it 

provides poor security, since steganalytic algorithms can inspect the statistical 

properties of pixels in the same order, looking for a sudden change in behaviour. 
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A pseudo-random selection rule embeds the message bits in a pseudo-randomly 

selected subset of the cover object (Cox et al., 2008). The sender might first use a 

secret stego key to initialise a pseudo-random number generator (PRNG) that in turn 

generates a pseudo-random walk through the cover object. The message bits are 

then embedded into the elements constituting this walk. Pseudo-random selection 

rules typically offer better security than sequential rules. 

An adaptive selection rule embeds the message bits at locations that are determined 

based on the content of the cover object (Cox et al., 2008). The motivation for this is 

that statistical detectability is likely to depend on the content of the cover object as 

well. For example, it will be more difficult to detect embedding changes in noisy 

images or in highly textured areas of the image compared with smooth, uniform areas. 

Thus, one may desire to adjust the selection rule to the specific content of the cover 

object. For example, consider LSB embedding once more. The selection rule could 

depend on the variance of pixels within a small local neighbourhood. Only pixels 

whose local neighbourhood variance exceeds a certain threshold would be 

candidates to be modified. Thus, the selection rule has influence on the security of 

steganographic schemes. 

 

3.3.4 Stego Object 

The stego object is the object containing a steganographic message, i.e., the 

modified version of the cover object after embedding the secret data (Fridrich, 2014). 

The stego object should be similar to the original cover object and maintain the 
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property of imperceptibility. 

 

3.3.5 Stego Key 

The stego key is a secret key used in the embedding process to make the secret data 

computationally infeasible to be extracted by the extraction process without having 

access to that secret key. The key can be used for several different purposes. As 

previously mentioned, the key may seed a pseudo-random number generator to 

generate a random walk through the cover object (Chandramouli, Kharrazi, & Memon, 

2004). It can also be used to generate other pseudo-random entities needed for 

embedding or just a password for decoding the embedding location. 

The covert message may be cryptographically encrypted prior to embedding, in which 

case, there is also a crypto key (Cox et al., 2008). While the stego and crypto keys 

could be derived from one master key, it is simpler to consider the two keys 

separately. 

It is important to choose strong stego keys; otherwise the warden could attack the 

steganographic scheme simply by trying to read messages from the stego object 

using all possible stego keys (Cox et al., 2008). The correct key could be revealed 

when a meaningful message is obtained. Although this attack would not work if the 

message was encrypted before embedding, there exist more advanced versions of 

this attack (Fridrich et al., 2005). In general, it is always a good practice to encrypt the 

message before embedding. The crypto key could be derived from the stego key or 

could be chosen independently. The second choice provides better security in cases 
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where the stego key is compromised. 

 

3.3.6 Extraction Process 

The extraction process is an opposite process of the embedding process mentioned 

above. It takes the stego object and an optional stego key as an input and extracts 

the secret message as an output. According to the requirement of the original cover 

object, it can be divided into blind extraction and informed extraction.  

 

3.4 Classifications of Steganographic Methods 

There are some methods of classifying steganography. Since each type of 

steganography has its own properties and attributes, it is very useful to classify 

steganographic systems. The main classification approaches are based on cover 

type, embedding domain and extraction/steganalytic condition (Cole & Krutz, 2003; 

Peng et al., 2020; Cox et al., 2008). 

 

3.4.1 Based on the Cover Type 

As many different types of digital media can be used as cover objects for embedding 

secret data, steganographic methods can be classified based on the type of the cover 

object (Cole & Krutz, 2003). 

According to cover types, steganography can be divided into three categories: the 

first category is static steganography in image, audio, text and other digital files; the 
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second one is network steganography based on modification of the network protocols; 

and the third is streaming media steganography which embeds secret data into 

streaming media (such as VoIP audio stream, MPEG2 video stream, etc.). 

In early steganography literature, steganography was widely used in static covert 

objects, such as text, image, audio, and video files. Some other effort has been 

directed to network steganography. So far, the first two types of steganography 

research is in their mature stages, and the covert steganographic communication that 

uses streaming media as cover object is becoming a hot area of research. Some 

security experts anticipate that, advances in streaming media steganography will set 

off a climax of information security technology in the next few years. 

Streaming media steganography has attracted the attention of information security 

experts all over the world. On the one hand, streaming media contain plenty of 

redundancy, which can be used to embed secret data without causing signal 

distortion. Compared with image, audio, text and other digital files and network 

channels, streaming media are regarded as a better candidate for the cover object. 

On the other hand, due to the broad application of streaming media on the network, 

such as digital television on broadcast television networks, IP television (IPTV) on the 

Internet, Video on demand (VoD), Audio on demand (AoD), Audio and video mail, 

Video telephony, and Voice over IP (VoIP), streaming media steganography will have 

extensive application prospects in the field of information transmission security. 
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3.4.2 Based on Embedding Domain 

According to the embedding domain, steganography can be divided into time/space 

domain steganography, transform domain steganography and compressed domain 

steganography (Cox et al., 2008). 

In terms of image and audio cover objects, time/space domain steganography is 

implemented by modifying the grey values or intensity values of image pixels or audio 

signals. The algorithm is simple, but it is difficult to resist common image or audio 

processing and attacks, and its robustness is poor. 

The transform domain algorithm refers to embedding secret data into the transform 

domain coefficients of the original carrier, mainly including Discrete Fourier Transform 

(DFT) domain, Discrete Cosine Transform (DCT) domain, Discrete Wavelet 

Transform (DWT) domain, and so on (Peng et al., 2019). The transform domain 

algorithm has obvious advantages. Firstly, the conventional processing of the cover 

object can be regarded as low-pass filtering, and the algorithm usually avoids adding 

secret data to the high-frequency part to resist the influence of compression and 

low-pass filtering. Secondly, the embedding of secret data is distributed to the whole 

carrier to resist geometric attacks more effectively. Thirdly, the parameter distribution 

in the transform domain usually makes the embedding of secret data more in line with 

human perception characteristics.  

Compressed domain steganography is usually closely associated with multimedia 

standards. The multimedia used for cover object in steganography usually has the 

international or industry standards. In order to be compatible with the formats set by 
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these standards, it is necessary to embed and extract the secret data in these formats 

(normally compressed formats). Common compression domains include JPEG 

compression domain, MPEG compression domain, MPEG-2 compression domain, 

JPEG2000 compression domain and so on. 

 

3.4.3 Based on Extraction/Steganalysis Condition  

Blind extraction and blind steganalysis are divided into the following four indicators: 

extraction does not require the original cover object; extraction does not require the 

original secret data; steganalysis does not require the original cover object; 

steganalysis does not require the original secret data. Blind steganography should 

satisfy the following conditions: neither the original cover object nor the original secret 

data is needed for steganalysis or extraction; otherwise it is called non-blind 

steganography (Cox et al., 2008). Therefore, according to whether the original cover 

object is needed during extraction and steganalysis, steganography can be divided 

into blind extraction, informed extraction, blind steganalysis and targeted 

steganalysis. 

The concept of blind or informed message extraction is absent from the 

steganography literature. It is usually implicitly assumed that the recipient of the 

covert message does not have the original cover object available for use in decoding. 

In practice, however, this need not be the case (Cox et al., 2008). For example, both 

Alice and Bob may have the same database of images that they agree to use as 

cover object. In this case, the use of informed extraction algorithms may be beneficial 
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as the embedder does not need to embed the covert message as strongly as possible. 

Consequently, the risk of an adversary detecting the covert communication will be 

smaller. 

All steganalysis algorithms can be categorised as either system attacks, targeted 

attacks, or blind attacks (Cox et al., 2008). System attacks use a fault in the 

implementation or weaknesses due to an insufficient stego key space. A steganalysis 

algorithm is described as blind if the method of detection is independent of the 

steganographic method used. Conversely, a targeted steganalysis method is one that 

is designed to detect the stego object that is created by one or more particular 

steganographic methods (e.g. LSB embedding). 

In blind methods, the object is usually represented in some high-dimensional feature 

space. Machine learning methods are then used to distinguish between the clusters 

of cover object and stego object in the feature space. An important advantage of blind 

methods is that they can potentially detect an unknown stego scheme. They are also 

capable of classifying the stego object to individual steganographic methods. 

Because targeted steganalytic methods need to be designed for each individual 

steganographic method, their construction cannot be automated. On the other hand, 

such methods may be more accurate than blind methods. 

 

3.4.4 Others 

In addition to the main classification criteria mentioned above, there are other 

classification criteria. For example, according to the hiding method, steganography 
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can be divided into insertion based, substitution based, generation based, and cover 

lookup based steganography; according to whether the embedding is reversible, it 

can be divided into reversible steganography and irreversible steganography; 

according to whether the selected secret data is single or multiple, it can be divided 

into single steganography and multiple steganography; according to the anti-attack 

capability, it can be divided into robust steganography, vulnerability steganography 

and semi-vulnerability steganography. 

 

3.5 Properties and Evaluation Criteria of Steganography 

The primary goal of steganography is to hide the fact that a covert communication is 

present within an innocuous communication (Cox et al., 2008). There are some 

properties and criteria that can be used to evaluate steganographic systems. 

 

3.5.1 Undetectability 

Since the main propose of steganography is to hide the very existence of the secret 

data, it is significant to consider the property of undetectability of steganographic 

systems. Undetectability is the impossibility of detecting the presence of 

steganographically embedded data in a cover object (Cox et al., 2008). Many factors 

can directly affect the undetectability, such as the choice of the cover object and the 

embedding algorithm. 

Perfect undetectability means that an adversary with unlimited computational power 

is not able to state if in a given overt communication there is also a hidden message 
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transmitted. Although perfect undetectability may not exist in practical applications, it 

is of great value to attain better undetectability. 

 

3.5.2 Imperceptibility 

Imperceptibility refers to the fact that embedding secret data in a digital cover object 

should not degrade the perceived quality of the cover object and should ensure that 

the normal use of the stego object is not affected (Cox et al., 2008). The common 

measurement methods are subjective evaluation method and objective evaluation 

method. Subjective evaluation methods rely on people's subjective judgment on the 

quality of the cover object before and after embedding the hidden message. Many 

steganographic methods use the limitation of Human Visual System (HVS) or Human 

Auditory System (HAS) in the data embedding process (VenkatramanS, Ajith, & 

Paprzycki, 2004). At present, objective evaluation methods are mostly based on 

errors, that is, to examine the signal-to-noise ratio of the stego object and the cover 

object. 

 

3.5.3 Security 

Security is another important property of steganography. There are three types of 

warden for steganography: passive, active and malicious (Cox et al., 2008). Currently, 

most steganographic methods are designed for the passive warden scenario in which 

the warden just passively observes the communication and does not interfere with the 

communication in any way. An active warden may introduce distortion with the goal to 
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prevent steganographic communication. For example, a stego object might be 

compressed or down sampled to fit in with a given bandwidth. The malicious warden 

may intentionally try to remove the hidden message or impersonate the 

communicating parties.  

Security means that the embedded data should be confidential. In many applications, 

information hiding requires security. Adversaries cannot know that there is secret data 

embedded in the digital cover object, let alone remove the secret data. The common 

method is to scramble or encrypt the embedded data or its location. It requires using 

one or more keys in the processes of embedding and extracting the secret data. For 

example, in early data hiding algorithms, pseudo-random signals are embedded as 

hidden objects. In this case, the seed value of pseudo-random signal generator is the 

key. Secure steganographic algorithms have the following requirements: It is 

impossible to remove the secret data. This requires keeping the embedding location 

distribution of the secret data secure; Non-authorised user cannot extract the secret 

data. This requires that the secret data itself be encrypted or scrambled. 

 

3.5.4 Capacity 

There are two kinds of capacity in relation to the field of steganography: embedding 

capacity and steganographic capacity. The embedding capacity is the maximum 

number of bits that can be embedded in a cover object using a given steganographic 

system (Cox et al., 2008). The steganographic capacity is the maximum number of 

bits that can be hidden in a given cover object, such that the probability of detection 
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by an adversary is negligible (Cox et al., 2008). Therefore, the steganographic 

capacity is likely to be much less than the embedding capacity. 

Most steganographic schemes can avoid being detected by current steganalysis 

simply by decreasing the amount of information embedded in a cover object. 

Alternatively, decreasing the number of embedding changes to the same payload will, 

in general, decrease the embedding impact and thus lead to a more secure scheme. 

However, practical steganographic schemes must have usable steganographic 

capacity. While a robust, 1-bit watermark may be very useful for applications, a 

steganographic scheme that can communicate only 1 bit in an image is not practical. 

According to the International Federation for the Phonographic Industry (IFPI), the 

steganographic capacity of 20 bits/second is required for audio steganography. Thus, 

the primary goal of new steganographic algorithms is to develop statistically 

undetectable methods with high steganographic capacity. 

The steganographic capacity is susceptible to the following factors: Different models 

of cover object produce different capacity expressions. A number of capacity analysis 

focuses on extracting the features of image cover object and abstracting the 

probability distribution of the cover object; attack is the main factor causing capacity 

loss. Almost all capacity analysis results take into account the impact of attacks; 

whether the algorithm is blind extraction can also impact the steganographic capacity. 

Usually, blind extraction requires a certain loss of steganographic capacity. 
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3.5.5 Robustness   

Robustness refers to the fact that the hidden information can remain intact and can 

be extracted accurately when it is distorted by various conventional signal processing 

or malicious attacks (Cole & Krutz, 2003). The robustness of a steganographic 

method is the resistance to changes of a hidden message during transmission. The 

robustness is often defined as modifications caused by typical operations on the 

carrier during transmission. However, it could also include deliberate modifications 

introduced by a potential adversary in order to hinder steganographic communication. 

Generally speaking, different steganographic applications require different 

robustness. 

Two factors can affect the robustness of steganographic systems. The first one is 

undetectability, and the second is the ability to defeat the active attack (Wang & Wu, 

2004). The secret data should be recovered by the second party if the cover media 

faced some data processing. A steganographic method could be considered as 

robust if both the detection and the destruction of the hidden data are hard. 

The absolute robustness of all possible attacks and combinations of these attacks are 

difficult to obtain because of the variety of attack methods. However, a successful 

robust steganographic system should ensure that the value of the protected data has 

also been destroyed when the hidden secret data is compromised. 

The main goal of improving steganographic systems is to enhance the requirements 

of undetectability, imperceptibility, security, capacity and robustness. However, 

sometimes enhancing a certain property may negatively affect others. For example, 
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high undetectability may normally mean low capacity. Therefore, there should be a 

trade-off among these properties according to practical applications. 

 

3.6 Attacks on Steganographic Communication 

The primary goal of steganalysis is to detect when a covert communication is 

occurring (Cox et al., 2008). The requirements for steganalysis can vary significantly 

depending on the operational scenarios. As mentioned above, there are three types 

of attack on steganographic communication: passive, active, and malicious. 

A passive attacker intercepts communications from the sender and tests for the 

presence of a hidden message (Cox et al., 2008). If no secret data is detected, then 

the attacker forwards the communications to the receiver. Conversely, if a hidden 

message is detected, then the attacker blocks the transmission to the receiver (i.e. 

the receiver receives neither the communication nor the hidden message). 

An active attacker is permitted more freedom. In particular, the active attacker is free 

to modify the communication between the sender and the receiver. Thus, even if the 

steganalysis test fails, the communication may still be altered in an attempt to remove 

any hidden message that might evade detection (Chandramouli et al., 2004). For 

example, if Alice and Bob are transmitting JPEG compressed images between one 

another, then the warden, Eve, might choose to recompress the images before 

forwarding them to Bob. In this way, any hidden message embedded with a 

JPEG-based steganographic algorithm is likely to be removed. 

A malicious attacker may go one step further, in that the attacker might attempt to 
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impersonate the sender and send the receiver false messages (Cox et al., 2008). To 

do so requires the attacker to be capable of much more than the detection of a covert 

message. The attacker must also know what steganographic algorithm the sender 

and receiver are using and any associated steganographic and encryption keys 

(Chandramouli et al., 2004). 

Whilst the fundamental goal of an attacker is to reliably detect the presence of a 

hidden message within an innocuous communication between the communication 

parties, the attacker may want to know much more. This higher level of analysis, 

which is more than just detection, is known as forensic steganalysis. Forensic 

steganalysis aims at identifying the steganographic method and the stego key and 

recovering message attributes such as the message length or content (Cox et al., 

2008). 

There are two major classes of detection algorithms: targeted and blind. Targeted 

steganalysis is intended to detect a specific (target) steganographic algorithm, while 

blind steganalysis aims to detect a wide range of steganographic algorithms, 

including previously unknown algorithms. Both targeted and blind steganalysis 

algorithms are classification problems and consequently results from pattern 

recognition and machine learning can be applied. 

Detection of steganalysis algorithms can also be accomplished at a system level by 

exploiting weaknesses in the implementation of specific steganographic algorithms. 

For example, sequential LSB embedding can be reliably detected using the histogram 

attack. Sample pairs analysis is an advanced steganalytic method targeted at LSB 

embedding along a pseudo-random path. Both methods can estimate the length of 
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the embedded message. Calibration is a method for constructing detection statistics 

for both targeted and blind steganalysis. It is based on estimating the cover object 

from the stego object and is appropriate when the embedding is performed in the 

compressed (DCT) domain (Cox et al., 2008). For detection of steganographic 

algorithms that embed data in the spatial domain, the histogram characteristic 

function (HCF) can be a useful feature (Cox et al., 2008). In the spatial domain, noise 

reduction filters form the equivalent of calibration. The performance of steganalysis 

algorithms can vary considerably depending on the source of the cover objects. 

 

3.7 Steganography in Streaming Media 

Many research efforts are devoted to covert communication over streaming media 

such as VoIP. Existing covert VoIP communications stem from two research origins 

and are divided into two main types. The first one comes from digital media 

steganography, which modifies the digital representation of the transmitted voice to 

embed secret data in different processing stages. This type of covert VoIP 

communications is called voice payload-based steganography. The second one is 

VoIP-specific protocols-based steganography, which embeds secret data into specific 

VoIP protocol fields or their parameters. 

 

3.7.1 Voice Payload Approach 

Least significant bit (LSB) steganography is one of the most popular methods for 

covert communications. Meanwhile, there are also some techniques that can be 
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applied to other VoIP steganographic methods to enhance their undetectability, 

robustness, and / or steganographic bandwidth. 

A. LSB methods applied to digital voice signals 

The first VoIP steganographic method that used the digital voice signal as a hidden 

data carrier was proposed by Aoki in 2003 (Aoki, 2003). The LSB algorithm provided 

a Packet Loss Concealment (PLC) method for G.711-based VoIP. Later on, the PLC 

method was further improved, but the steganographic method and voice codec 

remained the same (Aoki, 2004; Aoki, 2007). 

The prototype of the first VoIP steganography implementation that was put forward by 

Dittmann et al. in 2005 also used the LSB method (Dittmann et al., 2005). This work 

was further extended in 2006 by Krätzer who proved that a typical VoIP 

communication could be practically used for steganography (Krätzer et al., 2006). 

Many researchers attempted to improve LSB steganography. In 2006, Wu and Yang 

described an adaptive LSB scheme (Wu et al., 2006). The results showed that this 

method outperformed simple LSB and provided a higher steganographic bandwidth 

(about 20 Kbps) with less degradation of voice quality. The SteganRTP implemented 

by Druid in 2007 used the least significant bits of the G.711 codec to carry 

steganograms, and provided a reliable bi-directional covert communication channel 

which allowed to exchange 1 kB/s of secret data in single direction (Druid, 2007). In 

2007, Wang and Wu also proposed using the least significant bits of voice samples to 

carry secret data, but the steganographic bits were encoded using a low-rate voice 

encoder, i.e. Speex (Wang et al., 2007). This implementation was characterized by a 
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small processing delay of about 0.257 ms. 

A proof-of-concept implementation of LSB-based Voice over VoIP (Vo2IP) was 

presented by Takahashi and Lee in 2007 (Takahashi et al., 2007), which established a 

hidden communication by embedding 8kbit/s G.729-based compressed audio data 

into the conventional Pulse Coded Modulation (PCM)-based audio data streams. 

Later on, Liu et al. found that the least significant bit of each speech frame of G.729 

could be replaced with a secret data bit (Liu et al., 2008). The method was 

perceptually transparent when the steganographic bandwidth was relatively high 

(about 200 bit/s). 

There has been an explosive growth in research into LSB based covert VoIP 

communication. In order to recover the secret data loss due to network conditions, 

Huang et al. described how to implement covert VoIP communication using LSB 

matching (Huang et al., 2008). They developed a G.711-based prototype called 

Stega-Talk. It was based on the Redundant Audio Data RTP payloads that are 

typically used to load Dual-Tone Multi-Frequency (DTMF) digits. 

In 2008, Tian et al. proposed an application based on a LSB steganographic system, 

which employed a balanced and simple confidential information encryption (Tian et al., 

2008). The system was evaluated for VoIP with G.729a speech coding using a 

proof-of-concept tool named StegTalk. The achievable steganographic bandwidth 

was in the range 0.8-2.6 kbit/s with a negligible effect on speech quality. In addition, it 

met the real-time requirements of VoIP services. 

In order to eliminate the correlation of secret data and enhance its ability to resist 
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statistical analysis, Tian et al. brought forward a real-time VoIP steganographic 

system in 2009 (Tian et al., 2009a). The scheme utilized M-sequence encryption 

technology to resist statistical analysis. Moreover, the protocol steganography (using 

free / unused protocol headers) was used to provide a new synchronisation 

mechanism together with the RSA-based key protocol to ensure accurate restitution 

of the secret data on the receiver side. The system produced Mean Opinion Score 

(MOS, usually used to express VoIP call quality) 0.3 and 1 quality declined under the 

0.8 and 2.6 kbt/s steganographic bandwidth. When transmitting 1 MB of steganogram, 

the latency increased by approximately 4.7 ms. Similar to the LSB-based method, 

Tian et al. presented the adaptive VoIP steganographic method in the same year 

(Tian et al., 2009b). 

In 2009, Xu and Yang proposed an LSB-based speech transmission method using 

G.723.1 speech codec in 5.3kbt/s mode (Xu et al., 2009). They defined the five least 

significant bits of the Line Spectrum Pair Vector Quantization (LSP VQ) indices used 

to transmit secret data; this method provided a steganographic bandwidth of 133.3 

bit/s. 

Moreover, some methods have taken adaptation into account. Tian et al. described a 

Dynamic Matrix Encoding Strategy (DMES) to dynamically select the size of each 

message group in a given set of adaptable message sizes (Tian et al., 2010). The 

purpose of DMES was to flexibly adapt the steganographic bandwidth and embedded 

transparency according to user requirements. The main advantage of DMES is 

probably that it coded and covered independently. 

