
UWL REPOSITORY

repository.uwl.ac.uk

Proactive edge caching in content-centric networks with massive dynamic

content requests

Xu, X.G., Feng, C.Y., Zhang, T.K. and Loo, Jonathan ORCID: https://orcid.org/0000-0002-2197-8126

(2020) Proactive edge caching in content-centric networks with massive dynamic content requests.

IEEE Access, 8. 59906 -59921.

http://dx.doi.org/10.1109/ACCESS.2020.2983068

This is the Accepted Version of the final output.

UWL repository link: https://repository.uwl.ac.uk/id/eprint/6941/

Alternative formats: If you require this document in an alternative format, please contact:

open.research@uwl.ac.uk

Copyright: Creative Commons: Attribution 4.0

Copyright and moral rights for the publications made accessible in the public portal are

retained by the authors and/or other copyright owners and it is a condition of accessing

publications that users recognise and abide by the legal requirements associated with these

rights.

Take down policy: If you believe that this document breaches copyright, please contact us at

open.research@uwl.ac.uk providing details, and we will remove access to the work

immediately and investigate your claim.

mailto:open.research@uwl.ac.uk
mailto:open.research@uwl.ac.uk

Proactive Edge Caching in Content-Centric
Networks With Massive Dynamic
Content Requests
XIAOGENG XU 1, (Student Member, IEEE), CHUNYAN FENG 1, (Senior Member, IEEE),
SIYANG SHAN 1, (Student Member, IEEE), TIANKUI ZHANG 1, (Senior Member, IEEE),
AND JONATHAN LOO 2
1School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
2School of Computing and Engineering, University of West London, London W5 5RF, U.K.

Corresponding author: Tiankui Zhang (zhangtiankui@bupt.edu.cn)

This work was supported by the National Natural Science Foundation of China under Grant 61971060 and Grant 61502046.

ABSTRACT Edge computing is a promising infrastructure evolution to reduce traffic loads and support
low-latency communications. Furthermore, content-centric networks provide a natural solution to cache
contents at edge nodes. However, it is a challenge for edge nodes to handle massive and highly dynamic
content requests by users, and if without an efficient content caching strategy, the edge nodes will encounter
high traffic load and latency due to increasing retrieval from content providers. This paper formulates
a proactive edge caching problem to minimize the content retrieval cost at edge nodes. We exploit the
inherent content caching and request aggregation mechanism in the content-centric networks to jointly
minimize traffic load and content retrieval delay cost generated by the massive and dynamic content requests.
We develop a Q-learning algorithm, which is an online optimal caching strategy, as it is adaptable to dynamic
content popularity and content request intensity, and derive the long-term minimization of the content
retrieval cost. Simulation results illustrate that the proposed algorithm can achieve a lower content retrieval
cost compared with several baseline caching schemes.

INDEX TERMS Content-centric networks, dynamic content requests, edge computing, proactive caching,
Q-learning.

I. INTRODUCTION
The demand for broadband multimedia applications has
been rising exponentially, leading to a dramatic increase in
network capital and operating expenditures. Edge comput-
ing is an emerging paradigm which stimulates the comput-
ing, caching and communication abilities of the network
edge nodes (ENs), to satisfy the high quality of service
requirements including low latency and high throughput [1].
However, the high expenditure of deployment and the
location-centric network architecture restrict the efficiency
and scalability of edge computing [2]. To handle these prob-
lem, content-centric networks (CCN) provides an intelligent,
flexible and convenient edge caching solution [3], [4].

CCN is one of the well known information-centric net-
working (ICN) architectures which meets the requirements
of the content dissemination services in future networks [5].
It utilizes the named data rather than the location as the net-
work narrow waist, and realizes the in-network caching and
named data forwarding are realized bymeans of content name
resolution [6]. Taking the advantage of in-network caching
in CCN, contents can be cached to any forwarding node
adjacent to users, which reveals the opportunity to satisfy the
content requests from users efficiently. Moreover, the name-
based forwarding enables the CCN forwarding engine to
deploy the inherent request aggregation mechanism to reduce
redundancy transmissions [7].
Unfortunately, compared with the increasing volume of

contents, the cache spaces at the ENs are limited, because
of the line-speed forwarding requirements to the forwarding
nodes [8]. The conflict between the massive content requests

https://orcid.org/0000-0003-1274-8481
https://orcid.org/0000-0002-4277-6857
https://orcid.org/0000-0002-5314-3393
https://orcid.org/0000-0002-0694-5844
https://orcid.org/0000-0002-2197-8126
https://orcid.org/0000-0002-2224-3826

and the limited cache space makes it impossible to store all
demanded contents at the ENs. Therefore, the ENs should
adopt an intelligent caching strategy to be able to satisfy the
user requirements with the limited resources.

In order to guarantee the best caching performance,
the optimum contents have to be carefully chosen and proac-
tively cached to ENs according to a precise optimization
objective [9]. The proactive caching strategies in CCN have
been widely studied. The early studies aim to enhance the
caching performance in the static environments [10]–[12],
while do not take into account the time-varying nature of
the content requests, new content generations as well as
user mobility. Migrating the aforementioned caching strate-
gies to dynamic environments would introduce iterative cal-
culations. Even worse, the caching performance would be
suffered from the postponed caching decisions. Therefore,
the recent research has paid more attention to content caching
in dynamic scenarios in CCN [13]–[19].

Given that content popularity is an effective measure
for making caching decisions, extensive works have been
devoted to dynamic content popularity-based content caching
in CCN. In addition to content popularity prediction
[17], [18], reinforcement learning [19] has been emerging to
capture the dynamic popularity characteristics. Their formu-
lated optimization problems are able to approximate to the
actual system performances with low content request inten-
sity. However, in the scenarios of massive content requests,
the performances become distinctive due to the inherent
request aggregation mechanism in CCN [20], [21].