Miao and Huang introduced an adaptive steganographic scheme based on the 
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smoothness of speech blocks (Miao et al., 2011). The security of the algorithm was 

improved by selecting a lower embedding rate in a relatively smooth voice blocks and 

selecting a higher embedding rate in sharp ones. In terms of speech quality, this 

algorithm is better than the classical steganographic algorithms based on LSB. About 

7.5kbit/s of secret data was sent covertly with a degradation of voice quality of less 

than 0.5 on MOS scale. 

For the adaptive balance between steganographic transparency and steganographic 

bandwidth, Tian et al. presented an Adaptive Partial-Matching Steganography (APMS) 

approach (Tian et al., 2011a). They introduced a Partial Similarity Value (PSV) 

measure to evaluate the partial matching between secret information and public 

information. In addition, three message sequences were used to eliminate the 

correlation between secret information, guide the adaptive embedding process, and 

encrypt synchronous signals. Later on, an insightful overview of the general 

techniques that can be applied to VoIP steganography to make it more difficult to 

detect was conducted by Tian et al. (Tian et al., 2011b). In addition, they proposed 

three new encoding strategies based on digital logic. All techniques were evaluated 

for LSB-based steganography and proved to be effective. 

In 2011, Xu et al. brought forward another LSB-based adaptive steganography 

algorithm named Adaptive VoIP Steganography (AVIS) (Xu et al., 2011). AVIS had 

two components: Value-based Multiple Insertion (VAMI) and Voice Activity Detection 

Dynamic Insertion (VADDI). VAMI was used to dynamically select multi-bits based on 

VoIP vector values, and VADDI dynamically changed the embedding interval to make 

detection harder. The method was implemented for G.711-based VoIP, achieving 
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lower detectability than a classical LSB method when the steganographic bandwidth 

was about 114 B/s, and the generated latency was acceptable degrading the voice 

from 0.1 to 0.4 on MOS scale. 

Instead of the LSBs, Liu et al. adopted the least-significant-digits to hide secret data 

(Liu, 2012). This method could increase the steganographic bandwidth by about 30% 

and bring lower steganographic costs than the classic LSB algorithm. 

B. Non-LSB steganographic methods 

In addition to the LSB-based steganography approaches, there are some other 

effective methods to use audio payload as a secret information carrier. These 

solutions are usually based on: 

a. Phase encoding (Takahashi et al., 2007; Nutzinger et al., 2011), 

b. Quantization Index Modulation (QIM) technique (Xiao et al., 2008), 

c. Spectrum techniques in the transform domain (Takahashi et al., 2007;Nutzinger, 

2010), 

d. Echo hiding technique (Takahashi et al., 2007), 

e. Analysis by synthesis (ABS)-based scheme (Ma et al., 2007; Wu et al., 2009), 

f. Discrete Fourier Transform (DFT) technique (Deng et al., 2008), 

g. Speech codec-specific approaches (Aoki, 2008; Aoki, 2009; Aoki, 2010; Geiser et 

al., 2008; Nishimura, 2009; Huang et al., 2011b). 

For phase encoding-based hiding approaches, Nutzinger and Wurzer (Nutzinger et 

al., 2011) introduced a new method of speech phase encoding in 2011. Usually, the 

original phase value was replaced by some random data. In this scheme, the original 
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phase values were preserved to ensure higher speech quality. The algorithm 

embedded confidential data by introducing a phase difference of the blocks in a 

configurable phase spectrum. It achieved up to 12.5bit/s while introducing almost no 

degradation on the voice signal, good robustness and security. 

Moreover, Quantization Index Modulation (QIM) technique is an effective method. In 

2008, Xiao et al. (Xiao, 2008) introduced an interesting algorithm for QIM, which could 

be applied to low bit-rate speech streams. Li et al. (Li et al., 2012) proposed 

Complementary Neighbour Vertices-Quantization Index Modulation (CNV-QIM). The 

algorithm was based on dividing the codebook into two parts, representing ―0‖ and ―1‖ 

respectively. Moreover, the Complementary Neighbour Vertices (CNV) algorithm was 

used to determine the relationship between codewords. This guaranteed that each 

codeword was the opposite of its nearest neighbour, thus giving a bound of distortion. 

Experiments for Internet Low Bit Rate Codec (iLBC) and G.723.1 speech codec 

proved that this method was effective as it only slightly reduced the voice quality and 

provided a steganographic bandwidth of 100 bits/s. 

There are also some steganography approaches based on spectrum techniques in 

the transform domain and echo hiding technique. Apart from the LSB algorithm, 

Takahashi and Lee (Takahashi et al., 2007) also took into account the feasibility of 

other algorithms that could be used for VoIP steganography, such as Direct Sequence 

Spread Spectrum (DSSS), Frequency-Hopping Spread Spectrum (FHSS), or echo 

hiding. All three algorithms maintained good voice quality and robustness when the 

hidden bandwidth was about 20bit/s. In 2010, Nutzinger et al. further improved DSSS, 

which created a hybrid steganography algorithm, combined DSSS with frequency 
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hopping and bit rate (Nutzinger, 2010). The authors also implemented a prototype 

and pointed out that the impact of the proposed scheme on voice quality should not 

be neglected. 

As for analysis by synthesis (ABS)-based scheme, Ma et al. (MA et al., 2007) adopted 

an ABS algorithm to hide the MELP voice information of 2.4 kbit/s in G.721-based 

voice carrier in 2007. The obtained steganographic bandwidth was estimated up to 8 

kbit/s. In 2009, Wu et al. (Wu et al., 2003) also used ABS to construct a 

steganography scheme based on Linear Predictive Coefficients (LPCs) as the secret 

data carried by means of LPCs substitution. For four speech coding methods (G.721, 

GSM, G.728 and G.729), the proposed method provided high steganographic 

bandwidth (800-3600 bit/s) and offered good undetectability, robustness and real-time 

performance. The method was superior in comparison with four traditional information 

hiding techniques, namely, LSB, echo hiding, phase coding and spectrum transform. 

Discrete Fourier Transform (DFT) technique can also be used in information hiding. In 

2008, Deng et al. (Deng et al., 2008) proposed the concept of Covert Speech 

Telephony (CST) to provide secure covert voice communications. The scheme used a 

robust Discrete Fourier Transform (DFT) watermarking scheme to hide speech in 

G.711-based VoIP data streams. Its main merit lied in using speech recognition to 

effectively reduce the size of secret information that was encrypted and embedded 

into existing overt VoIP calls. 

Many researchers have engaged in speech codec-specific approaches. In 2008, Aoki 

(Aoki, 2008) presented a steganographic algorithm based on PCMU (PCM μ-law) 

feature, in which the 0-th speech samples could be represented by two codes due to 
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the overlap (namely +0 and -0). This redundancy was used to embed secret 

information into speech without causing voice degradation. Depending on the noise 

level of the background, this method achieved a steganographic bandwidth of 4.4-24 

kbits/s. In 2009, Aoki (Aoki, 2009) published an extension of the work, studying the 

lossless steganographic technology of G.711PCMU and DVI-ADPCM codecs. The 

scheme also achieved redundancy in codec folding binary encoding, embedding 

hidden information without degrading speech quality. According to the background 

noise level, the improved technology provided the bandwidth from 24 to 400 bit/s 

based on G.711 calls, and the ADPCM calls were upgraded from 0 to 8bit/s. In 2010, 

Aoki (Aoki, 2010) proposed a semi-lossless variant technique to increase the 

steganographic bandwidth. 

In 2008, Geiser et al. (Geiser et al., 2008) reported that the PLC algorithm was mainly 

used in wireless VoIP systems, which relied on the information of the specific side of 

the covert communication channel. In order to achieve secret transmission, the 

Algebraic Code-Excited Linear Prediction (ACELP) codebook or the fixed codebook 

(FCB) was divided into subcodebooks to uniquely identify the selected secret 

information bits. The prototype implementation based on Adaptive Multi-Rate (AMR) 

achieved a 2kbit/s steganographic bandwidth. 

In 2009, Nishimura (Nishimura, 2009) described an interesting study in which 

information was hidden in the AMR-coded stream by using an extended 

quantisation-based method of pitch delay (one of the AMR codec parameter). This 

additional data transmission channel was used to transform the audio bandwidth from 

a narrow band (0.3-3.4 kHz) to a broadband (0.3-7.5 kHz). 
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In 2011, Huang et al. (Huang et al., 2011b) proposed a high-capacity steganographic 

scheme based on the utilisation of inactivity frames of G.723.2 speech codec. The 

authors proved that inactive frames in VoIP data streams were more suitable for 

embedding data than active frames, thus more data could be embedded in them with 

the same imperceptibility. They then proposed using a steganographic algorithm in 

different speech parameters of the inactivity frame for G.723.1 codec with 6.3 kbit/s 

bit rate. The scheme was imperceptible and reached an embedding rate of 101 

bits/frame. Later in 2012, Huang et al. (Huang et al., 2012) published another 

research paper ―Steganography Integration into a Low-bit Rate Speech Codec‖ in 

IEEE Transactions on Information Forensics and Security, which proposed a covert 

communication method to integrate steganography functions into speech 

compression coding. In the low bit rate speech coding process, the information was 

embedded in the pitch estimation, and the information hiding and speech 

compression were synchronised to complete. 

In March 2014, Tang et al. (Tang et al., 2014) published a research paper entitled 

―Audio Steganography with AES for Real-time Covert Voice over Internet Protocol 

Communications‖ in the international academic journal Science China Information 

Sciences, which was recommended by the Chinese Computer Federation (CCF). The 

theory and method of real-time VoIP covert communication based on AES was 

proposed, and the corresponding VoIP steganographic algorithm based on variable 

embedding capacity and AES encryption was used to realize real-time covert VoIP 

communication. 

In 2016, Tang et al. (Tang et al., 2016) published a research paper entitled ―Universal 
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Steganography Model for Low Bit-Rate Speech Codec‖ in a CCF recommended 

international journal ―Security and Communication Networks‖, which presented a 

universal model for low bit voice coded covert communication. The PSEQ 

degradation value and decoding errors were used as the basis to select the suitable 

steganography algorithm for each low bit speech coding, which made it easier for 

other researchers to realize secure covert communication with low bit rate speech 

coding. 

 

3.7.2 VoIP Specific Protocol Approach 

There are three main types of steganographic methods related to VoIP-specific 

protocols, methods modifying protocol data unit (PDU)‘s time relations, methods 

modifying PDU – protocol specific fields, and hybrid methods. 

A. Methods modifying PDU‘s time relations  

The methods that modify PDU‘s time relations take the delay between frames in 

particular packets into consideration. In 2005, Wang et al. (Wang et al., 2005) first 

presented using the VoIP protocol as a steganographic carrier; in 2006, Chen et al. 

(Chen et al., 2006) also described. The authors proposed to embed a 24-bit digital 

watermark into the encrypted data stream (such as Skype, etc.) to track its 

propagation over the network, thus providing de-anonymisation. The digital 

watermark was inserted by modifying the delay between frames in particular packets 

in the VoIP data stream. By choosing the parameters of digital watermarking, they 

achieved a 99% true positive and 0% false positive rate while maintaining good 
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robustness and undetectability. The steganographic bandwidth of around 0.3 bit/s 

was sufficient for the description application; however, it was relatively low for covert 

communication. 

In 2006, Shah et al. (Shah et al., 2006) inspected the use of jitter injected into VoIP 

packets to create a covert channel. This method intended to obtain the user's 

keyboard activity, etc., and it was confirmed that the attack was feasible even if the 

VoIP data stream was encrypted. 

In order to find a suitable method for covert VoIP communication, Shah and Blaze 

(Shah et al., 2009) suggested a new information hiding technology called Interference 

Channel, which caused external interference to shared communication media (such 

as wireless networks) to send secret information. The wireless interference channel 

they described in the implementation of the 802.11 network transmitted secret 

information in the data stream with a lower steganographic bandwidth (about 1 bit per 

2.5 seconds of the call), and was proved to be suitable for the VoIP data stream. 

B. Methods modifying PDU – protocol specific fields 

Instead of modifying PDU‘s time relations, some researchers focus on the PDU‘s 

protocol fields. In 2006, Mazurczyk and Kotulski (Mazurczyk et al., 2006a) suggested 

the use of steganography in the unused fields of the RTP protocol header, using 

digital watermarks to embed additional information into the RTP data stream to 

provide information source authentication and content integrity. The necessary 

information was embedded in the unused fields of the IP, UDP, and RTP protocol 

headers as well as the transmitted audio. The authors further improved their 
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approach (Mazurczyk et al., 2006b), combining Real-Time Transport Control Protocol 

(RTCP) functionality without the need to separate protocol functions, saving the 

bandwidth used by VoIP connection. 

To seek a broader network steganographic method applicable to VoIP, Mazurczyk 

and Szczypiorski (Mazurczyk et al., 2008a; Mazurczyk et al., 2008b) proposed a 

method that hided information into the signalling protocol, SIP with SDP, and RTP 

streams (also with RTCP). They argued that the combination of steganographic 

schemes could provide about 2,000 bits of secret information transmission capacity 

during the signal connection phase and 2.5 kbits/s during the conversation phase. In 

2010, Lloyd (Lloyd, 2010) further extended the algorithm, introduced steganographic 

algorithms for SIP and SDP protocols, and verified the feasibility through real 

experiments. 

Moreover, some approaches are based on the header field of protocol. In 2008, Bai 

(Bai et al., 2008) proposed a covert channel based on the jitter field of the RTCP 

header. The method consisted of two stages: first, calculated the jitter value in the 

current network jitter domain. Then, the secret information was modulated into the 

jitter domain according to the parameters calculated before. Using this modulation 

method ensured that the statistical characteristics of covert channels were similar to 

those of the public channels. In 2009, Forbes (Forbes, 2009) introduced an 

RTP-based steganographic algorithm that modified the value of the timestamp in the 

RTP header field to send a secret message. The theoretical maximum 

steganographic bandwidth of the method was estimated to be 350 bit/s. 

In 2010, Wieser and Roning (Wieser & Roning, 2010) implemented VoIP 
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steganography on Session Border Controller (SBC), and used it as the gatekeeper of 

trust boundaries. It was to find out whether SBC had some countermeasures for 

information hiding technology based on SIP and RTP protocols. A steganographic 

bandwidth of up to 569 kB/s was achieved. 

Other researchers used the Network Time Protocol (NTP) time field in RTCP‘s 

Sender Report (SR). In 2011, Huang et al. (Huang et al., 2011a) described how to 

provide efficient key distribution in a VoIP steganographic communication 

environment. The proposed algorithm was based on the use of the NTP field in RTCP 

as a steganographic carrier, achieving 54 bit/s steganographic bandwidth while 

having good undetectability. 

The payload domain of RTP packets can also be used to hide information. In 2011, 

Mazurczyk et al. (Mazurczyk et al., 2011) suggested the transcoding steganographic 

(TranSteg) method that relied on the compression of overt data in the payload domain 

of RTP packets to provide free space for hidden information. In the transcoding 

algorithm for the specified audio stream, an encoding method achieved similar 

speech quality in the case of a less audio load than usual. The voice audio stream 

was then transcoded. The size of the original speech payload remained the same, 

and the changes brought by the encoding were unpredictable. Conversely, after the 

audio payload was transcoded, the remaining unused space was filled with hidden 

data. The steganographic bandwidth obtained was 32 kbits/s with delays lower than 1 

ms; however, the speech quality was not experimentally assessed using the standard 

method. In 2012, Janicki et al. (Janicki et al., 2012a) further extended the method and 

analysed the impact of the choice of the TranSteg speech codec. They argued that 
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TranSteg with the G.711/G.711.0 codec did not incur steganographic costs and 

provided a remarkably high steganographic bandwidth of 31 kbps on average. 

The LSB methods in different protocols timestamp fields have different 

steganographic bandwidths. In 2012, Tian et al. (Tian et al., 2012) experimentally 

evaluated the steganographic bandwidth and undetectability of the two schemes 

proposed by Huang et al. (Huang et al., 2011a) (LSBs of NTP timestamp field of 

RTCP protocol) and by Forbes (Forbes, 2009) (LSBs of timestamp field of RTP 

protocol). The authors used the Windows Live Messenger voice conversations 

system and confirmed that using the first method the steganographic bandwidth 

available was 335 bit/s, while the second steganographic bandwidth was 5.1 bit/s. 

The latter method was more difficult to detect. 

C. Hybrid Methods  

Hybrid methods modify both the content of PDU‘s specific fields and UDP‘s time 

relationship. In 2008, Mazurczyk and Szczypiorski (Mazurczyk et al., 2008b) 

introduced a novel method called LACK (Lost Audio Packets Steganography), and it 

was later described and analysed (Mazurczyk et al., 2010). LACK relied on modifying 

the content of RTP packets and their time dependencies. This approach took 

advantage of RTP that an excessively delayed packet was not used by the receiver to 

receive the reconstruction of the data; that is, the packet was considered useless and 

therefore discarded. Therefore, covert communication was possible by introducing an 

intentional delay to select an RTP packet and using the hidden information to replace 

the original payload. In 2012, Mazurczyk (Mazurczyk, 2012) made a practical 

evaluation of the LACK-based prototype and studied the impact of the method on 
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voice transmission quality, which is arguable and impractical. In 2011, Hamdaqa and 

Tahvildari (Hamdaqa & Tahvildari, 2011) further extended the concept of LACK, 

providing reliability and fault tolerance mechanisms based on the Lagrange threshold. 

The complexity of steganographic analysis increased with the loss of partial 

steganographic bandwidth. 

In 2012, Arackaparambil et al. (Arackaparambil et al., 2012) presented a simple VoIP 

steganography method in which chosen RTP packets were replaced with the secret 

information, and deliberately changed the header sequence number and / or 

timestamp of the RTP to make the packets look like over delay by the network. This 

scheme can be regarded as a variation of the LACK method described above. 

In summary, a great deal of research has been conducted on the design of 

steganographic algorithms for covert VoIP communication, but few studies have been 

carried out to investigate the security of covert steganographic VoIP communication, 

such as the security of keys and key distribution in the steganographic system. 

 

3.8 Summary 

This chapter focuses on the key concerns and considerations of steganography. 

Steganography, together with encryption, aims to attain integrity, confidentiality and 

availability of computer and network systems. Authentication and key distribution 

make the exchange of data more secure. 

Steganography is the act of concealed communication by hiding secret data in 

seemingly innocuous objects, aiming to make the very existence of embedded data a 
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secret. According to different classification criteria, the classifications of 

steganography can be varying. Considering all classification methods, the most 

widely used steganographic method is LSB embedding in images, which is a blind 

substitution based method of embedding. 

Since a steganographic scheme is considered broken when the existence of the 

hidden message is detected, the statistical undetectability of the embedded data is 

one of the most important properties for covert communications over streaming media. 

Other properties such as imperceptibility, security, capacity and robustness are also 

vital evaluation criteria of covert communications. However, enhancing a certain 

requirement may negatively affect others. As a result, there should be compromise 

among these requirements. 

The attacks on steganographic communication include passive, active, and malicious. 

The requirements for steganalysis can vary significantly depending on the operational 

scenarios.  
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CHAPTER 4 Covert VoIP Communications 

This chapter covers a new information theoretic model for covert VoIP 

communications, novel steganographic algorithms, a new covert VoIP communication 

system, experimental set-up and evaluation criteria.  

 

4.1 Covert Communications 

Covert Communication is the secret communication between two or more parties 

where adversaries should not know that the communication is taking place (Cox et al., 

2008). Streaming media communication such as VoIP is suitable for covert 

communications. VoIP communication is one of the most popular real-time services 

on the Internet. Since the Internet allows VoIP to provide low-cost, high-reliability and 

global services, VoIP has more advantages than traditional telephony.  

VoIP streams often have a highly redundant representation, which permits the 

addition of a significantly large amount of secret data by means of simple and subtle 

modifications that preserve the perceptual content of the underlying cover object. 

With the increasing proportion of VoIP streams in Internet traffic, VoIP has become a 

better cover object for steganography than the static carriers such as text files, image 

files and audio files. In addition, VoIP connection is usually relatively short, so it is 

unlikely for attackers to detect the hidden data within VoIP streams. Their real-time 
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characteristics can be used to improve the security of the hidden data embedded in 

―dynamic‖ VoIP streams. 

A great deal of research has been conducted for covert steganographic 

communications over streaming media. Pazarci et al. first reported a method of 

embedding data in scrambled MPEG video using scrambling operation together with 

the data embedding process prior to MPEG encoding (Pazarci & Dipcin, 2003). 

Dittmann et al. studied VoIP steganography and decryption techniques and 

suggested their algorithms (Dittmann, Hesse & Hillert, 2005). Kratzer et al. studied 

the information hiding algorithm for VoIP streaming media and designed the 

architecture and synchronisation mechanism of VoIP information hiding software 

(Kratzer et al., 2006). Aoki developed a lossless steganographic technique for G.711 

telephony speech, and the embedding capacity of the method depended on the 

number of ―0‖ in the speech sample (Aoki, 2008), so the practical application is very 

limited. Liu et al. analysed the parameters of G.729 coded speech frames, and 

identified the parameters and effective bits of G.729 speech coding which could be 

used for information hiding (Liu et al., 2008). Yu et al. designed a simple VoIP 

information hiding scheme, and the validity needs to be further confirmed (Yu et al., 

2009). Aoki proposed a semi-lossless steganographic technique for G.711 telephony 

speech, which improved the bandwidth from 24 bit/s to 400 bit/s, but it depended on 

the background noise signal level (Aoki, 2010). Tian et al. developed a method to 

improve the performance of data hiding by adding some similarity between the hidden 

message and the cover object to achieve a balance between hiding transparency and 

bandwidth, but this similarity limited the choice of hidden messages (Tian et al., 2012). 
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Mazurczyk et al. suggested a transcoding information hiding method, which improved 

the information hiding capacity (32 Kbit/s) by compressing streaming media carrier 

packets (Mazurczyk et al., 2014). Tian et al. improved the security of 

quantization-index-modulation steganography in low bit-rate speech streams (Tian et 

al., 2014). In 2016, Qi et al. used Discrete Spring Transform (DST) to eliminate the 

perceived redundancy in multimedia signals in order to improve the quality of speech 

in steganography (Qi et al., 2016). Liu et al. reported the use of matrix embedding 

(ME) method to achieve information hiding in the linear predictive coding for low 

bit-rate speech codec (Liu et al., 2016). Janicki investigated pitch-based 

steganography using Speex voice codec, and its practicality needs further study 

(Janicki, 2016).  

In recent years, Lin et al. proposed a novel data hiding algorithm for high dynamic 

range (HDR) images encoded by the OpenEXR file format, offering a high embedding 

rate and high visual quality of the stego image (Lin et al., 2017). Jiang et al. designed 

a reversible data hiding scheme in encrypted domain with low computational 

complexity for three-dimensional meshes (Jiang et al., 2018). Zhang et al. suggested 

a coverless image steganographic algorithm based on discrete cosine transform and 

latent dirichlet allocation (LDA) topic classification, having robustness against 

common image processing and better ability to resist steganalysis (Zhang et al., 

2018). Yi et al. studied separable and reversible data hiding in encrypted images 

using parametric binary tree labelling, achieving an average embedding rate up to 

2.003 bpp (Yi et al., 2019). More recently, Zhou et al. reported a distortion design for 

secure adaptive 3D mesh steganography, which relied on some effective steganalytic 
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features such as variation of vertex normal (Zhou et al., 2019). Overall, these 

steganography studies mainly focus on steganographic algorithm design. There is no 

existing information theoretical model that can be put into use for covert 

communications over streaming media. In this chapter, a novel information theoretical 

model of steganographic VoIP communication is constructed to realise secure covert 

VoIP communications, aiming to achieve high data embedding capacities comparable 

to other related algorithms. 

 

4.2 Information-Theoretic Model of Covert Communications 

4.2.1 Cachin’s Definition of Steganographic Security 

Shannon first propounded the communications theory of secrecy systems from the 

viewpoint of information theory and identified three general forms of secret systems: 

(1) concealment systems; (2) privacy systems; (3) cryptographic systems (Shannon, 

1949). However, he declared that ―concealment systems are primarily a psychological 

problem‖ and did not consider it further nor provide the precise definition of 

steganographic security. Cachin defined the steganographic security which is most 

widely used and first proposed an information-theoretic model for steganography with 

a passive adversary (Cachin, 1998). 

Cachin‘s model is based on Simmons‘s ―Prisoners‘ Problem‖, in which the 

adversary‘s decision of distinguishing between an innocent cover message and a 

modified message containing hidden message is regarded as a statistical hypothesis 

testing problem. The distances between the distributions of the cover object and the 
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stego object is quantified using the relative entropy. It also defines conditions for both 

perfectly secure and ε-secure steganographic systems. The model of a secret-key 

stegosystem is shown in Figure 4.1. 

 

Figure 4. 1 Cachin‘s model of a secret-key stegosystem 

According to Cachin‘s definition, when the relative entropy between the distributions 

of the covertext and stegotext



D(PC ||PS)  0, the stegosystem is regarded as perfectly 

secure against a passive adversary. If )| |( SC PPD , the stegosystem is called - 

secure (Cachin, 1998). C and S in this definition denote covertext and stegotext 

respectively, PC and PS are the probability distributions of the covertext C and the 

stegotext S, and Q is the space of possible measurements. 



D(PC ||PS )  PC (q)log
PC

PSqQ


       (4.1)

 

Eve, the warden in Cachin‘s model can make two types of error and her decision 

performance uses the theory of hypothesis testing. If Eve decides that a stegotext is 

present when it is absent, the first form of error (type I) occurs.  denotes the 
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probability of this kind of error. The opposite error (type II) is that Eve fails to detect 

the stegotext S, and its probability is denoted by .



d(,)  denotes the relative 

entropy between both distributions of Eve‘s detection.  



d(,)   log


1 
 (1)log

1

     (4.2)
 

According to a standard result in information theory, when
0QP  and 

1QP are two 

plausible probability distributions over the space of possible measurements Q. For 

any function 



f :Q, if 



T0  f (Q0) and



T1  f (Q1) , then 



D(PT0 ||PT1 ) D(PQ0 ||PQ1 )  

(Thomas, 1991). 

Similarly, 



d(,) D(PC ||PS)         (4.3)
 

In a -secure stegosystem, 



D(PC ||PS)  , then   )||(),( SC PPDd , the 

probability  and the probability  satisfy 



d(,)  . In particular, when the 

probability of the type I error  = 0, then 



2 . Thus, the smaller   is, the closer 

the two distributions PC and PS are. 

In conclusion, since the physical meaning of  describes the statistical distance 

between the cover object and the stego message, it can be used to quantify the 

security of the stegosystem. The smaller   is, the greater the probability that covert 

communication is detected. When  = 0 and  = 1, it cannot be detected by the 

adversary; in this case, the stegosystem can be called perfectly secure. 

However, there are some limitations on Cachin‘s model. This theoretical model is 

mainly designed for text / image steganography and it is not suitable for real-time 
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covert communications over streaming media. Firstly, as Cachin‘s model assumed, 

the stego object is encrypted by a simple key only, this conventional model cannot 

manage the series of keys in the continuous process of embedding in streaming 

media. Secondly, due to packet loss, it is one of the major problems to synchronise 

between embedding and extraction in a real-time covert communication. But Cachin‘s 

model is short of synchronisation mechanisms. In addition, the model cannot address 

the embedding capacity for steganography in streaming media. Thus, a new 

information theoretical model for steganography in streaming media is needed. 

 

4.2.2 Proposed Model of Secure Covert VoIP Communications 

As stated in 4.2.1, Cachin‘s model is not suitable for steganography in streaming 

media. It deals with static cover objects into which the secret data is embedded 

statically, whereas streaming media are used for dynamic embedding in a real-time 

manner. In this study, a new theoretical model of covert steganographic 

communications over streaming media was devised, which is based on 

steganography and cryptography. The proposed model is applicable to covert VoIP 

communications, and is proved to be a - secure stegosystem below. 

The model is depicted in Figure 4.2. As the figure displays, the secret message to be 

hidden (M) is encrypted using a secret key generated from a true random number to 

form an encrypted message, which is segmented into distinct parts that are then 

embedded in a series of packets of media streams, namely cover objects or works (c). 

C and S in the figure denote the packets without and with a hidden message, 
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respectively. 

As Fig. 4.2 shows, the random vector, A = {a1, a2, … an}, is a group of zeros, ones, 

twos and threes, e.g. {1,2,2,3,0,…}, describing the continuity of the data embedding 

process; ones, twos and threes denote a packet containing the beginning, the 

continuation and the end of a hidden message, respectively, and zeros mean a 

packet contains no hidden message. 

The vector, B = {b1, b2, … bn}, is a set of steganographic capacity, corresponding to 

varying numbers of bits of the hidden message embedded in a series of packets of 

streaming media. This sequence enables the receiver to determine the size of the 

secret message embedded in each packet. 

The vector, L = {l1, l2, … ln}, represents a set of private / public key pairs of 1024bits 

each, since the public key and the private key are correlated in the public-key scheme 

where the sender and the receiver calculate the shared private key using knowledge 

of the public key based on the discrete exponential and logarithm (hash) functions. 

The covert channels detailed below are used to conduct key transmission and key 

updating for covert steganographic communications over streaming media. 

Assuming that the Sender and the Receiver share three sequences (set of variables),

0 1 2...A a a a , 0 1 2...B b b b and L= l0l1l2…, respectively. The sequence A and Bare an 

N-level M pseudo-random vectors with the period of (2n - 1) respectively; and in one 

period the probability of a fixed result is  = [2n-1 / (2n - 1)] ^ 2. The sequence B is used 

as the secret key for encryption. 
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Figure 4. 2 Model of covert communications over streaming media 

The statistical distance between the cover object and the secret message (the stego 

object) can be presented as  
 


0 0

)()(
Qw Qw

CC wPwP ,



Q0 Q , where PC is the 

probability distribution of the cover object, Q0 is a plausible space, and Q is the total 

space of possible measurements. Assuming the Sender and the Receiver share 



Q2 Q, let



PC (w) 
wQ2

 ,



Q3 QQ2, where Q2 and Q3 are the observation spaces in 

relation to the stego and cover object respectively. An information source is often 

appropriate to be modelled as a stochastic process U. If the secret message sent in 

the ith packet is denoted by Ut, the stochastic process {Ut , t = 0,1,2, …} represents 

the stego-packet S or the cover-packet C. Then the total probability distribution of the 

secret message sent over the space Q is given by 



PU (w)  P(TQ2)PS(w)P(TQ3)PC (w)  P(ai Q2)PS(w)P(ai Q3)PC (w)   

                      (4.4) 

Then 

-

Secret 

message
Key updating using one-way 

accumulators

sending

receiving

Continuity of  embedding A = {a1, a2, … an} 

Steganographic capacity B = {b1, b2, … bn}

Key updating  L = {l1, l2, … ln}
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media stream
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

PU (w) PS(w) (1)PC (w)           (4.5)
 

As 



PS (w) 
PC (w) /1, wQ0

PC (w) /1, wQ1





          (4.6)

 

Where Q0 and Q1 are two plausible spaces of possible measurements, then 



PU (w) 


PC (w)

1
 (1)PC (w)  PC (w)

1(1)

1
, wQ0


PC (w)

1
 (1)PC (w)  PC (w)

1(1)

1
, wQ1









     

(4.7) 

According to information theory, the relative entropy between the cover object and the 

stego object for steganography in streaming media is given by  



D(PC ||PU )  PC (w)log
PC (w)

PU (w)wQ



 PC (w)log
1

1(1)
wQ0

  PC (w)log
1

1(1)
wQ1




1

2
log

1

1(1)










1

2
log

1

1(1)











     

 




1

2



1(1)










1

2



1(1)











 22

1 2(1)2
        (4.8)

 

For the N-level M pseudo-random sequences,  = [2n-1 / (2n - 1)] ^ 2 = 1/4,  

)916()||( 22  UC PPD
           (4.9)

 

The relative entropy D(PC || PU) does satisfy the condition defined in Cachin‘s theory, 

i.e. 



D(PC ||PU ) 
2 (1692) 

         (4.10)
 

Therefore, it proves the proposed model for steganography in streaming media is - 
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secure against a passive adversary. 

The proposed model of secure covert VoIP communications integrates dynamic key 

updating with the data embedding and extraction processes, thereby realising secure 

covert communications over VoIP streaming media with a greater data embedding 

rate. 

 

4.3 Covert VoIP Communications Algorithm 

The basic process of covert VoIP communications is the combination of 

steganography and cryptography. Firstly, it generates keys used for encrypting the 

secret data and distributes the keys. Secondly, the secret message to be hidden is 

encrypted using the secret key generated from a true random number to form an 

encrypted message. Then, the embedding and extraction algorithms are used in the 

process of VoIP communications to realise covert communications. Thus, a covert 

VoIP communication system includes VoIP communication, key generation, key 

exchange and updating, encryption, data embedding, data extraction and decryption. 

4.3.1 Advanced Encryption 

Advanced Encryption Standard (AES) is a specification of the standard encryption 

established by the U.S. National Institute of Standards and Technology (NIST), which 

is based on Rigndael cipher algorithm (Daemen & Rijmen, 2003). The computational 

complexity of breaking the AES-128 encryption is 2126.1, which indicates that the 

attacks to this encryption algorithm are computationally infeasible. In addition, the 

AES-128 is one of the fastest algorithms for encryption, which can meet the real-time 



105 

 

requirements of VoIP communications. Therefore, this encryption algorithm was used 

to encrypt the secret data in the covert VoIP communication system developed in this 

project.AES is a symmetric block cipher. In an AES-128 encryption algorithm, the 

block size of the plaintext and the cipher text are 16 bytes, or expressed as 128 bits, 

and the key length is 128 bits (16 bytes) (FIPS 197, 2001). In this algorithm, the 

cipher consists of 10 rounds. The first 9 rounds consist of four different byte-oriented 

transformation functions: byte substitution (SubBytes ()), shifting rows (ShiftRows ()), 

mixing data in each column (MixColumns ()), and adding RoundKey (AddRoundKey 

()). The last round only contains three transformations and there is a single 

transformation function (AddRoundKey ()) to initialise before the first round. Figure 

4.3 shows the partial pseudo code of AES encryption in which Nb is the block size 

(words) and Nr is the number of rounds (words) (FIPS 197,2001). 

 

Figure 4. 3 Partial pseudo code of the AES encryption 
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4.3.2 Data Embedding Algorithm 

A data embedding algorithm was devised for the covert VoIP communications system 

developed in this project. In the system, AES-128 is used to encrypt the secret 

message before embedding it into VoIP streams to improve the secrecy. Since VoIP 

streams are transmitted on the public network, the impact of delay and packet loss is 

inevitable. Considering that the extraction and decryption of the secret message 

would be affected by packet loss, the encrypted message is segmented into distinct 

blocks before data embedding, so that the original secret message can be separately 

extracted and decrypted from independent VoIP voice packets. 

It is necessary to shorten the time required to encrypt the secret message for 

real-time VoIP communication. AES-128 encryption is a block cipher which takes the 

plaintext block size of 128 bits (or 16 bytes), and the encryption time is less than 

0.1ms. In order to embed the secret message as much as possible in the VoIP voice 

packet and reduce the encrypting time to meet the needs of real-time communication, 

the length of the secret message embedded in each single VoIP packet should be a 

multiple of 16 bytes and it must be smaller than the embedding capacity of a single 

voice packet. 

The encrypted secret message is segmented and then embedded in the packets of 

VoIP streams at various embedding capacities and different embedding locations. In 

the covert VoIP communication system, the size of data in each VoIP packet is set to 

be 4096 bytes. The first 16 bytes of the first VoIP packet is used to embed the length 

of the secret message to be hidden (LoM), and the remaining of the first packet and 

the other VoIP packets are used to embed the secret message itself. The size of the 
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remaining of the first VoIP packet is 4080 bytes, and the data embedding capacity is 

up to 510 bytes (12.5%). To reduce the encryption time, the first 496 bytes of the 

secret message are embedded in the first VoIP packet as it is a multiple of 16 bytes. 

As for the other VoIP packets, 512 bytes of the encrypted secret message are 

embedded in each VoIP packet. The remaining of the secret message is embedded in 

the last VoIP packet with the size of LLoM. The LLoM value may not be a multiple of 

16 bytes, so it is possibly necessary to adjust it to a multiple of 16 bytes in some 

cases (Peng et al., 2020). 

In order to achieve variable embedding capacity, a parameter R is set as the data 

embedding interval to minimise the impact on voice quality in different environments 

and different lengths of the secret message (Peng et al., 2020). The larger the 

embedding interval is, the less the secret message could be embedded into each 

VoIP packet. For simplicity, 16 bytes of VoIP streams have a data embedding capacity 

of two bytes. When the value of R is set to be one, the interval of the secret message 

embedded is two bytes, i.e. one byte of the secret message is randomly embedded in 

16 bytes of VoIP streams. If the interval is set to two, then the secret message is 

randomly embedded in VoIP streams at an interval of three bytes, and in this case 22 

bytes of VoIP streams contain one byte of the secret message, and so on. 

The process of embedding the secret message in VoIP streams is designed as 

follows: 

Step A: first embed the secret message length (LoM) in VoIP streams, and set 

length to LoM. 
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Step B: compute the length of the secret message hidden in the first packet (m1) 

and the length of the secret message hidden in other packets (mk). If the length is less 

than the message size in the first packet, encrypt M(0, m0 − 1) to form E(0, m0 − 1), 

and then embed E(0, m0 − 1) in the bit stream BIT = {bit(0), bit(1), . . . , bit((m0 − 1) 

*8)}. 

If the bit stream is equal to zero 

      Set vector V(k) to V(k)&0xfe 

If the bit stream is equal to one 

      Set vector V(k) to V(k)|0x01 

Add R into k 

Set the length to zero 

End 

where m0 is the total size of the secret message to be hidden, and k is the sequence 

number. m1 denotes the length of the secret message embedded into the first packet, 

mk represents the length of the secret message embedded into other packets, mn 

denotes the length of the secret message in the last packet. & is a bitwise AND 

operation, and | is a bitwise OR operation. The prefix 0x is used in C and related 

programming languages; 0xfe is a hexadecimal value and the decimal value is 254; 

0x01 is the least significant bit set and the decimal value is 1. 

If the length is greater than the message size in the first packet, encrypt M(0, m1 

− 1) to form E(0, m1 − 1), and embed E(0, m1 − 1) in the bit stream BIT = {bit(0), 

bit(1), . . . , bit((m1 − 1) * 8)}. 

If the bit stream is equal to zero 
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      Set vector V(k) to V(k)&0xfe 

If the bit stream is equal to one 

      Set vector V(k) to V(k)|0x01 

Add R into k 

Reduce the length by the secret message size in the first packet 

Step C: if the length is greater than the message length in other packets, encrypt 

M(m1, m1 + mk − 1) to form E(m1, m1 + mk − 1), and embed E(m1 , m1 + mk − 1) in the 

bit stream BIT = {bit(0), bit(1), . . . , bit((mk − 1) * 8)}. 

If the bit stream is equal to zero 

      Set vector V(k) to V(k)&0xfe 

If the bit stream is equal to one 

      Set vector V(k) to V(k)|0x01 

Add R into k 

Reduce the length by the secret message size in other packets 

Repeat Step C until the length is less than the secret message size in other 

packets 

Step D: compute the length of the secret message hidden in the last packet (mn), 

encrypt M(LoM− length, LoM− 1) to form E(LoM− length, LoM− length + mn − 1), and 

embed E(LoM−length, LoM−length+ mn −1) in the bit stream BIT = {bit(0), bit(1), . . . , 

bit((mn − 1) * 8)}. 

If the bit stream is equal to zero 

      Set vector V(k) to V(k)&0xfe 

If the bit stream is equal to one 
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      Set vector V(k) to V(k)|0x01 

Add R into k 

Set the length to zero 

End 

Data processing methods could be used in the process of data embedding to improve 

the secrecy of the covert VoIP system, such as using a self-adaptive method to detect 

whether a VoIP packet carries active or inactive audio data and using a logistic map 

to choose the embedding location randomly (Peng et al., 2020). 

 

4.3.3 Data Extraction Algorithm 

The extraction of the secret message, steganographically embedded in VoIP streams 

using the data embedding algorithm above, from the stego VoIP streams is the 

inverse process of the data embedding algorithm. The corresponding extraction 

algorithm is used to retrieve the secret message encrypted with AES, and decrypt it 

with the same secret keys to obtain the original secret message from stego VoIP 

packets. 

 

4.4 Development of Covert VoIP Communication System 

Based on the proposed theoretical model, a covert VoIP communication system 

called StegPhone was developed in this project to perform covert communication 

experiments. In this system, end-user terminals are connected to a VoIP proxy server 

on an IP local network. 
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The communication parties establish connections by SIP signalling protocol, the 

real-time audio communications are based on the media protocol, and the IP protocol 

handles the VoIP voice transmission. All these protocols were implemented on the 

VoIP server which is connected to end-user terminals. 

In the covert VoIP communication system, the sender saves the secret message to 

be hidden into a .txt file, and then choose the file in the system to embed the secret 

message into the cover object. After receiving and extraction, the receiver obtains 

a .txt file which contains the secret message. 

 

Figure 4. 4 End-user interface of the covert VoIP communication system 

The covert communication system was developed using C++ and MFC. The speech 

signal acquisition and playback is implemented by means of winmm.lib which is a 

multimedia API, and the real-time transmission of streaming media audio packets is 

based on jrtplib 3.9.1 library. The system uses the User Datagram Protocol (UDP) 
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rather than Transmission Control Protocol (TCP) to establishing low-latency and 

loss-tolerating connections between VoIP communicating parties. Figure 4.4 shows 

the interface of end-user. 

The end-user‘s IP address is needed to initialise covert VoIP communication. The 

parameters used for encoding, sampling and quantizing for VoIP streams are then set. 

In the covert communication system, VoIP audio samples are coded by PCM using 

single-channel and sampling at 8000 Hz, and are used as cover objects. Each 

speech sample is represented with 16 bits. As Figure 4.4 shows, there are three 

buttons that can be used to control the connection between the communicating 

parties. The ―CONNECT‖ button on the sender side is used to initiate a session, and 

by clicking the ―AGREE‖ button on the receiver side the two end-users are connected 

and the communication starts. The ―DISCONNECT‖ button is used to terminate the 

connection. 

 

Figure 4. 5 Diagram of a covert VoIP communication system 

The covert communication system is capable of addressing the key distribution and 

VoIP communication:
Definition of public variables

Audio device setup

Network communication

Socket response

Key generation Key distribution

Encryption Data embedding

Data extractionDecryption
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generation of true random keys over streaming media. It consists of several main 

modules, including VoIP Communication, Random Key Generation, Key Distribution, 

Encryption, Data Embedding, Data Extraction and Decryption and so on. Figure 4.5  

shows how the modules of a covert VoIP communication system interact to perform 

covert communication. 

 

4.4.1 VoIP Communications Module 

The main parts in the VoIP communications module include definition of public 

variables, audio device set up, network communications, socket response and so on. 

A. Definition of Public Variables 

Public variables are defined in the source code NetPhoneDlg.cpp, such as the buffer 

size and handle. Figure 4.6 shows the detail of public variables definition. 
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Figure 4. 6 Definition of public variable 

 

B. Audio Device Set Up 

#ifdef _DEBUG 

#define new DEBUG_NEW 

#undef THIS_FILE 

static char THIS_FILE[] = __FILE__; 

#endif 

 

#define INP_BUFFER_SIZE 4096   

#define HIDE_SIZE 10000 

#define WM_NC 1001 

#define IDC_NC 1002 

 

static HWAVEIN hWaveIn; 

static HWAVEOUT hWaveOut; 

static PBYTE pBufferIn[2]; 

static PBYTE pBufferOut[2]; 

static PWAVEHDR pWaveHdrIn[2]; 

static PWAVEHDR pWaveHdrOut[2]; 

static WAVEFORMATEX waveform; 

 

intnIn=0; 

intnOut=0; 

intnComState=1; 

BOOL bDisconnectState = TRUE; 

BOOL bBtnConnectDown = FALSE; 

BOOL bServerState = FALSE; 

BOOL bClientState = FALSE; 

 

CSocketServerSocket_Server; 

CSocketClientSocket_Client; 

 

intSockaddrinLength; 

intSockaddrLength; 

UINT inport; 

 

CStringLocalIP; 

CStringsRemoteIP; 

SOCKADDR_IN LocalAddr; 

SOCKADDR_IN RemoteAddr; 

 

CStringsAck; 

charcAck[15]; 
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Figure 4. 7 Partial pseudo-code of the audio device set up 

Several functions are used to set up audio devices used for VoIP communication. The 

voidCNetPhoneDlg::RecordBegin() 

{ 

 waveInAddBuffer(hWaveIn,pWaveHdrIn[nOut],sizeof(WAVEHDR));  

 waveInStart(hWaveIn); 

} 

 

voidCNetPhoneDlg::ON_MM_WIM_OPEN() 

{  

} 

 

LRESULT CNetPhoneDlg::ON_MM_WIM_DATA(WPARAM wParam, LPARAM lParam)  

{ 

 Socket_Client.SendTo(pBufferOut[nOut],INP_BUFFER_SIZE,(SOCKADDR*)&RemoteAddr,SockaddrLength); 

 nOut=1-nOut; 

 if(bDisconnectState == TRUE) waveInReset(hWaveIn); 

 elseRecordBegin(); 

 return 0; 

}  

 

LRESULT CNetPhoneDlg::ON_MM_WIM_CLOSE(WPARAM wParam, LPARAM lParam) 

{ 

 UNREFERENCED_PARAMETER(wParam);  

 UNREFERENCED_PARAMETER(lParam);  

 waveInUnprepareHeader(hWaveIn,pWaveHdrIn[0],sizeof(WAVEHDR)); 

 waveInUnprepareHeader(hWaveIn,pWaveHdrIn[1],sizeof(WAVEHDR)); 

 waveInClose(hWaveIn); 

 hWaveIn=NULL; 

 return 0;  

} 

 LRESULT CNetPhoneDlg::ON_MM_WOM_OPEN(WPARAM wParam, LPARAM lParam) 

{ 

Socket_Server.ReceiveFrom((void*)pBufferIn[nIn],INP_BUFFER_SIZE,sRemoteIP,inport);  

waveOutWrite(hWaveOut,pWaveHdrOut[nIn],sizeof(WAVEHDR)); 

 nIn=1-nIn; 

 if(nComState%10 == 1) 

  ::SetDlgItemText(pDlg->m_hWnd,IDC_STATIC_INFORMATION,"In-call"); 

 else 

  ::SetDlgItemText(pDlg->m_hWnd,IDC_STATIC_INFORMATION," "); 

 nComState++; 

 return 0; 

} 
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function InitAudioDevice() is defined to initialise the audio device. The function 

RecordBegin() is used for starting record. For the input device, the MM_WIM_OPEN 

message is sent to a window when a waveform-audio input device is opened. The 

MM_WIM_DATA message is sent to a window when waveform-audio data is present 

in the input buffer, and the MM_WIM_CLOSE message is sent to a window when a 

waveform-audio input device is closed. The MM_WOM_OPEN message is sent to a 

window when the given waveform-audio output device is opened. Figure 4.7 shows 

partial pseudo-code of the audio device set up. 

 

C. Network Communications 

The functions of CSocketServer() are implemented in the C++ source file 

SocketServer.cpp and the functions of CSocketClient() were implemented in 

SocketClient.cpp. CSocketServer member functions include OnAccept(intnErrorCode) 

and OnReceive(intnErrorCode). The member functions of CSocketClient include 

OnConnect(intnErrorCode) and OnSend(intnErrorCode). 

 

D. Socket Response  

In the source file NetPhoneDlg.cpp, the information response functions are 

implemented using a socket. The pseudo-code is shown in Figure 4.8. 
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voidCNetPhoneDlg::OnButtonConnect()  

{ 

 pickstart = 3; 

 UpdateData(TRUE); 

 bBtnConnectDown = TRUE; 

 bClientState = TRUE; 

 GetDlgItemText(IDC_IPADDRESS1,m_sServerIP); 

int tag=0; 

tag=Socket_Client.SendTo("COMMUNICATION",13,(SOCKADDR*)&RemoteAddr,SockaddrLength); 

GetDlgItem(IDC_BUTTON_CONNECT)->EnableWindow(FALSE); 

GetDlgItem(IDC_BUTTON_DISCONNECT)->EnableWindow(TRUE); 

} 

voidCNetPhoneDlg::OnButtonCommunicate()  

{ 

 pickstart = 2; 

 GetDlgItem(IDC_BUTTON_CONNECT)->EnableWindow(FALSE); 

 GetDlgItem(IDC_BUTTON_COMMUNICATE)->EnableWindow(FALSE); 

 GetDlgItem(IDC_BUTTON_DISCONNECT)->EnableWindow(TRUE); 

 bDisconnectState = FALSE; 

if(m_bFirstRunAudio == TRUE) 

 { 

  if(InitAudioDevice()) m_bFirstRunAudio = FALSE; 

  else 

  { 

   AfxMessageBox(_T("Initialization waveform audio equipment failed!"),MB_ICONINFORMATION | 

MB_OK,NULL); 

   return; 

  } 

} 

if(bClientState == FALSE) 

 { 

Socket_Client.SendTo(sztext1,sizeof(sztext1),(SOCKADDR*)&RemoteAddr,SockaddrLength); 

int tag=0;   

tag = Socket_Client.SendTo("AGREE",5,(SOCKADDR*)&RemoteAddr,SockaddrLength);  if(tag==5)  

  { SetDlgItemText(IDC_STATIC_INFORMATION,sRemoteIP); 

   bClientState=TRUE; 

   bServerState=TRUE; 

   RecordBegin(); 

  } 

 } 

 elseRecordBegin(); 

} 

voidCNetPhoneDlg::OnButtonDisconnect()  
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Figure 4. 8 Partial pseudo-code of socket response 

 

4.4.2 Key Generation and Distribution Module 

A. Random Key Generation 

An entropy source-based method that uses the Read Time Stamp Counter of the 

CPU was devised to generate true random numbers as dynamic keys for encryption 

and covert steganographic communications over streaming media. Figure 4.9 

illustrates the true random number generator.  

{ 

 if(In_dataBuf !=NULL) SaveInFile(); 

 if(m_dataBuf !=NULL)    SaveFile(); 

 if(bBtnConnectDown ==FALSE) 

  Socket_Client.SendTo("NO",15,(SOCKADDR*)&RemoteAddr,SockaddrLength); 

 else 

 { 

  bDisconnectState = TRUE; 

  bServerState = FALSE; 

  bClientState = FALSE; 

  bBtnConnectDown = FALSE; 

 

  Socket_Server.ShutDown();   

  Socket_Client.ShutDown(); 

  Socket_Server.Close();   

  Socket_Client.Close();  
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Figure 4. 9 Partial pseudo-code of true random number generation 

 

B. Key Distribution 

A novel dynamic key exchange and updating algorithm using a one-way accumulator 

was designed to improve the security of the covert VoIP communication system. 

Figure 4.10 shows the partial pseudo-code of key distribution. 

__int64 CDiffieHellman::GetRTSC( void ) 

{ 

 int tmp1 = 0; 

 int tmp2 = 0; 

 __asm 

 { 

  RDTSC;    

  mov tmp1, eax; 

  mov tmp2, edx; 

 } 

 return ((__int64)tmp1 * (__int64)tmp2); 

} 

unsigned __int64 CDiffieHellman::GenerateRandomNumber(void) 

{ 

static unsigned long rnd = 0x41594c49; 

 static unsigned long x   = 0x94c49514; 

 LFSR(x);  

 rnd^=GetRTSC()^x;  

 ROT(rnd,7); 

 return (unsigned __int64)GetRTSC() + rnd; 

} 
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Figure 4. 10 Partial pseudo-code of key distribution 

 

4.4.3 Data Embedding and Extraction Module  

A. Data Embedding 

According to the data embedding algorithm stated in section 4.3.2, the secret 

message is segmented into parts and then embedded in the packets of VoIP streams. 

intCDiffieHellman::CreateSenderInterKey(__int64 &InterKey) 

{ 

 if ( GetIsPublicKeyCreated() == false ) 

  return -1; 

 a = (__int64) (GenerateRandomNumber() %MAX_RANDOM_INTEGER); 

 X = XpowYmodN(g,a,n); 

 InterKey = X; 

 return 0; 

} 

intCDiffieHellman::CreateRecipientInterKey(__int64 &InterKey, __int64 Generator, __int64 Modulus) 

{ 

 b = (__int64) (GenerateRandomNumber() % MAX_RANDOM_INTEGER); 

 g = Generator; 

 n = Modulus; 

 Y = XpowYmodN(g,b,n); 

 InterKey = Y; 

 return 0; 

} 

intCDiffieHellman::CreateSenderEncryptionKey(__int64 &EncryptionKey, __int64 RecipientInterKey) 

{ 

 Y = RecipientInterKey; 

 K = XpowYmodN(Y,a,n); 

 EncryptionKey = K; 

 return 0; 

} 

intCDiffieHellman::CreateRecipientEncryptionKey(__int64 &EncryptionKey, __int64 SendersInterKey) 

{ 

 X = SendersInterKey; 

 K = XpowYmodN(X,b,n); 

 EncryptionKey = K; 

 return 0; 

} 
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Figure 4.11 shows the pseudo-code of data embedding. The data embedding process 

includes four steps as the figure shows. Firstly, it embeds the length of the secret 

message into VoIP media streams. Secondly, it calculates the length of the secret 

message hidden in different VoIP packets. Thirdly, it embeds the encrypted secret 

message into VoIP streams. Lastly, it computes the length of data embedded in the 

last packet and embeds into VoIP streams. 

 

 

voidCNetPhoneDlg::Embed() 

{ 

 if(first_voice == 0) 

  { int length=LoM; 

   charlencs[16]={0}; 

   Int_To_Binary(length,lencs); 

   for(inti=15;i>=0;i--)  

   { 

    if(lencs[i]==1) 

     *test = *test|0x01; 

    if(lencs[i]==0)  

     *test = *test&0xfe; 

    test++;  

   } 

   if(LoM<first_packet)  

   { 

    if(LoM%16) hide_num=(LoM/16+1)*16; 

    elsehide_num=LoM; 

   } 

   elsehide_num=first_packet;    

   first_voice=1;   

  } 

 if(hide_num==0)  

 {   

  if((LoM-count)<middle_packet)  

  { 

if(LoM%16) hide_num=((LoM-count)/16+1)*16; 

   elsehide_num=LoM-count;  
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Figure 4. 11 Partial pseudo-code of data embedding 

 

B. Data Extraction 

The extraction of the hidden message is the inverse process of the data embedding 

process, and is depicted in Fig. 4.12. 

} 

  elsehide_num=middle_packet; 

 } 

 aes.Cipher(text,hide_num); 

while(hided<hide_num) 

 {    

   cs=binary_print(*(text++)); 

   for(int k=0;k<8;k++) 

   { 

    if(cs[k]=='1') 

     *test = *test|0x01;        

if(cs[k]=='0')  

     *test = *test&0xfe;    

    test++;     

   } 

   hided++;    

 } 

 count=count+hided; 

 return; 

} 

 

char* CNetPhoneDlg::binary_print(char c) 

{ 

 char temp[8]; 

 for(inti = 0; i< 8; ++i) 

 { 

  if(c <<i& 0x80) 

  temp[i]='1'; 

  else 

  temp[i]='0'; 

 } 

return temp;  

 

}  
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Figure 4. 12 Partial pseudo-code of data extraction 

 

voidCNetPhoneDlg::Pick() 

{ 

 if(getfirstvoice==1) 

 { 

  for(inti=0;i<16;i++) 

  {    

   if(*c & 0x01)      

    LoMs+= pow((double)2,15-i);  

   c++; 

  } 

  if(LoMs<first_packet) 

  { 

   if(LoMs%16)  

   { 

    Pick_Num = (LoMs/16+1)*16; 

    correct=LoMs; 

   } 

   elsePick_Num = LoMs; 

  } 

  elsePick_Num = first_packet; 

  getfirstvoice=0; 

 } 

  if(Pick_Num == 0)  

 { 

  if((LoMs-getcount)<middle_packet) 

  {  

   if((LoMs-getcount)%16)  

   { 

 

correct=LoMs-getcount; 

   Pick_Num=((LoMs-getcount)/16+1)*16; 

   } 

   elsePick_Num = LoMs-getcount; 

  } 

  elsePick_Num=middle_packet; 

} 

 

 while(Picked<Pick_Num) 

 { 

  for(inti=0;i<8;i++) 

  {     

   if(*c & 0x01) temp+=pow(2.,(double)(7-i)); 

   c++;     

  }       

  ac[Picked]=(char)temp;  

  Picked++; 

  temp=0; 

 } 

 getcount=getcount+Picked; 

 aes.InvCipher(ac,Pick_Num);  

 file3.Write(ac,Pick_Num);  
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4.5 Experimental Set-up and Evaluation Criteria 

4.5.1 Performance Measurement 

The covert VoIP communication experiments were designed to assess the security 

and effectiveness of the proposed steganographic algorithm at addressing the key 

distribution issue and real random keys with VoIP communications over streaming 

media. The performance measurements were carried out by using the state-of-the-art 

network equipment Digital Speech Level Analyser (DSLA). 

 

Figure 4. 13 Diagram of performance measurements for covert VoIP 

communications. 

In the experiments, VoIP speech samples with PCM format encoded by G.711 codec 

were employed as cover objects for covert VoIP communications. The secret 

message to be embedded was encrypted using keys generated from the true random 

number generator, and then segmented into parts which were embedded into VoIP 

packets. The performance was evaluated by comparing the original cover object and 

the stego VoIP stream to assess the imperceptibility of the resulting stego VoIP 

streams, and the data embedding capacity was calculated according to each set of 

experimental results. DSLA was used to measure the SNR value and PESQ score of 
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the speech samples, which are two important parameters for performance 

measurements. Figure 4.13 shows a diagram of performance measurements for 

covert VoIP communications. 

Digital Speech Level Analyser II, made by Malden Electronics Ltd, UK, was used to 

measure the performance of speech samples (DSLA, 2013). DSLAII provides a pair 

of stable, high quality analogue interfaces to a telephone network, which can be used 

to test a variety of telephone products, including telephone lines, telephone handsets, 

mobile phones and microphones or earpieces (DSLA, 2013). In the experiments, one 

DSLA is needed to carry out the local testing of the covert VoIP communication 

system. Figure 4.14 shows the experimental setup using DSLA II. 

 

 

 

 

 

 

Figure 4.15 shows the internal components and the simplified block diagram of the 

DSLA II (DSLA, 2013). For input circuitry, there are two channels in the DSLA. From 

the user interface application, the DSLA application or MultiDSLA, and each channel 

can be switched to use different connector types, including Phoneline, Balanced and 

Handset (DSLA, 2013). When a connector type is selected the input is switched, 

whereas all outputs transmit the output signal. Isolation circuits and signal 

 Figure 4. 14 Digital Speech Level Analyser (DSLA) 
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conditioning are included between the connector terminals and the analogue/digital 

converters (ADC). The DSLA has 24-bit ADC and 24-bit DAC, which provide about 

104 dB of dynamic range. From the user interface, the audio monitor can be 

configured to choose the intended monitor in terms of channel, input/output and level. 

As the figure shows, there are also battery backup memory, flash memory and digital 

signal processor (DSP) inside the DSLA. DSLA with bespoke software provides 

command, control functionality and real-time signal detection and processing (DSLA, 

2013). The processing required to perform speech quality processing is divided 

between the DSP and the host processor of the controlling application. 

 

Figure 4. 15 Simplified block diagram of the DSLA 

 

The DSLA and its user interface have been designed to provide access to the SNR 

value and PESQ score measurements, either directly from the analogue connection 

or from recorded speech files. It performs ITU-T P.862 objective speech quality 

scoring plus improved Mean Opinion Score prediction according to ITU-T P.862.1. 

This is a fully conformant implementation of PESQ as defined in ITU-T P.862, and can 
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be used to measure the performance of the steganographic algorithm. 

 

4.5.2 Evaluation Criteria 

The signal-to-noise ratio (SNR) is a measure which compares the level of a desired 

signal to a background noise, and it is one of the most commonly used 

measurements of speech quality in the field of streaming media steganography. In the 

experiments, larger SNR values mean better quality of the stego audio streams 

preserving the original audio streams. The SNR value can be calculated by using 

equations below: 



SNR  20log(
255

MSE
)           (4.11) 
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N 1


2

     (4.12) 

where PV presents the pixel value, and the mean squared error (MSE) is a square 

value of the difference between the pixel value of cover audio streams and the pixel 

value of stego VoIP audio streams. Through the aforementioned formulae, it can be 

seen that the SNR value is inversely proportional to the MSE value. If MSE is equal to 

zero, SNR becomes infinite sequentially, meaning that no distortion occurs after data 

embedding (Peng et al., 2020). 

Modern communication systems cannot be reliably assessed by conventional 

engineering metrics such as SNR alone. One solution to measuring customers‘ 

perception of the quality of the systems is to conduct subjective tests involving panels 

of human subjects. However, these types of tests are expensive and unsuitable for 

real-time monitoring applications. Perceptual evaluation of speech quality (PESQ) 
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provides an objective measurement which predicts the results of subjective listening 

tests on audio communication systems. To measure the quality of speech, PESQ 

uses a sensory model to compare the original signal with the degraded signal of the 

communication system. This process is shown in Figure 4.16. 

 

Figure 4. 16 Signal process in PESQ 

The result of comparing the reference signal and the degraded signals is a quality 

score. This score is analogous to the subjective ―Mean Opinion Score‖ (MOS) 

measured using panel tests according to ITU-T P.800. PESQ takes into account 

several sources of signal degradation, including coding distortions, packet loss, 

transmission errors, delay and variable delay, and the filtering in analogue network 

components. PESQ has not considered the subjective effect of level changes in the 

network, echo and the effect of round-trip delay on conversation (Malden Electronics 

Ltd, 2007).  

PESQ requires two speech signals as inputs: the original test signal and the 

degraded signal which has been passed through the distorting system. In addition, 

the sampling rate of these speech files is needed in this model, which is either 8k or 

16k, and the test signal should be speech-like (Malden Electronics Ltd, 2007). 

There are several stages in the operations performed by PESQ, including Level 
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alignment, Input filtering, Time alignment, Auditory transform, Equalisation and 

Disturbance processing. The processing carried out by PESQ is illustrated in Figure 

4.17. 

 

Figure 4. 17 Processing performed in PESQ 

PESQ score is calculated according to ITU-T P.862, and PESQ P.862.1 gives a 

quality score on a MOS-like scale for narrowband listening. The aim of the amended 

recommendation ITU-T P.862.1 is to provide a single mapping from the raw P.862 

score to the Listening Quality Objective Mean Opinion Score (LQO-MOS). The 

mapping from PESQ score to PESQ P.862.1 is computed as follows: 

6607.44945.11

999.0999.4
999.01.862.P






PESQScoree
PESQ   (4.13) 

 

4.6 Summary 

In this chapter Cachin‘s definition of steganographic security is discussed to identify 

the limitations of its usage in streaming media steganography. A new 

information-theoretic model of secure covert VoIP communication was proposed and 

proved to be a - secure stegosystem according to the information theory. 
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Covert VoIP communication algorithms were devised in this project to 

complementAES-128 encryption with data embedding and data extraction, which 

were examined to be applicable to covert VoIP communications. 

Based on the new theoretical model, a covert VoIP communication system called 

StegPhone was developed in C++ programming code. The experimental set-up for 

covert VoIP communications is described in detail, and evaluation criteria, e.g. the 

perceptual evaluation of speech quality value and the signal-to-noise ratio, are also 

discussed. The performance measurements were carried out by using Digital Speech 

Level Analyser. 
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CHAPTER 5 True Random Key Generation and Chaotic Interval 

Selection for Covert VoIP Communications 

This chapter explores the potential of hardware-based true random key generation 

and chaotic logistic map for innovative applications in covert VoIP communications 

over streaming media. It focuses on the investigation into how the read time stamp 

counter of the CPU as an entropy source can be used to generate true random 

numbers as secret keys for streaming media steganography underpinning covert 

VoIP communications. It then covers devising an interval selection algorithm to 

choose randomly data embedding locations in VoIP streams using random 

sequences generated from a logistic chaotic map. The initial parameters of the 

chaotic map and the selection of where to embed the secret message are negotiated 

between two communicating parties. It finally carried out experiments and security 

analysis using the Mann-Whitney-Wilcoxon (M-W-W) test, instead of 

parameter-based statistical test, to prove the security of the proposed steganographic 

algorithm for covert VoIP communications. 

 

5.1 Introduction 

Voice over IP (VoIP) communication systems have been embedded into an increasing 

number of industrial applications such as smart transportation systems and intelligent 

healthcare systems. When implementing VoIP applications in building systems or 
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developing innovative smart products to assist people, security issues need to be 

addressed urgently due to ever evolving cyber threats in recent years. 

VoIP can be achieved on any networks based on an internet protocol (IP), such as 

the Internet, Intranet, local area networks (LANs) and wireless networks. VoIP 

applications include Personal Computer (PC) to PC connection, PC to Public 

Switched Telephone Network (PSTN) or PSTN to PC connection and PSTN to PSTN 

connection. The main services include voice services and real-time fax services over 

IP-based networks, interactive voice response (IVR) services implemented on the 

Web, and a variety of communication services such as E-mail and real-time 

telephone. VoIP services operate on an Internet protocol to transmit compressed 

voice samples as frames and messages as a group of bytes over an IP data network. 

In VoIP applications, voice from end-user equipment is converted into a signal level, 

digitised, compressed as voice payload and sent as IP packets. 

VoIP transmits voice information over an IP network to realise real-time voice 

communication. The basic transmission process of VoIP includes collecting the 

original sender‘s voice, converting the original voice signal into a digital signal by 

analogue-to-digital conversion, compressing and encoding the digital signal through a 

voice compression algorithm, encapsulating the compressed voice data according to 

the standard of TCP/IP, and sending the encapsulated IP packets to the receiver over 

an IP network. The receiver decodes and decompresses the received voice data 

packets to obtain the original analogue voice signal, so as to realise the real-time 

communication of voice information on the network. 
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VoIP media streams are the dynamic flow of voice data packets which can be used as 

cover objects to build real-time steganographic systems with embedded VoIP for 

industrial applications such as new healthcare products to assist our aging population 

(Fridrich, 2014). Cryptography and steganography are expected to complement each 

other to improve the security of steganographic systems. As a steganographic 

message is embedded in VoIP media streams after encryption, a strong key is 

essential to ensure that the message it protects remains absolutely secure. However, 

the key used for encryption and decryption of the message is normally a 

pseudorandom number, which is not secure enough because the key is subject to 

compromise. Given enough time and computational powers, the key would be cracked 

by attackers: if multiple PCs work in parallel, the time is drastically shortened, and 

today‘s supercomputers should be able to find a pseudorandom key in about an hour 

(Stallings, 2017). A true random number based on hardware is a perfect seed for a 

strong key which can guarantee the security of steganographic systems. 

A number of research have been conducted on the basic techniques of real-time 

steganographic systems with embedded VoIP, but the security of keys used for the 

systems has not received the attention it deserves. If the keys are broken, the 

systems become insecure, an eavesdropper can distinguish between the ordinary 

objects and the stego objects that contain the secret message, which means the 

secret message could be extracted from the stego objects. It would compromise the 

steganographic systems. 

Efforts have been carried out to investigate the use of VoIP media streams as cover 

objects to build real-time steganographic systems with embedded VoIP for secure 

communication. 
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Aoki developed a semi-lossless steganographic VoIP technique for G.711 telephony 

speech (Aoki, 2010), with bandwidth improved from 24 bit/s to 400 bit/s, depending 

on the background noise signal level. Huang et al. proposed a high capacity 

steganographic algorithm for embedding data in various speech parameters of the 

inactive frames of low bit rate VoIP streams encoded with G.723.1 source codec 

(Huang, Tang, Yuan, 2011). Tian et al. suggested a method to improve the 

performance of VoIP steganography by adding some similarity between the hidden 

message and the cover object (Tian et al., 2012) to achieve a balance between 

steganography transparency and bandwidth, but the similarity limited the choice of 

hidden messages. Tian et al. improved the security of quantization-index-modulation 

steganography in low bit-rate VoIP speech streams (Tian et al., 2014). 

Qi et al. proposed using discrete spring transform (DST) to eliminate the perceived 

redundancy in VoIP multimedia signals and improve speech quality (Qi et al., 2016). 

Liu et al. reported the use of a matrix embedding method to achieve VoIP 

steganography in linear predictive coding for low bit-rate speech codec (Liu et al., 

2016). Janicki investigated pitch-based VoIP steganography using Speex voice 

codec (Janicki, 2016) to complement Aoki‘s work (Aoki, 2010). Tian et al. (2017) put 

forward a bitrate modulation steganographic algorithm with Hamming matrix VoIP 

encoding, but its practicality needed further study. Xin et al. suggested an adaptive 

audio steganographic algorithm for covert wireless communication, which was based 

on variable low bit coding (Xin et al., 2018). 

More recently, Yi et al. studied separable and reversible data hiding in encrypted 

images using parametric binary tree labelling, achieving an average embedding rate 

up to 2.003 bpp (Yi et al., 2019). Zhou et al. reported a distortion design for secure 
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adaptive 3D mesh steganography, which relied on some effective steganalytic 

features such as variation of vertex normal (Zhou et al., 2019). Overall, these studies 

mainly focused on algorithm design for steganographic VoIP systems. 

Until recently, only few references in the literature mentioned the keys for VoIP 

steganographic systems. This was the motivation behind this study. 

 

5.2 Random Number Key Generation 

Random number keys play a fundamental role in using cryptography and 

steganography to develop a real-time steganographic system with embedded VoIP. 

Two types of random number generators can be classified, namely true random 

number generators (TRNGs) and pseudorandom number generators (PRNGs). 

TRNGs produce random bits from random physical phenomena or noise sources. 

Such non-deterministic generators have limited efficiency in number generation rates 

due to restricted mechanisms for extracting bits from physical procedures. On the 

contrary, pseudorandom number generators are initiated by a relatively short key 

(seed) and their output is expanded into a long sequence of random bits using 

computational deterministic algorithms. 

Compared with pseudorandom number generators，a hardware-implemented truly 

random key generator has limited efficiency in random number generation. It’s not 

suitable for generating a large scale of random numbers. As the random number in 

the covert VoIP communication system is used for key generation, a true random 

number generator has both enough capacity and better security, thus it is adopted in 

this research. 
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As for random number generation, Danger et al. developed a high speed true random 

number generator based on open loop structures in Field Programmable Gate Array 

(FPGA) (Danger et al., 2009), and the proposed architecture was generic as it was 

based on the open loop structure with no specific component such as Phase lock loop 

(PLL). Argyris et al. demonstrated the first compact real-time true random bit 

generator (TRBG) that exploited broadband chaotic signals emitted by a photonic 

integrated circuit (PIC) (Argyris et al., 2010). Bayon et al. presented a contactless and 

local active attack on ring oscillators (ROs) based TRNGs using electromagnetic 

fields (Bayon et al., 2012). Hirabayashi et al. built a model to realise true random 

one-time pad (OTP) encryption using DNA self-assembly (Hirabayashi et al., 2009). 

The first commercially available true random number generator that achieves bit 

production rates comparable with that of PRNGs is the Intel digital random number 

generator (DRNG) offered on new multicore chips in May 2012 (Stallings, 2017). 

Several attempts have been made to study online evaluation of true random number 

generators. Veljkovic et al. conducted low-cost implementations of on-the-fly tests for 

random number generators in constant test sequence length (Veljkovic et al., 2012). 

Yang et al. performed a series of experiments to carry out the fly testing of true random 

number generators keeping track of a random walk (Yang et al., 2015). Their studies 

focus only on the implementation of the tests and no TRNG evaluation results are 

provided. Fischer et al suggested a method to assess the internal health of an 

oscillator based TRNG by measuring the jitter (Fischer et al., 2014). Hussain et al. 

reported the first online and hardware-based testing methodology that includes higher 

order randomness tests (other than the frequency test), and they claimed that the 

method is applicable to all physical unclonable functions families (weak and strong) 
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(Hussain et al., 2016). However, there is no hardware-based true random number 

generator available for real-time steganographic systems with embedded VoIP. 

In summary, the security of keys used for VoIP steganographic systems has not been 

given much attention. To address the security issue, the remaining sections explore 

the potential of using hardware-based true random keys and advanced cryptography 

to improve the security of the real-time steganographic system with embedded VoIP. 

 

5.3 Proposed Real-time Steganographic VoIP System 

A real-time VoIP system with a steganographic algorithm to protect the data 

embedded in VoIP streams is devised in this research to achieve secure VoIP data 

communication. The system consists of four main modules: VoIP Communication, 

Random Key Generation, Selection of Embedding Locations, and Data Embedding 

and Data Extraction. 

 

5.3.1 VoIP Communication 

In this VoIP communication system, end-user terminals are connected to a VoIP 

proxy server on an IP local network, as shown in Fig. 5.1 A connection is established 

between two communicating parties using the SIP signalling protocol, followed by 

real-time audio communications with the media protocol, and the IP protocol handles 

the VoIP voice transmission over the IP network. All these protocols are implemented 

on the VoIP server, which is connected to end-user terminals. 
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VoIP 

Server 

User A User B 

Conversation                                Phase  

   Signalling                               Phase (SIP) 

   Streaming                                      … … 

 Exchange of                                parameters 

 

Figure 5. 1 VoIP communication system 

The sender saves the secret message to be hidden into a .txt file, and then choose 

the file in the system to embed the secret message into the cover object. After 

extracting the received audio packets, the receiver obtains a .txt file which contains 

the original secret message. 

The VoIP system is developed using C++ and MFC. Audio signal acquisition and 

playback is implemented by means of winmm.lib which is a multimedia API, and 

real-time transmission of streaming audio packets is based on jrtplib 3.9.1 library. The 

system uses the User Datagram Protocol (UDP) rather than Transmission Control 

Protocol (TCP) to establish low-latency and loss-tolerating connections between VoIP 

communicating parties. 

The end-user‘s IP address is needed to initialise secure VoIP communication. 

Several parameters are then set for encoding, sampling and quantizing VoIP streams. 

In the communication system, VoIP audio samples are coded with single-channel 

PCM having a sampling rate of 8000 Hz, which are used as cover objects for 

steganography. Each speech sample is represented with 16 bits. 
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5.3.2 Random Key Generation 

Cryptography and steganography can complement each other to improve the security 

of real-time steganographic systems with embedded VoIP by means of a set of keys. 

A secure steganographic system requires strong random keys. The random nature of 

the chosen number means it could lie anywhere on a virtually endless number line. A 

poor random number generator generates pseudorandom numbers, i.e. numbers 

generated by a predictable process. Most of the keys are generated by software that 

uses software-based random number generators. Keys based on pseudorandom 

numbers are subject to compromise, meaning that the data encrypted with such keys 

is not secure. 

The one time pad – the only provably secure encryption system – uses as much key 

material as ciphertext and requires that the keystream be generated from a truly 

random process (Jun et al., 1999). Generating a strong key ultimately relies on a good 

source of entropy. Today‘s operating systems provide non-physical true random 

number generators which are based on hardware events. Hardware entropy sources 

are preferable because they yield one bit of entropy for every bit of seed. 

In this research, an entropy source-based method that uses the read time stamp 

counter of the CPU is devised to generate true random numbers as dynamic keys for 

the real-time steganographic system with embedded VoIP.  

Figure 5.2 illustrates the true random number generator in which the read time stamp 

counter of the CPU is obtained to represent the clock cycles since the CPU starts. 

The instruction returns in registers EDX: EAX the count of ticks from the processor 

reset. A random number is generated by first obtaining the real-time system compiler 
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(RTSC) of the CPU and using a linear feedback shift register. The RTSC aims to 

provide an operating system aware compiler that allows for a generic manipulation of 

the real-time system architecture of a given real-time application. The RTSC is added 

to fill the 64-bits. One of the randomly large integers can be chosen to generate a 

large prime number. The prime number is then used to generate keys. Since the seed 

is a true random number, the key created with it is also true random. 

 

 

 

 

 

 

 

Figure 5. 2 Partial pseudo-code of true random number generation. 

The following prediction of optimum guessing attack cost proves the security of 

hardware entropy source-based true random keys used for the real-time 

steganographic system with embedded VoIP. 

Assuming that an attacker wants to guess a secret number among a set of n random 

numbers with the probability distribution  

P = {p1, p2, …, pn}                  (5.1) 

 __int64 CDiffieHellman::GetRTSC( void ) 

{ 

 int tmp1 = 0; 

 int tmp2 = 0; 

 __asm 

 { 

  RDTSC;    

  mov tmp1, eax; 
  mov tmp2, edx; 

 } 

 return ((__int64)tmp1 * (__int64)tmp2); 

} 

unsigned __int64 

CDiffieHellman::GenerateRandomNumber(void) 

{ 

               static unsigned long rnd = 0x41594c49; 

   static unsigned long x   = 0x94c49514; 

   LFSR(x);  
   rnd^=GetRTSC()^x;  
   ROT(rnd,7); 

   return (unsigned __int64)GetRTSC() + rnd; 

} 
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and guesses a maximum of i possibilities for a given secret number in order to 

minimise the expected number of guesses per successful recovery, the optimum 

value of i can be anywhere in the range 1  i  n, depending on the probability 

distribution P. 

If the secret number is not any of the i – 1 most likely numbers, the probability of 

making i guesses is 

   

1- p j
j=1

i-1

å  for 1  j  i - 1. The expected number of guesses for the 

attack can be written as (Stallings et al., 2019) 

 


 
1

1121 1)1(...2
i

j ji pipippNoG    (5.2) 

The probability that the attack is successful is 

   

p j
j=1

i

å  if and only if the secret number 

is one of the i most likely possibilities. Thus, the expected guess per success is given 

by 

   

Gi(P) = NoG p j
j=1

i

å               (5.3) 

Given that the hardware-entropy of P corresponds to the exact expected guess 

(measured in bits) needed to perform the optimum guessing attack or over-estimates 

this guess by at most one bit, it has 

  

Gi(P) ³Gi(P
').                    (5.4) 

For a probability distribution on a set of n possibilities

  

P' = p1, p1,..., p1,1- tp1,0,...,0{ }, p1 

occurs 

   

t =
1

p1

 times. According to (5.3), for 1  i  t + 1, the numerator of 

   

Gi(P
') is 

given by 

              (5.5) 



 142 

For 1  i  t, the denominator of 

   

Gi(P
') is ip1. So 

                 (5.6) 

Based on (5.4), for 1  i  n, it has  

   

Gi(P) ³Gi(P
') ³

1

2p1

+
1

2
                   (5.7) 

For hardware-entropy random numbers, P is a uniform distribution, and the expected 

guess per success achieves this sharp lower bound. That means that the optimum 

guessing attack cost is extremely high for hardware entropy source-based true 

random keys. 

 

5.3.3 Selection of Embedding Locations 

Chaos is a stochastic phenomenon of nonlinear deterministic system in the nature. 

The uncertainty of random sequence is resulted from the internal factor of a chaotic 

dynamical system. A chaotic map is extremely sensitive to the initial conditions and 

the parameters of the chaotic map. So a mass of noise-like but determinate random 

sequences can be obtained from a chaotic map. The random sequence can be 

reproduced from the same chaotic map with the constant initial condition. In 

comparison with other pseudo random sequence generation algorithms such as 

Mersenne Twister method, using a logistic map to generate a random sequence is 

straightforward and convenient to implement. 
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In the proposed scheme, a series of random sequences generated from a logistic 

chaotic map are used to choose data embedding locations in VoIP streams. The 

utilization of chaotic map makes data embedding in VoIP streams randomly, and it is 

unlikely to predict the initial conditions of random sequences. So the properties of the 

chaotic map can increase the security of covert communications. To meet the 

real-time requirement, it needs to minimize the time to generate random sequences. 

Meanwhile, it is necessary to know the initial parameters with infinite precision for 

sensitivity of the chaotic map, so that the initial parameters can be transmitted 

securely between the communicating parties in the conversation phase. 

A logistic map is one of the most popular models for discrete nonlinear dynamical 

systems. The map is popularized in a seminal paper by the biologist Robert May, in 

part as a discrete-time demographic model analogous to the logistic equation first 

created by Pierre Francois Verhulst (Weisstein, 2003). A logistic map is given by 

  

xn+1 = mxn(1- xn)                   (5.8) 

where x0 is the initial ratio of the population to the maximum population at year 0, xn 

denotes the value of x0 after n iterations, a number between 0 and 1, and the ratio of 

existing population to the maximum possible population after n years, and µ is a 

positive number which stands for a combined rate for reproduction and starvation.  

Figure 5.3 depicts a bifurcation diagram of a logistic map when x0 = 0.52. As Fig. 5.3 

shows, when 

  

m Î(0,1], the value of x is equal or close to 0. When 

  

m Î(1,3], x quickly 

approaches the value of µ-1/µ. It shows chaotic characteristics when µ varies in the 

range (3.57, 4]. When µ = 4, x becomes increasingly chaotic. Figure 5.4 shows the 

ergodic property of chaos, when x0 = 0.52 and µ = 4 in the equation of a logistic map. 
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As can be seen from Fig. 5.4, the value of xn randomly falls in the range (0, 1] as n 

increases between (0,10000]. 

 

Figure 5. 3 Bifurcation diagram of a logistic map when x0 = 0.52. 

Tent map is also a discrete-time dynamical system model. The original formula for the 

Tent map can be written as: 

1

1

1
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1
(1 ) 1
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n n n

x x x

x x x










  


    
                                 (5.9) 

 

Figure 5. 4 Values of xn with n increasing when x0 = 0.52 and µ = 4. 

To extend the mapping range, the improved Tent map is obtained: 
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In equation (5.10), 

  

xÎ(0,a), 

  

m Î(0,2), and 

  

aÎR. For the Tent map, the parameters are a 

= 16, µ = 1.99, and x0 = 0.552. The parameter values of the logistic map are x0 = 0.52 

and µ = 4.  

 

Figure 5. 5 Statistical distribution of numbers (Y axis) generated from the logistic map 

(X axis: xn). 

 

Figure 5. 6 Statistical distribution of numbers (Y axis) generated from the improved 

Tent map (X axis: xn). 



 146 

As Figs. 5.5 and 5.6 show, after 30000 iterations, the statistical distribution of the 

numbers generated from the logistic map is ‗U‘ shape distributed. And the statistical 

distribution of the numbers from the improved Tent map is almost uniformly 

distributed. 

Since x is between 0 and 1, some adjustments need to be made to obtain a random 

sequence of integers from the logistic map. Suppose x0 and µ are given as certain 

values in Equation (5.8), a sequence of x can then be yielded and denoted by X as 

},...,2,1,0|{ nixX i 
                          (5.11) 

and 
},...,2,1,0|1)(mod1000{ nipxrR ii 

    (5.12) 

where R is the embedding location set, r is the embedding location, and p is the largest 

interval. To get x = 16, the adjustment for the Tent map is xn = floor(xn) + 1. 

 

Figure 5. 7 Statistical distribution of numbers (Y axis) generated from the improved 

tent map after adjustment (X axis: xn). 
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Figure 5. 8 Statistical distribution of numbers (Y axis) generated from the improved 

logistic map after adjustment (X axis: xn). 

As Fig. 5.7 shows, after adjustment the statistical distribution of numbers from the 

improved tent map is still uniformly distributed. As can been seen from Fig. 5.8, when 

x is in (Fridrich, 2014; Aoki, 2008) the numbers generated are around 2000, and the 

numbers from the logistic map are almost evenly distributed too. 

The sequence of R is utilized in the proposed covert VoIP communications. p is an 

integer, which represents the largest interval, and the value of p is in the range of 2 to 

35 (Tang et al., 2014). The PESQ scores and SNR values are stable before the 

embedding interval reaches 35. ri is used to determine the data embedding locations 

in VoIP streams to embed the bitstream of secret data. 

 

5.3.4 Data Embedding 

A new steganographic algorithm is devised for the real-time VoIP communication 

system developed in this study. In the system, AES-128 is used to encrypt the secret 

message to be hidden before being embedded into VoIP streams to improve secrecy. 
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Since VoIP streams are transmitted over the public network, the impact of delay and 

packet loss is inevitable. Given that the extraction and decryption of the secret 

message can be affected by packet loss, the encrypted message is segmented into 

distinct blocks before data embedding, so that the original secret message is 

separately extracted and decrypted from independent VoIP packets. 

Due to the real-time requirements for VoIP communication, it is necessary to shorten 

the time required to encrypt the secret message. AES-128 encryption is a block 

cipher which takes the plaintext block size of 128 bits (or 16 bytes), and the 

encryption time is less than 0.1ms. In order to embed the secret message as much as 

possible in a VoIP packet and reduce the encryption time to meet the needs of 

real-time communication, the length of the secret message embedded in each single 

VoIP packet should be a multiple of 16 bytes and it must be smaller than the 

embedding capacity of a single audio packet. 

The encrypted secret message is segmented and then embedded in VoIP streaming 

packets at various embedding capacities and different embedding locations. In the 

VoIP system, the size of the VoIP packet is set to be 4096 bytes. The first 16 bytes of 

the first VoIP packet is used to embed the length of the secret message to be hidden 

(LoM), and the remaining of the first packet and the other VoIP packets are used to 

embed the secret message itself. The size of the remaining of the first VoIP packet is 

4080 bytes, and the data embedding capacity is up to 510 bytes (12.5%). To reduce 

the encryption time, the first 496 bytes of the secret message are embedded in the 

first VoIP packet as it is a multiple of 16 bytes. As for the other VoIP packets, 512 

bytes of the secret message are embedded in each VoIP packet. The remaining of 

the secret message is embedded in the last VoIP packet with the size of LLoM. The 
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LLoM value may not be a multiple of 16 bytes, so it is possibly necessary to adjust it 

to a multiple of 16 bytes in some cases (Peng et al., 2020). 

In order to achieve variable embedding capacity, a parameter R is set as the data 

embedding interval to minimise the impact of data embedding on voice quality in 

different environments and at varying lengths of the secret message. The larger the 

embedding interval is, the less the secret message could be embedded into each 

VoIP packet.  For simplicity, 16 bytes of VoIP streams have a data embedding 

capacity of two bytes. When the value of R is set to be one, the interval at which the 

secret message is embedded is two bytes, i.e. one byte of the secret message is 

randomly embedded in 16 bytes of VoIP streams. If the interval is set to two, then the 

secret message is randomly embedded in VoIP streams at an interval of three bytes; 

in this case 22 bytes of VoIP streams contain one byte of the secret message, and so 

on. 

A new data embedding algorithm is used to embed secret data in VoIP cover-speech 

streams. It is based on bit substitution with payloads using a random sequence to 

determine the data embedding location, i.e. where to embed the bitstream of secret 

data. At the beginning, there are two choices: either embedding secret data into an 

active or inactive speech period of VoIP streams. If data embedding in an active 

speech period is chosen, the embedding algorithm waits until the active speech period 

starts. An important parameter ActiveChoice is set to represent the choice. If the value 

of ActiveChoice is ‗false‘, secret data is embedded in inactive speech periods, and the 

algorithm continues with inactive speech periods. If the value of ActiveChoice is set to 

‗true‘, the bitstream of secret data is embedded in active speech periods. 
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Assuming user A wants to send L bits of secret data M to user B, the secret data is 

described as M = {mi| i = 0,1,2,...,L-1}. If the number of samples in the piece of 

speech of each packet is N, the least significant bit set of samples can be denoted by 

S = {si| i = 0,1,2,..., N-1}. 

The steganographic algorithm devised for the real-time VoIP system is depicted as 

follows: 

Step A: Obtain a random xi from the logistic chaotic map described in the previous 

section, calculate Ri = xi ×1000 (mod p) + 1 as the data embedding interval to decide 

the data embedding location in VoIP streams. 

Step B: first embed the length of the secret message (LoM) in VoIP media streams, 

and let length = LoM. 

Step C: compute the length of the secret message hidden in the first packet (m1) 

and the length of the secret message hidden in other packets (mk). 

If LoM < m1, 

encrypt M(0, m0 − 1) to form E(0, m0 − 1), and embed E(0, m0 − 1) in the bit 

stream BS = {b(0), b(1), . . . , b((m0 − 1) *8)}. 

If b(i) = 0, V (k) = V (k)&0xfe. 

If b(i) = 1, V (k) = V (k)|0x01. 

k = k + R, 

length = 0, 

end. 
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If LoM > m1, 

encrypt M(0, m1 − 1) to form E(0, m1 − 1), and embed E(0, m1 − 1) in the bit 

stream BS = {b(0), b(1), . . . , b((m1 − 1) * 8)}. 

If b(i) = 0, V (k) = V (k)&0xfe. 

If b(i) = 1, V (k) = V (k)|0x01. 

k = k + R, 

length = length − m1. 

where m0 is the whole size of the secret message to be embedded, m1 denotes 

the length of the secret message embedded into the first packet, mk represents the 

length of the secret message embedded into other packets, mn denotes the length of 

the secret message in the last packet. & is a bitwise AND operation, | is a bitwise OR 

operation, and 0x is hexadecimal. 

Step D: 

If length > mk, 

encrypt M(m1, m1 + mk − 1) to form E(m1, m1 + mk − 1), and embed E(m1 , m1 + 

mk − 1) in the bit stream BS = {b(0), b(1), . . . , b((mk − 1) * 8)}. 

If b(i) = 0, V (k) = V (k)&0xfe. 

If b(i) = 1, V (k) = V (k)|0x01. 

k = k + R, 

length = length − mk, 

repeat Step C until length < mk. 
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Step E: compute the length of the secret message hidden in the last packet (mn). 

Encrypt M(LoM− length, LoM− 1) to form E(LoM− length, LoM− length + mn − 1), 

and embed E(LoM−length, LoM−length+ mn −1) in the bit stream BS = {b(0), b(1), . . . , 

b((mn − 1) * 8)}. 

If b(i) = 0, V (k) = V (k)&0xfe. 

If b(i) = 1, V (k) = V (k)|0x01. 

k = k + R, 

length = 0, 

end. 

 

5.3.5 Data Extraction 

The extraction of the secret message, steganographically embedded in VoIP streams 

using the data embedding algorithm above, from the stego VoIP streams received on 

the receiver side is the inverse process of the data embedding algorithm. The 

corresponding extraction algorithm is used to retrieve the secret message encrypted 

with AES, and decrypt it with the same secret keys to obtain the original secret 

message from the stego VoIP packets. 

In the VoIP conversation phase (Fig. 5.1), the receiver obtains the initial parameters of 

a logistic map, which is used to generate random sequences that randomly choose 

data embedding locations, and the value of ActiveChoice which determines where to 

extract the secret data hidden in VoIP streams. The same initial parameters and the 

value of ActiveChoice enable the receiver to successfully retrieve the secret data. The 
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extraction process is a reverse phase of the data embedding process. After receiving 

an audio packet, the least significant bit set of samples can be denoted by S‘ ={s‘i | i = 

0, 1, 2, ..., N-1}. The logistic chaotic map generates a corresponding random number xi 

that decides the extraction location.  

The following steps are performed to extract the original secret data on the receiver 

side. 

Step 1: The initial value of j is 0, and s’0 is the least significant bit of the first sample 

in the chosen piece of speech. 

Step 2: Generate a random number xi from a logistic chaotic map, and calculate ri 

to decide the extraction location. 

Step 3: Suppose the least significant bit of the current sample is sj‘, if j+ri < N, get 

sj+ri‘ as mi, then perform j = j+ri, i = i+1, repeat Step 2 and Step 3 until the end of the 

current piece of speech S’, i.e., j+ri >= N. 

Step 4: Play audio, receive the next audio packet, and repeat Steps 1-3 until the 

completion of extracting the secret message M. 

 

5.4 Experiments 

5.4.1 Measurements of Interest 

To assess a real-time steganographic system with embedded VoIP, there are 

measurements of interest as follows: 



 154 

A. Embedding capacity is defined as the maximal number of bits that can be 

embedded in the cover object (e.g. VoIP streams) using a given steganographic 

algorithm. 

B. Embedding efficiency is defined as the number of embedded bits per unit 

distortion: <message size> / <changes to cover>. 

C.  Steganographic capacity is defined as the maximal length of a 

steganographic message that can be undetectably embedded in a given cover object 

(Cox et al., 2008). 

D.  Maximum capacity is defined as the maximal capacity achievable before 

risking detection. 

E. VoIP speech and signal quality metrics include perceptual evaluation of 

speech quality (PESQ) and signal-to-noise ratio (SNR) (Huang et al., 2016). 

 

5.4.2 Experimental Set-up  

VoIP communication experiments were designed to assess the security and 

effectiveness of the real-time steganographic system with embedded VoIP using the 

proposed steganographic algorithm. Performance measurements were carried out by 

means of the state-of-the-art network equipment Digital Speech Level Analyser 

(DSLA). 

In the experiments, VoIP speech samples in PCM format encoded with G.711 codec 

were employed as cover objects for real-time VoIP communications. The secret 

message to be hidden was encrypted with the keys generated from the true random 
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number generator detailed in the previous section, and was then segmented into 

parts which were embedded into VoIP packets. Performance was evaluated by 

comparing the original VoIP streams with the stego VoIP streams to assess the 

imperceptibility of the resulting stego VoIP streams. The data embedding capacity 

was calculated for each set of experimental results. DSLA was used to measure the 

SNR value and the PESQ score of the speech samples, which are two important 

parameters for performance evaluation. The figure in the previous chapter shows a 

diagram of performance measurements using DSLA for the real-time steganographic 

system with embedded VoIP. 

The DSLA and its user interface have been designed to provide access to the SNR 

value and PESQ score, either directly from the analogue connection or from recorded 

speech files. It performs ITU-T P.862 objective speech quality scoring plus improved 

Mean Opinion Score prediction according to ITU-T P.862.1. This is a fully conformant 

implementation of PESQ as defined in ITU-T P.862, and can be used to measure the 

performance of the proposed steganographic algorithm. 

 

5.4.3 Signal Quality  

The signal-to-noise ratio is a measure which compares the level of a desired signal to 

a background noise, and it is one of the most commonly used measurements of 

speech quality in the field of VoIP communication. In the experiments, larger SNR 

values mean better quality of the stego audio streams preserving the original audio 

streams. The SNR value can be calculated using the equations below: 

   

SNR = 20log(
255

MSE
)                (5.13) 
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     (5.14) 

where PV is the pixel value, and the mean squared error (MSE) is a square value of 

the difference between the pixel value of cover audio streams and the pixel value of 

stego VoIP streams. Through the aforementioned formulae, it can be seen that the 

SNR value is inversely proportional to the MSE value. If MSE is equal to zero, SNR 

becomes infinite sequentially, meaning that no distortion occurs after data 

embedding. 

 

5.4.4 Speech Quality  

A modern communication system cannot be reliably assessed by conventional 

engineering metrics such as SNR alone. One solution to measuring customers‘ 

perception of the quality of the communication systems is to conduct subjective tests 

involving panels of human subjects. However, these types of tests are expensive and 

unsuitable for real-time monitoring applications. Perceptual evaluation of speech 

quality provides an objective measurement which predicts the results of subjective 

listening tests on audio communication systems. To measure speech quality, PESQ 

uses a sensory model to compare the original signal with the degraded signal of the 

communication system. 

The result of comparing the reference signal and the degraded signals is a quality 

score. This score is analogous to the subjective ‗Mean Opinion Score‘ (MOS) 

measured using panel tests according to ITU-T P.800. PESQ takes into account 

several sources of signal degradation, including coding distortions, packet loss, 
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transmission errors, delay and variable delay and the filtering in analogue network 

components. PESQ has not considered the subjective effect of level changes in the 

network, echo and the effect of round-trip delay on conversation (DSLA, 2013). 

PESQ score is calculated according to ITU-T P.862. PESQ P.862.1 gives a quality 

score on a MOS-like scale for narrowband listening (ITU-T Recommendation, 2001). 

The purpose of the amended recommendation ITU-T P.862.1 is to provide a single 

mapping from the raw P.862 score to the Listening Quality Objective Mean Opinion 

Score (LQO-MOS). The mapping from PESQ score to PESQ P.862.1 is computed as 

follows: 

PESQP.862.1= 0.999 +
4.999 - 0.999

1+ e-1.4945´PESQScore+4.6607
        

(5.15) 

 

5.5 Results and Discussion 

Each real-time VoIP experiment was repeated 12 times to obtain the average 

measurement results for each VoIP data streams sample, so as to assess the 

effectiveness and security of the new steganographic algorithm. 

For comparison purposes, two sets of VoIP communication tests were implemented 

with and without data embedding. Performance and security comparisons were made 

between the original VoIP streams and the stego VoIP streams as a result of 

embedding the encrypted secret message in VoIP streams using the new 

steganographic algorithm (with hardware-based true random keys). Real-time VoIP 

communications tests were also conducted using the proposed algorithm at variable 

data embedding intervals. VoIP communications with the algorithm were examined 
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by varying the hidden message size. The experimental results are discussed in detail 

below. 

 

5.5.1 Spectrums of VoIP Streams  

Figure 5.9 shows the waveforms of the original VoIP streams and the stego VoIP 

streams (containing steganographically embedded data) in the time domain, 

respectively. As can be seen, there was little distortion between the original VoIP 

streams (top figure) and the stego VoIP streams (bottom figure); distortion was 

probably caused by background noise. Listening tests indicated that the human ear 

could not distinguish any difference between these two types of VoIP streams. These 

results suggest that data embedding has no or little impact on the real-time 

steganographic system with embedded VoIP detailed in Section 5.3. 

 

 

Figure 5. 9 Waveforms of the original and stego VoIP streams. 
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Figure 5. 10 Spectrograms of the original and stego VoIP streams 

Figure 5.10 shows the spectrograms of the original VoIP streams (top) and the stego 

VoIP streams (bottom) in the frequency domain, respectively. The spectrogram is the 

result of calculating the frequency spectrum of sound. As the figure shows, there were 

slight differences in these spectrograms between the original and stego VoIP streams. 

It means that the proposed steganographic algorithm had little effect on the 

spectrogram of the real-time steganographic system with embedded VoIP. This 

finding is in good agreement with the waveform results as shown in Fig. 5.9. 

 

5.5.2 Performance Comparisons  

For each testing, 12 repeated experiments were carried out to obtain the average 

PESQ and SNR values using the experimental method described in the previous 

section. 
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Figure 5. 11 Speech quality results of the original VoIP streams 

Figure 5.11 shows the speech quality results of VoIP streams in the absence of data 

embedding (no secret message embedded in VoIP streams). The PESQ scores and 

SNR values of the VoIP streams samples were measured using DSLA. To evaluate 

the performance of VoIP communications, the streams samples recorded on the 

sender side were used as the reference (denoted as ‗Reference‘), and the VoIP 

streams samples on the receiver side were the degraded samples (denoted as 

‗Degraded‘) in the speech quality test. 

 

The figure displays that the average PESQ scores of the original VoIP streams 

samples were between 4 and 4.5. It also shows comparisons in the average SNR 

between the reference and degraded samples, with the variance in SNR values being 

estimated to be 3.1 approximately. The results suggest that VoIP communications 

with high speech quality achieve in a real-time manner. 
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Figure 5. 12 Mean PESQ values for the original and stego VoIP streams. 

Table 5. 1 PESQ values for the original and stego VoIP streams 

Samples Max Min Mean Variance 

Original VoIP streams 4.30 4.05 4.19 0.01 

Stego VoIP streams 
(AES embedding) 

4.31 3.90 4.18 0.02 

Figure 5.12 and Table 5.1 shows the PESQ values for the original VoIP streams 

(denoted as ‗No embedding‘) and the stego VoIP streams with the hidden message 

encrypted with AES before embedding using the proposed steganographic algorithm 

(‗AES embedding‘). The tests were run on the VoIP communications test bed as 

shown in the previous chapter, where the 15-second original streams samples were 

used as cover objects. Statistical results were obtained for steganographic 

communications experiments conducted at the same data embedding rate of 2 

bits/frame. As Fig. 5.12 shows, the average PESQ mean values of the stego VoIP 

streams samples were between 4 and 4.5, close to the average PESQ value of the 

original VoIP streams samples, indicating an effective real-time steganographic 

system with embedded VoIP. 
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Figure 5. 13 Mean SNR values between the original and stego VoIP streams. 

Table 5. 2 Mean SNR values between the original and stego VoIP streams. 

Samples Max Min Mean Variance 

Original VoIP streams 50.23 47.60 49.05 0.56 

Stego VoIP streams 
(AES embedding) 

44.47 41.83 43.50 0.81 

Figure 5.13 and Table 5.2 shows a comparison of the mean SNR values between the 

original VoIP streams and the stego VoIP streams with the hidden message 

encrypted with AES before data embedding using the proposed steganographic 

algorithm. The average SNR value of the original VoIP streams was around 49.0, and 

that of the stego VoIP streams was about 43.5. This means the variance in SNR, the 

difference in the mean SNR value between the original and stego VoIP streams, is 

5.5, close to that of the original VoIP streams (3.1), indicative of little degradation in 

speech quality caused by steganographically data embedding. 

Figure 5.14 shows the 3D waveform in the time-domain and the spectrums in the 

frequency-domain of the original VoIP streams. Figure 5.15 shows the 3D waveform 
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of the stego VoIP streams, taken from real-time VoIP communications using the 

proposed steganographic algorithm. As Figs. 5.14 and 5.15 show, there were almost 

no differences in the 3D waveforms and spectrums. This implies that the new 

steganographic algorithm had no or little impact on the original VoIP streams in the 

time and frequency domains. 

 

Figure 5. 14 3D waveform and spectrum of the original VoIP streams. 

 

Figure 5. 15 3D waveform and spectrum of the stego VoIP streams 

 

5.5.3 Statistical Undetectability Analysis  

Steganographic communication is intended to conceal the existence of a 

steganographic message hidden in innocuous transmissions such as VoIP over the 

network. Statistical undetectability is normally used to evaluate the security of a 
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steganographic system (Fridrich, 2014), i.e. a measure of how difficult it is to reliably 

determine the existence of a secret message hidden in a cover object. In other words, 

a secure steganographic system means a statistically undetectable system. 

Instead of normal statistical analysis, the Mann-Whitney-Wilcoxon (M-W-W) test was 

used in this study to perform statistical undetectability analysis to evaluate the security 

of the proposed steganographic algorithm. The test is one of the best-known 

non-parametric significance tests that assess whether two independent samples of 

observations come from the same distribution (Neter et al., 1993). A comparison of the 

probability distributions between the original and stego VoIP streams samples reveals 

whether the differences in the probability distributions are almost indistinguishable. 

According to the principles of the M-W-W and statistics, when the sample sizes are 

sufficiently large (at least 12 each), the test is based on the standardized test statistic 

(Neter et al., 1993). In an examination of the proposed steganographic algorithm for 

the real-time steganographic system with embedded VoIP, the test statistic can be 

computed below: 

First, combine the n1 sample observations from Population 1 (i.e. the original VoIP 

streams samples) and the n2 sample observations from Population 2 (i.e. the stego 

VoIP samples with the hidden message), and array the combined data in an 

ascending order; 

Secondly, assign ranks to the combined observations (starting with 1 for the smallest 

observation); 

Finally, sum the ranks for the n2 sample observations from Population 2, and denote 

this sum by S2. 

The test statistic z* is given by 
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where E{S2} and {S2} are the mean and square root of variance of the sampling 

distribution S2 that is the combination of the two samples of observations to be 

assessed. 

To improve the precision of statistical undetectability analysis, the sizes of samples 

(data points) were 401 and 401 in computation of the test. Table 5.3 shows the test 

results and the parameters used for comparing the probability distribution drawn from 

the original VoIP streams samples to that drawn from the stego VoIP streams samples 

that steganographically embed the secret message using the new steganographic 

algorithm. 

Table 5. 3 Undetectability analysis results using M-W-W test 

 

Test 

Sample 
size, 

n1 

Sample 
size, 

n2 

Sum, S2 
Mean of 
variance, 

E{S2} 

Variance, 
σ

2
{ S2} 

Test 
statistic, 

z* 
H 

Test 1 401 401 160054 161001.5 10760267 -0.2888 H0 

Test 2 401 401 159060 161001.5 10760267 -0.5919 H0 

Test 3 401 401 160273 161001.5 10760267 -0.2221 H0 

Test 4 401 401 161297 161001.5 10760267 0.09008 H0 

Test 5 401 401 159035 161001.5 10760267 -0.5995 H0 

As Table 5.3 shows, the values of the test statistic z* for five tests were much smaller 

than 1.960 (the threshold), i.e. | z*|  1.960, the results were H0 (meaning two 

distributions do not differ) at all the tests, indicating that the original and stego VoIP 

streams samples do not differ. The results suggest that the real-time steganographic 

system with embedded VoIP using the proposed steganographic algorithm is secure 
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in terms of statistical analysis, which has been widely used to assess the security of 

steganographic systems. 

 

5.5.4 Algorithm Comparisons  

The proposed steganographic algorithm uses hardware-based true random keys to 

protect the real-time steganographic system with embedded VoIP, whereas other 

related algorithms for VoIP steganographic systems use pseudorandom keys which 

are more vulnerable to cyber attacks. 

For comparison purposes, the proposed steganographic algorithm and other related 

algorithms were used in the experiments to steganographically embed the secret 

message in VoIP streams, respectively. 

Table 5. 4 Comparisons between the proposed algorithm and other related 

algorithms 

Algorithm Mean PESQ Mean SNR 
Data 

embedding rate 
(bps) 

Proposed 4.21 44.87 796  

Krätzer et al. (2006)  - -  267  

Huang et al. (2016) 3.33 - 442 

Jiang et al. (2016) 4.02  44.33  500  

Tian et al. (2017)  3.70 17.31  1700  

 

Table 5.4 shows a comparison of the average PESQ, SNR and data embedding 

capacity (steganographic capacity) between the proposed steganographic algorithm 
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and other four steganographic algorithms (Tian et al., 2017; Huang et al., 2016; 

Krätzer et al., 2006; Jiang et al., 2016). For the proposed algorithm, twelve repeated 

experiments on real-time VoIP communications were carried out to determine the 

average measurements. 

Close analysis shows, the real-time VoIP steganographic system with the proposed 

algorithm achieved the highest PESQ value in comparison with other related 

algorithms, and a slightly higher SNR value than Jiang‘s algorithm. These findings 

suggest that no or very little signal distortion occurs as a result of the proposed 

algorithm used in the real-time steganographic system with embedded VoIP. 

The average data embedding rate of the proposed algorithm was much higher than 

those of Krätzer, Huang and Jiang‘s algorithms and was smaller than that of Tian‘s 

algorithm. The proposed algorithm achieved a higher PESQ value (4.21) and roughly 

half the embedding rate of Tian‘s algorithm, which is possible due to the fact that the 

latter made good use of redundancy in VoIP streams; however, the proposed 

algorithm uses hardware-based true random keys and various data embedding 

intervals in VoIP streams to steganographically embed the hidden message, thereby 

achieving much higher level of security than the latter. 

Comparisons between the proposed steganographic algorithm and other related 

algorithms suggest that the proposed algorithm has great effectiveness in terms of 

speech quality and data embedding capacity, which are two of the important factors in 

designing a real-time steganographic system with embedded VoIP. 
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5.5.5 Security Analysis 

In this study hardware-based true random keys are used to improve the security of 

the real-time steganographic system with embedded VoIP. 

The security of the proposed algorithm is also based on the discrete logarithm problem: 

the problem of factoring large numbers. The problem in mathematics indicates the 

new algorithm has the advantage of being one of the most solid methods of secure 

VoIP communication over a public channel. It is generally believed that, to date, 663 

bits long is the largest number factored by a general-purpose factoring algorithm using 

a state-of-the-art distributed implementation. Montgomery predicted that the next 

largest number should be 768 bits long (Montgomery, 2011). Although there are some 

doubts, it is reasonable to believe that 1024-bit keys may become breakable in the 

near term. Those full of optimism even feel that 4096-bit keys could be broken in the 

foreseeable future. Thus, it is presumed that a steganographic algorithm would be 

secure enough if the secret keys were sufficiently long, e.g. 1024 bits. In this study, all 

the keys used for steganographic VoIP communication are 1024 bits long, so the keys 

are unlikely to be broken in the near term, providing solid foundation for the real-time 

steganographic system with embedded VoIP. 

 

5.6 Summary 

A new steganographic algorithm using hardware-based true random keys is devised 

for real-time steganographic systems with embedded VoIP for secure communication 

in the research project. In the algorithm, true random number generation integrates 

with data embedding and data extraction. In addition, the read time stamp counter of 
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the CPU is used as a hardware entropy source to generate true random numbers as 

dynamic keys for real-time steganographic VoIP communications. The use of true 

random keys can ensure the secrecy of the secret message embedded in VoIP 

streams.  

In the proposed algorithm, a series of random sequences generated from a logistic 

chaotic map are used to choose data embedding locations in VoIP streams. The use 

of chaotic map makes data embedding in VoIP streams randomly, so that it is unlikely 

to predict the initial conditions of random sequences. Thus the properties of the 

chaotic map can significantly increase the security of covert communications. 

Experimental results and security analysis demonstrates the effectiveness of the 

proposed algorithm with imperceptible distortion of original VoIP signals and greater 

data embedding rates. 

Statistical undetectability analysis using the M-W-W non-parameter test shows that 

the probability distributions drawn from the original VoIP streams and the stego VoIP 

streams do not differ for all sets of tests, indicating that the proposed steganographic 

algorithm is statistically undetectable with negligible signal distortion. 
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CHAPTER 6 Dynamic Key Distribution for Covert VoIP 

Communications 

Voice over Internet Protocol (VoIP) is widely embedded into commercial and 

industrial applications. VoIP streams can be used as innocuous cover objects to hide 

secret data in steganographic systems. The security offered by VoIP signalling 

protocols is likely to be compromised due to a sharp increase in computing power. 

This chapter describes a theoretical and experimental investigation of covert 

steganographic communications over VoIP streams. A new theoretical model of 

steganographic VoIP communications was constructed to depict the security 

scenarios in steganographic systems against passive attacks. A one way 

accumulation-based steganographic algorithm was devised to integrate dynamic key 

updating and exchange with data embedding and extraction, so as to protect 

steganographic systems from adversary attacks. Theoretical analysis of 

steganographic security using information theory proves that the proposed model for 

covert VoIP communications is secure against a passive adversary. The 

effectiveness of the steganographic algorithm for covert VoIP communications was 

examined by means of performance and robustness measurements. The results 

reveal that the algorithm has no or little impact on real-time VoIP communications in 

terms of imperceptibility, speech quality and signal distortion, and is more secure and 

effective at improving the security of covert VoIP communications than other related 

algorithms with comparable data embedding rates. 
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6.1 Introduction 

The past decade has witnessed the rapid development of embedded Voice over 

Internet Protocol (VoIP) for commercial and industrial applications. Widening access 

to the Internet greatly facilitates the use of multimedia applications in people‘s daily 

lives. Evolving network technology such as streaming has enjoyed a rise in popularity. 

However, security measures are struggling to keep up with the pace of change in 

attack tactics. 

Encryption and decryption technologies are normally used to address data security 

and privacy issues. There are symmetric encryption and public-key encryption that 

enable the translation of a plaintext message into ciphertext. However, an increase in 

computing power has led to decryption of several encryption algorithms, such as MD5 

(Wang et al., 2005), DES (EFF, 2016) and SHA-1 (Stevens et al, 2017), indicating 

possible vulnerabilities in the encryption primitives. It is generally recognised that 

encrypted messages are obvious, and when intercepted, it is clear that the 

communicating parties are communicating secretly. 

As a sub-branch, digital steganography is defined as ‗the art of concealed 

communication by hiding messages in seemingly innocuous objects‘ and ‗the very 

existence of a steganographic message is secret‘ (Cox et al., 2008). Steganography in 

static cover objects, such as text, BMP or JPEG images, and WAV or MP3 audio files, 

has been explored extensively (Fridrich, 2014; Ker et al., 2014; Yang et al., 2019). 

Network protocols and streaming media (Stallings, 2017), such as VoIP, are also used 

to realise covert steganographic communications. 
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A great deal of research have been conducted on algorithm design and cover object 

selection for covert steganographic communications over streaming media, but little 

effort has been made to explore the potential of using dynamic key distribution to 

improve the security of steganographic systems. 

Dittmann et al. first studied VoIP steganography and decryption techniques and 

suggested their algorithm (Dittmann et al., 2005). Aoki developed a lossless 

steganographic technique for G.711 telephony speech (Aoki, 2008), with the 

embedding capacity depending on the number of ‗0‘ in audio signals, so the practical 

application was limited. Liu et al. analysed the parameters of G.729 coded speech 

frames to identify the parameters and effective bits of G.729 speech coding, which 

were used for steganography (Liu et al., 2008). Yu et al. designed a VoIP 

steganographic scheme (Yu et al., 2009), but its validity needed to be confirmed. Aoki 

proposed a semi-lossless steganographic technique for G.711 telephony speech 

(Aoki, 2010), with bandwidth improved from 24 bit/s to 400 bit/s, depending on the 

background noise signal level. Huang et al. devised a high capacity steganographic 

algorithm for embedding data in various speech parameters of the inactive frames of 

low bit rate audio streams encoded with G.723.1 source codec (Huang et al., 2011). 

Tian et al. (2012) put forward a method to improve the performance of steganography 

by adding some similarity between the hidden message and the cover object to strike 

a balance between steganography transparency and bandwidth, but the similarity 

limited the choice of hidden messages. Gope et al. (2016) presented an 

authentication protocol for wireless sensors networks over which streaming media 

are transmitted; the protocol provided various imperative security properties such as 

user anonymity, untraceability, forward/backward secrecy, and perfect forward 
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secrecy. Tian et al. improved the security of quantization-index-modulation 

steganography in low bit-rate speech streams (Tian et al., 2014). 

In 2016, Qi et al. used Discrete Spring Transform to eliminate redundancy in 

multimedia signals and improve speech quality (Qi et al., 2016). Liu et al. reported the 

use of a matrix embedding method to achieve steganography in linear predictive 

coding for low bit-rate speech codec (Liu et al., 2016). Janicki investigated 

pitch-based steganography using Speex voice codec (Janicki, 2016) to complement 

Aoki‘s work (2010). More recently, Tian et al. (2017) suggested a bitrate modulation 

steganographic algorithm with Hamming matrix encoding, but its practicality needed 

further study. Xin et al. proposed an adaptive audio steganographic algorithm for 

covert wireless communication, which was based on variable low bit coding (Xin et al., 

2018). Overall, previous steganography studies mainly focused on steganographic 

algorithm design. 

In summary, there has been a large body of research regarding steganographic 

algorithms for covert communications over streaming media, but the key distribution 

problem in covert steganographic communications has been sidestepped (Peng et al., 

2020). In fact, the successfulness of steganographic algorithms for covert 

communications relies largely on the transmission of secret keys between the 

communicating parties. Security in transmission of secret keys is more crucial for 

covert VoIP communications because of the timing and loss of packets, i.e. covert 

VoIP communications require continuous embedding and necessary synchronization 

between the communicating parties. So far there are no reliable and secure key 

transmission schemes that could be put into use for covert VoIP communications. 

Thus, secure key transmission for covert steganographic communications is worth 
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studying apart from designing effective steganographic algorithms for them (Peng et 

al., 2020). 

The main purpose of this chapter is to explore the potential of one way 

accumulation-based dynamic key updating and transmission for innovative 

applications in the field of covert steganographic communications over streaming 

media. 

This chapter focuses on devising a new dynamic steganographic algorithm for covert 

VoIP communications. It includes one-way accumulation integrating into dynamic key 

updating and exchange, which can protect steganographic systems from 

man-in-the-middle attacks, which threaten covert steganographic communications. 

The rest of this chapter is organised as follows: Section 6.2 describes key 

management and distribution which plays a vital role in VoIP communications. A novel 

theoretical model of steganographic VoIP communication is presented in Section 6.3. 

Section 6.4 details a new steganographic algorithm for covert VoIP communications. 

Security analysis of the new algorithm is discussed in Section 6.5. In Section 6.6, 

experiments including performance and security measurements are depicted, and the 

results are discussed in detail. The chapter is summarised in Section 6.7. 

 

6.2 Key Management and Distribution 

Public key cryptography provides solutions to the key distribution problem. A public 

key scheme such as RSA involves a public key and a private key; once the 

communicating parties compute the shared secret key they can use it as an 

encryption key (Hellman, 2002). The two keys are related due to inverse operations, 
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so there must be no easily computational method of deriving the private key from the 

public key. Public key schemes by themselves do not provide authentication of the 

communicating parties and are thus particularly vulnerable to man-in-the-middle 

attacks. 

Key regression, time-evolving and multicast key distribution schemes were suggested 

for key management in cryptographic storage systems (Fu, 2006). They provided a 

means of deriving a sequence of temporally related keys from the most recent key. 

The effectiveness of these schemes for covert steganographic communications over 

streaming media is unknown since they are unable to address some key issues such 

as packet loss and synchronisation. 

A number of authors have investigated key distribution schemes for image 

steganography. Dagar proposed an image steganographic algorithm that used two 

secret keys to randomise the bit hiding process and enhance the security of hidden 

messages (Dagar, 2014). Gutiérrez-Cárdenas suggested a PRNG key distribution 

scheme for image steganography, which used a picture to conceal a message with 

unaltered pixel information, so it could be secure against steganalysis detection 

(Gutiérrez-Cárdenas, 2014). Patel et al. reported LSB-based image steganography 

using dynamic key cryptography in which the dynamic feature of the key was enabled 

by rotating the key and each key rotation produced a new key (Patel et al., 2016). 

However, these key distribution schemes designed for image steganography cannot 

be used directly in covert steganographic communications over VoIP streams due to 

the timing and loss of packets. 
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Although the above investigations examined key distribution schemes for image 

steganography, to the best of the author‘s knowledge, only few references in the 

literature described key distribution schemes for VoIP steganography. This was the 

motivation behind the present study. 

In comparison with existing steganographic algorithms for VoIP steganography, such 

as FIPlP (Jiang et al., 2016), CNV (Xiao et al., 2008), MELP (Krätzer et al., 2006; 

Dittmann et al., 2005), parameter-LSB (Tian et al., 2017) and HiF (Huang et al., 2016), 

the proposed steganographic algorithm is more secure for taking into account key 

distribution and authentication, and is more effective in terms of data embedding 

capacity and imperceptibility. 

 

6.3 Steganographic VoIP Communication 

A new theoretical model is devised for steganographic communications over VoIP 

streaming media in this research project. The model is based on steganography and 

cryptography and is depicted in Fig. 6.1 A secret message to be hidden (M) is 

encrypted with a secret key generated from a random number generator to form an 

encrypted message; the message is segmented into distinct parts which are 

embedded in a series of packets of media streams, namely cover objects (C). S in the 

figure denotes the packet containing a hidden message. 
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Figure 6. 1 Steganographic VoIP communications 

This model integrates dynamic key distribution and authentication with data 

embedding and extraction. Three sequences in the model simulate the continuity of 

data embedding, time-variant size of hidden message in each packet and key pairs 

respectively, taking into account continuous data embedding and necessary 

synchronisation of sender and receiver due to packet loss. 

The random sequence in Fig. 6.1, A = {a1, a2, … an}, is a group of zeros, ones, twos 

and threes, e.g. {1,2,2,3,0,…}, describing the continuity of data embedding. The ones, 

twos and threes denote a packet containing the beginning, the continuation or the end 

of the hidden message, respectively, and zeros mean a packet does not contain the 

hidden message. 

The sequence, B = {b1, b2, … bn}, is a set of steganographic capacity, corresponding to 

varying numbers of bits of the hidden message embedded in a series of streaming 

-

Secret 

message

Continuous embedding A = {a1, a2, … an} 

Steganographic capacity B = {b1, b2, … bn}

Key updating  L = {l1, l2, … ln}
VoIP packets

+

+ -

-

M M

AES 

encryption

… S S C SC

… S S C SC

C C

User A User B

Stego

packets

VoIP 

server

Secret 

message

Decryption

SIP signaling control

VoIP packets

…  0  1  0  1…  0  1  0  1

Streaming Streaming



 178 

media packets. This sequence enables the receiver to determine the size of the 

hidden message embedded in each packet. 

The sequence, L = {l1, l2, … ln}, represents a set of private / public key pairs of 1024 

bits each. The public and private keys are correlated in the public-key scheme where 

the sender and the receiver compute the shared key using knowledge of the public key 

based on discrete exponential and logarithm (hash) functions. 

According to information theory, Kullback–Leibler (KL) divergence is used as a 

measure of security for steganographic systems (Fridrich, 2014). 

The statistical distance () between the cover object and the stego object can be 

expressed as 



  PC (w)  PC (w)
wW0


wW0

  and 



W0 W , where PC is the probability 

distribution of the cover object, w is the measurement, W0 is the plausible space, and 

W is the total space of possible measurements. 

The total probability distribution of the secret message sent over the space W is given 

by 



PU (w)  P(wi W2)PS(w)P(wi W3)PC (w)  (6.1) 

where PS is the probability distribution of the stego object, and W2 and W3 are the 

observation spaces relating to the stego object and the cover object, respectively. 

Equation (6.1) becomes 



PU (w) PS(w) (1)PC (w) , where  is the probability that ‗1‘ 

appears in a period. As 



PS (w) 
PC (w) /1, wW0

PC (w) /1, wW1





 
(6.2) 
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where W0 and W1 are the plausible spaces of possible measurements, then the 

relative entropy between the cover object and the stego object for covert 

steganographic communications is given by 



D(PC ||PU ) 
1

2

 22

1 2(1)2
 

(6.3) 

As Fig. 6.1 shows, there are two N-level true random sequences (A and B) used to 

model the dynamic and synchronisation characteristics of covert communications,  = 

2n-1 2n-1/(2n - 1)(2n - 1), then equation (6.3) becomes 



D(PC ||PU ) 
2 (1692)   (6.4) 

Hence, it proves the proposed model for covert communications over VoIP streaming 

media is secure against a passive adversary. 

 

6.4 Dynamic Steganographic Algorithm for Covert VoIP Communication 

In this research project, a novel dynamic steganographic algorithm is devised to 

integrate one way accumulation-based dynamic key distribution with data embedding 

and extraction for covert VoIP communications. 

 

6.4.1 Accumulation-Based Key Distribution 

The key updating and transmission algorithm is schematically shown in Fig. 6.2 for an 

illustrational purpose. The algorithm includes recurrences of Receiver validation (Step 

1), Key transmission (Step 2), and Key updating (Step 3). 

A one way cryptographic accumulation function is used to validate the communicating 

party, Bob, as shown in Fig. 6.2. Assuming T = {x1, …, xn} be the set of itemsx1, …, xn 
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stored by Alice (the communicating party), she selects secure primes p and q that are 

suitably large, and a suitably large base g that is relatively prime to a big composite 

number N: 



N  pq (6.5) 

 

 

Figure 6. 2 Schematic description of key updating and transmission 

The values of g and N are then made available to the public, but the values p and q are 

kept secret. Moreover, Alice computes the following value 



Z  gx1x2 ...xnmodN  (6.6) 

and a partial accumulated hash value Zi for Bob (xi), i.e. the accumulation of all the 

values in the set T besides xi. 



Zi  g
x1x2 ...xi1 xi1 ...xnmodN  (6.7) 

Having computed Zi, Alice sends Zi and N to Bob, as well as the signed pair (Z, t) 

where t is the current timestamp. Bob determines whether t is current and (Z, t) is 

indeed signed by Alice. Bob then computes 



Zb  Zi
xi modN  (6.8) 
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and returns the value of



Z b  to Alice. Alice compares



Z b  with Z that is calculated using 

equation (6.6). If the two agree, then Alice knows that the sender is Bob in possession 

of xi. Indeed, it is generally accepted to be computational infeasible for someone who 

does not know the values of p and q to compute a value Q such that 



Z Qxi modN  (6.9) 

when 



xi T , indicating that the one way accumulation function is secure in terms of 

cryptography. 

After the receiver validation step, the private key used for encryption and decryption of 

a secret message is transmitted securely under Integer Decisional Diffie-Hellman 

assumption. Alice and Bob agree to use a prime number p and base g (g is assumed 

to be known by adversaries). Alice selects a secret integer, calculates 



U  gmod p (6.10) 

and sends the value of U to Bob. Bob chooses a secret integer, computes 



V  g mod p (6.11) 

and sends the value of V to Alice. Alice calculates 



(gmod p)mod p 

and Bob computes 



(gmod p)mod p 

The values of 



(gmod p)mod p and 



(gmod p)mod pare the same because groups 

are power associative according to mathematical principles (Hellman, 2002). So both 



 182 

Alice and Bob are now in possession of the group element 



g  mod p, which can 

serve as the shared secret key (K) to encrypt and decrypt the secret message: 



K  (gmod p)  (gmod p)  (6.12) 

Key updating is the process of determining whether the stego packets received by 

Bob contain the complete hidden message. As Fig. 6.1 shows, the random sequence 

A is used to identify whether a packet contains the beginning, the continuation or the 

end of the hidden message. Using the sequence, Bob knows whether the secret 

message he decrypts with the shared key is complete or not. 

To enable key exchange and transmission successfully in case of heavy packet loss, 

which is common in VoIP communications, the proposed algorithm contains a special 

re-distribution function as follows:    

If a packet containing part of the secret message is lost, Bob sends Alice the value of 



Z bagain to initiate a repetition of Steps 1, 2 and 3, as shown in Fig. 6.2, i.e. Alice 

validates Bob as the ‗legal‘ receiver (Step 1), and embeds the same secret message 

again (Step 2) until Bob receives all the packets used to embed the entire secret 

message (Step 3). Thus, this function can help achieve synchronization between the 

sender and the receiver, thereby eliminating the effect of packet loss on key exchange 

in covert steganographic communications over streaming media. 

 

6.4.2 Data Embedding 

Random number keys are used to encrypt the secret message to be hidden. The 

encrypted message is subsequently segmented into distinct parts, which are then 
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embedded in a series of packets of VoIP streams at different data embedding 

capacities and various data embedding locations. For simplicity, 16 bytes of VoIP 

streams have a data embedding capacity of two bytes. If the data embedding interval 

(R) is set to one, the secret message is randomly embedded in VoIP streams at an 

interval of two bytes, i.e. one byte of the secret message is randomly embedded in 16 

bytes of VoIP streams. When the interval is set to two, the secret message is randomly 

embedded in VoIP streams at an interval of three bytes, so in this case 22 bytes of 

VoIP streams contain one byte of the secret message, and so on. 

The process of embedding the secret message in VoIP streams is designed as 

follows: 

Step A: first embed the secret message length (LoM) in VoIP streams, and set length 

to LoM. 

Step B: embed the secret message into the first packet. Compute the length of the 

secret message embedded in the first packet (m1) and the length of the secret 

message embedded in other packets (mk).  

 

Procedure DE First_packet 

 

if ( LoM < m1) 

 then ( 

encrypt M(0, m0 − 1) to form E(0, m0 − 1)  

embed E(0, m0 − 1) in the bit stream BIT = {bit(0), bit(1), . . . , bit((m0 − 1) *8)} 

    if (bit(i) == 0) 

     then (V(k) V(k)&0xfe) 

     else (V(k) V(k)|0x01) 

    k  k + R 
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    length  0 

    end 

) 

else ( 

encrypt M(0, m1 − 1) to form E(0, m1 − 1) 

embed E(0, m1 − 1) in the bit stream BIT = {bit(0), bit(1), . . . , bit((m1 − 1) * 8)} 

if (bit(i) == 0) 

     then (V(k) V(k)&0xfe) 

     else (V(k) V(k)|0x01) 

k  k + R 

length  length - m1 

) 

where m0 is the total size of the secret message to be hidden, and k is the sequence 

number. 

 

Step C: embed the secret message into the other packets. 

 

Procedure DE Other_packets 

 

while ( length > mk) do 

( 

 encrypt M(m1, m1 + mk − 1) to form E(m1, m1 + mk − 1),  

embed E(m1 , m1 + mk − 1) in the bit stream BIT = {bit(0), bit(1), . . . , bit((mk − 1) * 8)} 

   if (bit(i) == 0) 

    then (V(k) V(k)&0xfe) 

    else (V(k) V(k)|0x01) 

   k  k + R 

   length  length - mk 

) 
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Step D: compute the length of the secret message embedded in the last packet (mn)  

 

Procedure DE Last_packet 

 

encrypt M(LoM− length, LoM− 1) to form E(LoM− length, LoM− length + mn − 

1) 

embed E(LoM−length, LoM−length+ mn −1) into BIT = {bit(0), bit(1), . . . , 

bit((mn − 1) * 8)} 

if (bit(i) == 0) 

then (V(k) V(k)&0xfe) 

   else (V(k) V(k)|0x01) 

  k  k + R 

  length  0 

end 

 

For example, the first 16 bytes of the first VoIP packet is used to embed the length of 

the secret message to be hidden, and the remaining of the first packet and the other 

VoIP packets are used to embed the secret message itself. The size of the remaining 

of the first packet is about 4080 bytes, with a data embedding capacity up to 510 

bytes (12.5%). To reduce the encryption time, the first 496 bytes of the secret 

message are embedded in the first VoIP packet. AES is used to encrypt the first 496 

bytes of the secret message, and the resulting ciphertext is then embedded in VoIP 

packets using the data embedding algorithm above. As for the other VoIP packets, 

512 bytes of the secret message (encrypted with AES) are embedded in each VoIP 

packet. The remaining of the secret message is embedded in the last VoIP packet 

with the size of LLoM. The LLoM value may not be a multiple of 16 bytes, so it is 

possibly necessary to adjust it to a multiple of 16 bytes in some cases. 
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6.4.3 Data Extraction 

The extraction of the hidden secret message, steganographically embedded in VoIP 

streams using the data embedding algorithm above, from the stego VoIP streams is 

the inverse process of the data embedding algorithm described in the previous section. 

The corresponding extraction algorithm is used to retrieve the secret message 

encrypted with AES, and decrypt it with the same secret keys to obtain the original 

secret message from stego VoIP packets. 

 

6.5 Security Analysis 

This section theoretically examines the security of the new steganographic algorithm 

for covert VoIP communications, and shows how the algorithm can resist possible 

adversary attacks, which threaten existing VoIP steganographic algorithms. 

 

6.5.1 Authentication for Communicating Parties 

Covert channels based on one way accumulation are used to conduct key updating 

and transmission for covert steganographic communications over VoIP streams. 

The general form of a cryptographic accumulator can be defined as follows: first start 

with a ‗seed‘ value y0, denoting the empty set, then define the accumulation value 

incrementally from y0 for a set of elements T = {x1, …, xn}, so that yi = f(yi-1, xi), where f 

is a one way function whose final value does not depend on the order of the xi‘s 

(Goodrich et al., 2002). So a source can digitally sign the value of yn in order to enable 
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a third party to produce a short proof for any element xi belonging to T – namely, swap 

xi with xn and recompute yn-1 from scratch – the pair (xi, yn-1) is a 

cryptographically-secure assertion for the membership of xi in the set T. 

A new key distribution algorithm is devised in this research project to offer secure key 

updating and transmission for covert steganographic communications over streaming 

media, i.e. a one way cryptographic accumulator along with Diffie-Hellman key 

exchange are integrated with data embedding during steganography. The use of the 

accumulator provides cryptographic authentication for the communicating parties, 

thereby preventing covert steganographic communications from adversary attacks. 

 

6.5.2 Man-in-the-Middle Attacks 

The integration of a new one way cryptographic accumulator and Diffie-Hellman 

based key exchange is used to provide secure key exchange for covert 

steganographic communications over streaming media. The algorithm can ensure 

secure key updating and transmission, and then protect steganographic systems 

from adversary attacks. 

Dynamic key distribution in the algorithm means the keys are almost unlikely to be 

compromised, because it enables steganographic systems to continually and 

randomly generate new private keys that the communicating parties share 

automatically. As the private key is changed continuously, a compromised key in the 

system could only decrypt a small amount of encoded information using today‘s 

supercomputers. 

The man-in-the-middle attack is defined as a form of active eavesdropping in which 
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an attacker makes independent connections with the communicating parties and 

relays messages between them, making the communicating parties believe that they 

are talking directly to each other over a connection; in fact the entire conversation is 

controlled by the attacker (Stallings, 2017). 

In the new steganographic algorithm, a one way cryptography accumulator is used to 

conduct authentication between the communicating parties to prevent possible 

man-in-middle attacks. As described in Section 6.4, Alice authenticates Bob (i.e. Bob 

in possession of a valid xi) by determining whether Zb (computed using equation (6.8) 

and sent to Alice by Bob) is equal to Z (computed by Alice using equation (6.6)). If the 

third party John wants to launch a man-in-the-middle attack, he has to pass the 

verification process first. Obviously without the knowledge of the two primes of p and 

q, John cannot pass the verification process of the receiver. In addition, as John 

cannot guess the high entropy element xi correctly, he cannot work out the value of Zb 

equal to Z. Thus, John cannot launch the man-in-the-middle attack successfully to 

cheat Alice, indicating that the proposed steganographic algorithm can prevent 

man-in-the-middle attacks. 

 

6.5.3 Adversary Attacks 

As for covert VoIP communications, the essential security is that it would not cause 

any suspicion from adversaries. Once a secret communication is suspicious, or an 

attacker has noticed that there is an underlying communications channel, the whole 

covert communications system is not safe, because the attacker can intercept and 

even destroy the communications. 
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The steganographic security follows the same path as security in cryptography 

(Fridrich, 2014). The security of covert steganographic communication lies in the fact 

that nobody has so far been able to produce an attack substantially faster than 

brute-force search for the key. 

In the proposed steganographic algorithm, the Diffie–Hellman key exchange scheme 

(Hellman, 2002) is used to securely exchange the initial parameters of the chaotic 

map between the communicating parties that are authenticated using a one way 

accumulation-based authentication protocol devised in Section 6.4.1, instead of 

conventional elliptic curve digital signatures. As discussed in Section 6.5.2, the use of 

authentication with the one way accumulation authentication can prevent 

man-in-the-middle attacks, which are particularly possible on wireless networks. 

However, there are limitations on resisting tampering attacks. Mutual authentication 

could be used to prevent tampering attacks, and it is a good solution to resist 

tampering attacks by sending an authentication message of the secret message to 

the receiver. If the verification fails on the receiver side, the secret message would be 

retransmitted. Although the utilization of Message Authentication Code (MAC) could 

resist the tampering attacks, but the computation of MAC is costing, which would add 

latency and lead to speech distortion – it may not be acceptable as to real-time VoIP 

communications over the Internet. Besides, MAC is a kind of redundant message 

which would reduce the available embedding capacity. Thus, it is difficult to achieve 

security and efficiency simultaneously in real-time VoIP communications with 

steganography. 
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6.6 Experimental Results and Discussion 

This section summarises the findings, interprets what the steganographic 

communications results mean, and explains the significance of the results. 

VoIP experiments were used to evaluate the performance and security of the 

proposed dynamic key distribution-based steganographic algorithm for covert 

communications over streaming media. Performance measurements were carried out 

using Digital Speech Level Analyser (DSLA) (DSLA, 2013), as shown in Fig. 6.3, 

which determines ITU-T P.862 objective speech quality scoring plus improved Mean 

Opinion Score (MOS) prediction according to ITU-T P.862.1 (ITU-T Recommendation, 

2001). The experiments were repeated 12 times to assess the effectiveness and 

security of the new steganographic algorithm. 

In the experiments, VoIP streams with PCM format encoded with G.711 codec were 

used as cover objects for covert steganographic communications over streaming 

media. The secret message to be hidden was encrypted with random number keys, 

and the encrypted message was divided into segments that were then embedded in a 

series of packets of VoIP streams. The imperceptibility of the resulting stego VoIP 

streams was evaluated, and the data embedding capacity was computed accordingly 

for each set of experiments. 

The ITU-T P.862 recommendation (ITU-T Recommendation, 2001) was adopted to 

measure the subjective qualities of the stego VoIP streams. The recommendation 

describes an objective method for predicting the subjective quality of narrowband 

speech codecs. It uses the perceptual evaluation speech quality (PESQ) value and 

the signal-to-noise ratio (SNR) to assess the subjective quality of the stego VoIP 
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streams. The DSLA, made by Malden Electronics Ltd, UK (DSLA, 2013), was used in 

the experiments for PESQ and SNR measurements, as shown in Fig. 6.3. DSLA is a 

professional measurement device for objective speech quality prediction and speech 

level measurement in telecommunications equipment and networks. DSLA performs 

ITU-T P.862 (PESQ) objective speech quality scoring plus improved MOS prediction 

according to ITU-T P.862.1 as well as Wideband P.862.2 score. 

PESQ score is calculated according to P.862 and PESQ P.862.1 gives a quality score 

on a MOS-like scale for narrowband listening. The aim of the amended 

recommendation ITU-T P.862.1 is to provide a single mapping from the raw P.862 

score to the Listening Quality Objective Mean Opinion Score (MOS-LQO). The 

mapping from PESQ score to PESQ P.862.1 is performed as follows: 



PESQP.862.1 0.999
4.999  0.999

1 e1.4945PESQScore4.6607
 

(6.13) 

  

 

Figure 6. 3 Diagram of measurements for covert VoIP communications 
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6.6.1 Imperceptibility 

The essential security of covert VoIP communication is that it would not cause any 

suspicion from attackers. Experiments were carried out to determine the degree of 

imperceptibility of steganographic systems using the proposed algorithm. 

 

Figure 6. 4 Waveforms of the original and stego VoIP streams 

Figure 6.4 shows the waveforms of the original VoIP streams (left image) and the 

stego VoIP streams that contain a secret message (right image), respectively. As Fig. 

6.4 shows, there was a remarkable resemblance between the two waveforms. 

Listening tests indicated that a human perceptual system could not distinguish the 

differences between the original VoIP streams and the stego VoIP streams with the 

hidden message. The results show very little distortion occurred in the time domain as 

a result of steganography in VoIP streams. 

Figure 6.5 shows a comparison of the mean PESQ values for the original VoIP 

streams, the stego VoIP streams with AES embedding-based steganography, and 

the stego VoIP streams using the proposed steganographic algorithm. For each 

testing, 12 repeated experiments were carried out to yield the mean PESQ value. The 

multiple-line graph demonstrates that the PESQ values were reasonably stable 

except for Testing 8 in which the PESQ was close to 3.5 (the lower boundary of good 

speech quality). This is in line with the expectation that the new steganographic 
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algorithm would cause no or little degradation in speech quality whilst improving the 

security of steganographic systems by means of dynamic key distribution, indicative 

of secure and robust covert VoIP communications. 

 

Figure 6. 5 PESQ values for the original VoIP streams and the stego VoIP streams 

with AES steganography or the proposed algorithm 

Figure 6.6 shows a comparison of the mean SNR values between the original VoIP 

streams, the stego VoIP streams with AES embedding-based steganography, and 

the stego VoIP streams using the proposed steganographic algorithm. The SNR 

variance of the original streams was estimated to be 3.1, that of the stego streams 

with AES steganography was around 5.5, and that of the stego streams using the 

new algorithm was around 4.6. These results indicate that covert VoIP 

communications using the new steganographic algorithm have much better 

imperceptibility with a greater level of security than AES steganography. 
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Figure 6. 6 SNR values for the original VoIP streams and the stego VoIP streams 

with AES steganography or the proposed algorithm 

Overall, the results above indicate that the proposed steganographic algorithm has no 

or little impact on real-time VoIP communications in terms of speech quality, signal 

distortion and imperceptibility. The differences in PESQ and SNR between the 

original and stego VoIP streams were so minor that distortion resulted from covert 

communications using the new algorithm was imperceptible, indicating that the 

proposed steganographic algorithm is effective at breaking through the key exchange 

bottleneck occurs in covert steganographic communications over streaming media, 

and protecting steganographic systems from man-in-the-middle attacks. 

 

6.6.2 Effects of Data Embedding Intervals 

The secret message to be hidden is embedded in a series of packets of VoIP streams 

at various data embedding intervals, so as to study the effects of the increased 
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complexity of the proposed steganographic algorithm on covert steganographic 

communications over streaming media. 

Figure 6.7 shows changes in the mean PESQ values of the stego VoIP streams that 

contain the hidden message encrypted with AES before embedding at different data 

embedding interval distances in streaming media. As Fig. 6.7 shows, the average 

PESQ values of the stego streams decreased slightly before the data embedding 

interval distance reached 3, and then increased as the interval distance increased, 

showing an upward trend gradually close to the mean PESQ value of the VoIP 

streams without data embedding (4.31). The results indicate the advantage of the 

increased complexity of the proposed steganographic algorithm. 

 

Figure 6. 7 PESQ values of the stego VoIP streams at various interval distances 

Figure 6.8 shows changes in mean SNR values of the stego VoIP streams at various 

data embedding interval distances in comparison to that of the original VoIP streams. 

Each SNR value is the average of the SNR values of 12 repeated experiments. The 

average SNR value of the original streams was measured to be around 48.83 

decibels. The SNR values of the stego streams decreased slightly and then increased 
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as the interval distance reached 7 bytes. With the interval distance increasing, the 

SNR levelled off with small fluctuations, and the average SNR value was 45.81 

decibels approximately. The SNR variance between the original and stego streams 

was 3.02 decibels, i.e. 6.18% change in SNR after steganography, indicating that the 

proposed steganographic algorithm has a negligible impact on real-time VoIP 

communications, regardless of data embedding intervals. 

 

Figure 6. 8 SNR values of VoIP streams at various interval distances. 

 

6.6.3 Effects of Hidden Message Size 

To study the effects of the size of the hidden message on the data embedding 

capacity of the proposed steganographic algorithm, a series of covert VoIP 

communications experiments were carried out. 

Figure 6.9 shows changes in the average PESQ values of the stego VoIP streams 

taken from covert VoIP communications using the new steganographic algorithm at 

0

10

20

30

40

50

60

70

80

1 2 5 7 9 11 13 15 17 19 21 23 25 27 30

S
N

R

Interval distance (Byte)

No embedding

Proposed algorithm



 197 

different sizes of the hidden message. Each data point is the mean value based on 12 

repeated experiments. As Fig. 6.9 shows, the average PESQ values of the stego 

streams decreased with the hidden message size increasing. The average PESQ 

values of the stego VoIP streams were still greater than 3.5, the lower threshold of 

covert VoIP communications for the codec used in the experiments, before the 

hidden message size reached 1186 bytes, which can be regarded as the maximum 

data embedding capacity. When the size of hidden message exceeds the embedding 

capacity of the covert object, speech quality would decrease seriously, leading to 

unavailability of real-time covert communication. 

 

Figure 6. 9 PESQ values of the stego VoIP streams varying with the hidden message 

size. 

The SNR measurements were conducted accordingly in the experiments. Figure 6.10 

shows change in the average SNR values of the original VoIP streams and the stego 

VoIP streams using the proposed steganographic algorithm at different sizes of the 

hidden messages. The SNRs of the stego streams decreased with the hidden 
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message size increasing. There was a steady decrease in the SNR variance when 

the hidden message size increased. It is generally recognized that a higher SNR 

would be better, meaning less distortion. The results suggest that the proposed 

steganographic algorithm causes little signal distortion when the hidden message 

size is not greater than 1186 bytes. 

 

Figure 6. 10 SNR values of the original VoIP streams and the stego VoIP streams 

using the proposed algorithm at various hidden message sizes. 

 

6.6.4 Statistical Undetectability Analysis 

Steganographic communications aim to conceal the existence of hidden messages 

from both human perceptual systems and computational detection. Statistical 

undetectability is normally used to evaluate the security of a steganographic system 

(Fridrich, 2014). A secure steganographic system should be statistically undetectable. 
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used in this research project to perform statistical undetectability analysis. The t-test 
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is a statistical hypothesis test in which the test statistic follows a Student's 

t-distribution under the null hypothesis (Box, 1987). A two-sample t-test is used when 

it can be assumed that two distributions have the same variance. The t statistic used 

to test whether the difference between the two samples is significant can be 

calculated as follows: 



t 
X1  X2

(n1 1)S1
2  (n2 1)S2

2

n1  n2 2
(
1

n1

1

n2
)

 
(6.14) 

where 



S1
2
 and 



S2
2
 are the variances of the samples;n1 and n2 are the sample sizes. 

The default alpha of 0.05 is normally used as the threshold. When the calculated 

P-value is less than the threshold, there is a significant difference between the two 

samples. 

 

The original and stego VoIP stream samples were tested in our experiments. Among 

the variables that appear in Table 6.1, the P-value is 0.970405697, which is greater 

than 0.05, indicating no significant difference between the tested samples. The 

results show that the covert communication system using the proposed 

steganographic algorithm is secure in terms of statistical undetectability analysis. 

Table 6. 1 Undetectability analysis results using t-test 

 
Original stream 

samples 

Stego stream 

samples 

Mean -3.25151E-07 5.30214E-06 

Variance 0.000918239 0.000919384 

Observations 79872 79872 

P(T<=t) two-tail 0.970405697  
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6.6.5 Comparisons with Other Related Algorithms 

To confirm the effectiveness of the proposed steganographic algorithm, comparisons 

of the data embedding capacity, number of communication passes, message size for 

authentication, collision resistance, computational overhead and bandwidth between 

the proposed algorithm and other related algorithms were conducted for covert 

steganographic communications over VoIP streams. 

Some steganographic algorithms, such as FIPIP (Jiang et al., 2016), CNV (Xiao et al., 

2008), MELP (Krätzer et al., 2006; Dittmann et al., 2005), parameter-LSB (Tian et al., 

2017), and HiF (Huang et al., 2016), have been suggested for VoIP steganography. 

These algorithms achieved different levels of data embedding in streaming media. For 

comparison purposes, these existing algorithms and the proposed steganographic 

algorithm were used in the experiments to steganographically embed the secret 

message in VoIP streams, respectively. 

Figure 6.11 shows a comparison of the average data embedding capacity between 

the proposed steganographic algorithm and other four steganographic algorithms. For 

each algorithm, 12 repeated experiments on covert VoIP communications were 

carried out to determine the average data embedding rate. As Fig. 6.11 shows, the 

average data embedding rate of the proposed algorithm was much higher than those 

of the MELP and CNV algorithms, approximately equal to that of the parameter-LSB 

algorithm, and lagged behind the HiF algorithm. The average data embedding rate of 

the proposed algorithm was lower than that of the HiF algorithm, which is possible 

due to the fact that the HiF algorithm made good use of redundancy in the inactive 
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frames of VoIP streams; however, the proposed algorithm uses various data 

embedding intervals in VoIP streams to steganographically embed the secret 

message, thereby achieving much higher level of security than the HiF algorithm. The 

data embedding results suggest that the proposed steganographic algorithm has 

great effectiveness in terms of the average data embedding rate, which is sometimes 

one of the important factors in designing a steganographic algorithm for covert 

steganographic communications over streaming media. 

 

Figure 6. 11 Comparison of data embedding rates between the proposed 

algorithm and other related algorithms. 

Table 6.2 shows a comparison of the number of required communication passes 

between the proposed steganographic algorithm and other related algorithms. The 

‗N/A‘ means the value is not available to the public. As the table shows, the number of 

required communication passes of the proposed algorithm is 10 times, which is 
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higher than FIPlP, HiF and MELP, providing cryptographic authentication for covert 

communication systems. 

Table 6. 2 Comparison of the Number of Required Communication Passes 

Algorithm  Number of required passes 

Proposed  10 

FIPlP  5 

HiF  5 

CNV  N/A 

MELP  4 

parameter-LSB  N/A 

 

Table 6.3 shows a comparison of required message sizes for authentication and 

collision resistance between the proposed algorithm and other related algorithms. As 

for the proposed covert communication system and FIPlP, the size of audio data in 

each packet for authentication is 4096 bytes. The strength of steganographic systems 

against brute-force attacks depends on the block length for key construction and the 

key size. With a birthday attack (a typical cryptographic attack), it is possible to find a 

collision of an n-bit key in 2n/2. MELP used MD5 (128-bit) to produce a shorter hash 

value to calculate a checksum for the hidden message, with a collision of 



2128/2. As 

Table 6.3 shows, a birthday attack on the proposed system produces a collision with 

a work factor of approximately 



21152/2 , which is viewed as adequate to provide 

sufficient collision resistance as to today‘s computing power. 
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Table 6.4 shows a comparison of computational overhead and bandwidth between 

the proposed algorithm and other related algorithms. The computational overhead of 

the proposed algorithm is 88.45 ms, which is acceptable for real-time covert VoIP 

communication. As with MELP, the computational overhead value is the average of 

those estimated at four sampling rates used. The parameter-LSB algorithm had the 

highest steganographic bandwidth due to the use of less secure, simple LSB, and the 

bandwidth values for other five algorithms were comparable. As can be seen from 

Table 6.4 and Figs. 6.5 and 6.6, the proposed algorithm achieved a relatively larger 

steganographic bandwidth (0.80 kbits/s) with negligible signal distortion, which is one 

of the most important performance metrics that assess covert communication over 

streaming media. 

Table 6. 3 Comparison of Required Message Size for 

Authentication and Collision Resistance 

Algorithm 
Required message 

size 
Collision resistance 

Proposed 4096 bytes 



21152/2 

FIPlP 4096 bytes 



2192/2 

HiF N/A 



2128/2 

CNV N/A N/A 

MELP N/A 



2128/2 

parameter-LSB N/A N/A 
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As for covert VoIP communication, it is very unlikely that an adversary will be able to 

obtain many different copies of a given stego VoIP packet due to real-time, dynamic 

and streaming features; therefore, collusion attacks are of less or no concern. That 

means the covert VoIP communication system has incredible strength and great 

resilience considering collusion attacks. Security analysis of the new algorithm for 

covert VoIP communication is detailed in Section 6.5. 

 

6.7 Summary 

The purpose of the current study was to explore the potential of one way 

accumulation-based dynamic key distribution for innovative applications in the field of 

covert steganographic communications. The new steganographic algorithm devised 

for covert steganographic communications over VoIP streams was found to be secure 

against a passive adversary. The evidence from the study suggests that the algorithm 

can protect steganographic systems from adversary attacks such as 

man-in-the-middle attacks. Security analysis and experimental results show the 

Table 6. 4 Comparison of Computational Overhead and Bandwidth 

Algorithm 
Computational 

overhead (ms) 
Bandwidth (kbits/s) 

Proposed 88.45 0.80 

FIPlP N/A 0.50 

HiF N/A 0.44 

CNV 240 0.10 

MELP 2760 0.43 

parameter-LSB N/A 1.70 
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effectiveness of the proposed algorithm with imperceptible distortion of the original 

signals (5% change in PESQ) and greater data embedding rates (~ 800 bps). The 

findings from this study add to a growing body of literature on steganography in 

streaming media. 
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CHAPTER 7 Conclusions and Future Perspectives 

7.1 Overview 

Voice over Internet Protocol (VoIP) is widely embedded into commercial and industrial 

applications. VoIP streams can be used as innocuous cover objects to hide secret 

data in steganographic systems. The security offered by VoIP signalling protocols is 

likely to be compromised due to a sharp increase in computing power. This research 

project addresses these security issues systematically. 

This thesis embodies the methods and results of the research project undertaken by 

the PhD candidate over the last three years. It provides new insights into how 

streaming steganography and advanced cryptography such as advanced encryption 

standard and dynamic key distribution can work together to substantially improve the 

security, performance and robustness of steganographic systems, which can act as a 

covert VoIP communications channel to protect the secret data embedded in 

streaming packets during VoIP communications. 

 

7.2 Research Findings and Innovations 

This thesis has answered the research questions stated in Chapter 1, thereby 

addressing the problems of theoretical model, uncertainty of the embedding rate of 

media packets and integrity of the secret message. It has met the objectives as 
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follows: 

A. Develop an information theoretical model for covert steganographic 

communication over streaming media 

Chapter 4 addresses the first research question, i.e. how does the new information 

theoretical model of secure covert communications over streaming media depict the 

security scenarios in streaming media-based steganographic systems with passive 

attacks. 

The information theoretical model of secure covert communications over streaming 

media devised in this project was shown to be suitable for depicting the security 

scenarios in streaming media-based steganographic systems with passive attacks. 

An information source for covert VoIP communications using streaming media 

steganography was modelled using a stochastic process with greater precision. The 

theory of hypothesis testing was discovered to be effective at analysing the 

adversary‘s detection performance. A discrete prediction model of high precision was 

capable of simulating the characteristics of time-variance of streaming payloads in 

covert communications over streaming media. Theoretical analysis of steganographic 

security using information theory proved that the proposed model for covert VoIP 

communications is secure against a passive adversary. 

B. Devise a new algorithm that uses hardware as the entropy source to generate true 

random numbers as dynamic keys to be used by covert VoIP communications 

Chapter 5 addresses the second research question, i.e. how does hardware-based 

technology generate true random numbers as secret keys for covert VoIP 

communication using digital steganography to ensure the security of cryptographic 



 208 

systems. 

The potential of hardware-based true random key generation for innovative 

applications in a real-time steganographic system with embedded VoIP for streaming 

communication was examined. The hardware random number generator that used 

the read time stamp counter of the CPU as an entropy source was proved to be 

effective in generating true random numbers as dynamic keys for the new 

steganographic algorithm devised in this study for VoIP communication systems to 

protect data hidden in real-time VoIP streams. 

Data embedding locations in VoIP streams were chosen randomly according to 

random sequences generated from a logistic chaotic map designed in this project. 

The use of a key-distribution scheme to exchange the initial parameters of the chaotic 

map between the VoIP users was discovered to be not affecting and disrupting the 

functioning of the SIP signalling protocol used to establish connections between the 

communicating parties in the signalling phase in real-time VoIP communications. 

C. Devise a secure dynamic key agreement and updating algorithm based on 

One-way accumulation, which is applicable to covert VoIP communications. 

Chapter 6 addresses the third research question, i.e. how does a one-way 

cryptographic accumulator work along with dynamic key updating and transmission, 

which is integrated with the data embedding and extraction processes in covert VoIP 

communications. 

Streaming steganography complementing advanced cryptography technologies, such 

as true random key generation, advanced encryption standard and dynamic key 
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distribution and management, was found to be an effective way to substantially 

improve the security, performance and robustness of steganographic systems, as 

indicated by comparison of experimental data and theoretical expectation of the 

speech metrics of VoIP streams. 

Non-parameter statistical tests, security analysis and performance experiments, 

including PESQ, SNR and data embedding capacity, were conducted to compare the 

proposed steganographic algorithm with other related algorithms. The results show 

that the steganographic VoIP system achieved the mean PESQ of 4.21, the mean 

SNR of 44.87, and the average data embedding capacity up to 796 bps, in the 

presence of moderate packet loss, indicating that the new algorithm is effective at 

improving the security of steganographic systems with embedded VoIP. 

The one way accumulation-based steganographic algorithm devised in this work was 

clearly suitable for integrating dynamic key updating and exchange with data 

embedding and extraction, so as to protect steganographic systems from adversary 

attacks. The effectiveness of the steganographic algorithm for covert VoIP 

communications was examined by means of performance and robustness 

measurements and statistical undetectability analysis. The results reveal that the 

algorithm has no or little impact on real-time VoIP communications in terms of 

imperceptibility, speech quality and signal distortion, and is more secure and effective 

at improving the security of covert VoIP communications than other related algorithms 

with comparable data embedding rates. 

D. Perform undetectability analysis and steganalysis of covert VoIP communications 

using the Mann-Whitney-Wilcoxon test and t-test. 
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Part of Chapter 5 and Chapter 6 addresses the last research question, i.e. how can a 

statistical test be used to analyse the adversary‘s detection performance. 

Non parameter Mann-Whitney-Wilcoxon statistical testing, detailed in Chapter 5, and 

T-test, depicted in Chapter 6, were found to be an effective way to analyse the 

adversary‘s detection performance on distinguishing between an innocent cover 

object and a modified stego object containing a hidden message, thus proving the 

effectiveness of the new steganographic algorithms devised in this PhD research. 

The findings from the study make several contributions to the current literature as 

follows: 

a) A novel information theoretical model of steganographic VoIP communication is 

constructed to realise secure covert VoIP communications, achieving high data 

embedding capacities comparable to other related algorithms. 

b) A new dynamic steganographic algorithm is devised for covert VoIP 

communications. It includes one way accumulation integrating into dynamic key 

updating and exchange, which can protect steganographic systems from 

man-in-the-middle attacks, which threaten covert steganographic communications. 

c) A secure real-time VoIP system, underpinned by a novel steganographic algorithm 

using a logistic chaotic map to maximise algorithm complexity, is devised to enable 

the system to be embedded into complex industrial systems without compromising 

security. 

d) A hardware generator that uses the read time stamp counter of the CPU is 

developed to generate true random numbers as dynamic keys for VoIP 

steganographic systems. These true random keys can ensure the secrecy of the 
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steganographic message. 

e) Performance evaluation of the secure real-time VoIP system takes place by means 

of state-of-the-art network equipment Digital Speech Level Analyser, unlike previous 

works with performance evaluation being conducted using in-house software with low 

precision. 

f) Security analysis is carried out using the Mann-Whitney-Wilcoxon test and t-test, 

instead of conventional statistical tests. 

 

7.3 Research Limitations 

According to information theory, the steganographic security follows the same path as 

security in cryptography. The security of covert steganographic communication lies in 

the fact that nobody has so far been able to produce an attack substantially faster 

than brute-force search for the key. 

The dynamic steganographic algorithm devised in this research project uses a one 

way accumulation-based authentication protocol to authenticate the communicating 

parties on a VoIP network. The use of authentication with the accumulative 

authentication can prevent man-in-the-middle attacks, which are particularly possible 

on wireless networks, as well as collision attacks. 

The limitation of the steganographic VoIP system developed in the work is the lack of 

the mechanism for resisting tampering attacks. Message Authentication Code (MAC) 

can be used to resist tampering attacks, but execution time is so long that it will lead 

to latency and possible speech distortion, which is not acceptable as to real-time VoIP 
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communications over the Internet. In addition, MAC is a redundant message which 

would reduce available data embedding rates. It is therefore difficult to achieve 

security and efficiency simultaneously for real-time VoIP communications with 

steganography. 

 

7.4 Future Research 

Classical steganography theory cannot be applied directly to video steganographic 

systems, since video payloads are highly dynamic and subject to both image and 

audio-induced signal distortion. 

The information theoretical model of secure covert communications over streaming 

media developed in this research project could enable the investigation of video 

steganography, if the model were slightly modified to allow image and audio-induced 

distortion to be taken into account, thus giving important information on the security 

metrics as a function of the message size and / or data embedding rate. The 

information gained would be equally useful in addressing video steganography 

security issues. 

The dynamic steganographic algorithm for covert VoIP communications devised in 

this research could be extended to depict the security scenarios in streaming 

video-based steganographic systems with passive attacks. This could be achieved by 

integrating the VoIP steganographic algorithm with an image steganographic 

algorithm to take account of image and audio-induced signal distortion. 

The mutual authentication technique designed in this work needs to be further 

improved, to study the prevention of tampering attacks in the presence of heavy 
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packet loss. It should be a good solution to resist tampering attacks by sending an 

authentication message of the secret message to the receiver over a VoIP network. If 

the verification failed on the receiver side, the secret message would be retransmitted 

until authentication takes place. 
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