Under the circumstances, higher content request intensity
results in less forwarded content requests probability, which
alleviates the traffic load burden to the upstream networks and
shortens the content retrieval delay. As a result, the proactive
caching in CCN with massive and dynamic content requests,
jointly considering the time-varying content popularity and
content request intensity, is to be explored.

To handle themassive and highly dynamic content requests
at ENs, we formulate a proactive edge caching problem to
minimize the content retrieval cost based on CCN archi-
tecture. We exploit both the inherent content caching and
request aggregation mechanism in CCN to jointly minimize
traffic load and content retrieval delay cost. We further
develop a Q-learning algorithm, which is an online opti-
mal caching strategy, as it is adaptable to dynamic con-
tent popularity and content request intensity, and derive the
long-term minimization of the content retrieval cost. The
innovations and contributions of this work are summarized as
follows.
• We formulated a proactive edge caching optimization
problem to handle the massive and highly dynamic con-
tent requests to ENs, with an objective to minimize the
content retrieval cost. The objective takes into account
the traffic load and content retrieval delay, and makes
a trade-off between the two metrics. The proposed
problem is an integer non-linear programming problem,
which is NP-complete.

• We exploited the request aggregation mechanism to
reduce the redundancy transmissions incurred by mas-
sive content requests. We explored the traffic load and
content retrieval delay functions under the joint effects
of content caching and request aggregation mecha-
nism. Simulation results verified that the employment of
request aggregationmechanism can obtain extra remark-
able performance gain additional to content caching.

• We developed a Q-learning algorithm, which is an
online optimal caching strategy, as it is adaptable to
both dynamic content popularity and content request
intensity. TheQ-learning algorithm provided the optimal
proactive caching strategy and derived the long-term
minimization of the content retrieval cost.

• We also implemented Greedy algorithms, most popular
content (MPC) algorithms and random caching (RND)
algorithm for the purposed of experimentation and com-
parisons. Simulation results showed that the proposed
Q-learning based proactive caching algorithm outper-
formed the benchmark algorithms with dynamic content
requests. Furthermore, simulation results also demon-
strated that deploying CCN architecture at ENs can sig-
nificantly relieve the burden encountered from massive
content requests.

The rest of the paper is organized as follows. Section II
introduces the system model. Section III states the optimiza-
tion problem. Section IV and V solve the proactive caching
optimization problem given that the dynamic content requests
is perfectly known and unknown respectively. Section VI
analyzes the caching performance numerical results. And
Section VII concludes the paper.

II. RELATED WORK
How to design effective edge caching strategies for dynamic
networks is still an open issue. Prediction [22], [23] and
reinforcement learning [24], [25] are two main approaches
to for ENs to track the dynamic network characteristics. To
adapt the time-spatial content popularity fluctuations, con-
tent popularity prediction plays an important role in efficient
proactive caching [22]. A linear model for content popularity
prediction was constructed considering both the content and
location features, and a location-customized caching scheme
was derived to maximize the total content hit rate [23]. In
recent years, reinforcement learning has attracted much aca-
demic and industry interest, and been adopted to solve the
optimization in dynamic scenarios. It is utilized either as a
prediction algorithms [24] or to directly output the best pol-
icy according to the proposed optimization objectives [25].
Considering the new content generation, the popularity pre-
diction models for the published and unpublished videos
were established respectively [24]. A closed form solution of
proactive caching algorithm load was presented to minimize
the backhaul.
According to the caching proactivity, the caching strate-

gies in CCN are able to be categorized to the reactive

caching (or passive caching) and the proactive caching (or
prefetching), respectively [8]. With reactive caching strate-
gies, the caching nodes make the caching decisions to its
passing-by contents. Reactive caching is adept at distributed
deployments, but provides insufficient caching performance
unfortunately [26]. On the contrary, proactive caching is able
to provide a caching performance guarantee by means of
fetching the optimum contents to the cache nodes before users
actually request them [9]. Proactive caching has been widely
researched in static environment in CCN [11], [12]. An proac-
tive caching placement problem was studied for arbitrary
topology combined with multi-hop forwarding to minimize
the user delay considering the load balancing requirements
of the forwarding nodes simultaneously [11]. An distributed
energy-efficient in-network caching scheme for CCN was
proposed as an integer linear problem, with limited caching
capacity constrains [12].

Comparatively, only a few work have been proposed to
the proactive caching strategies in dynamic environment in
CCN. Among them, content popularity fluctuations as well
as network topology variances are the most typical sce-
narios. Content popularity fluctuation is one of the most
attractive dynamic factors [17]–[19]. By discovering the rel-
evance among video chunks in ICN, the most popular con-
tent chunks in the future were predicted and cached and
those with least future popularity were evicted [17]. Another
popularity-based caching strategy was proposed considering
the temporal evolutions and spatial dependencies of network
traffic. A deep-learning-based global content popularity pre-
diction scheme was utilized to improve the prediction accu-
racy [18]. A QoE-based caching placement issue was derived
in mobile edge for dynamic video-streaming, in terms of
reducing the storage cost of the base stations while main-
taining a high value of QoE [19]. Some work has been
done studying the network topology variance in mobile CCN,
including cellular network, internet of things (IoT), and
Vehicular Ad-hoc network (VANET), etc [14]–[16]. Entropy
was proposed to bothmeasuremobility prediction uncertainty
and locate the best prefetching node, aiming for eliminat-
ing redundancy [14]. The content retrievability improvement
in vehicle-to-infrastructure (V2I) scenario was studied [15].
Content prefetching was decided by an offline management
platform to maximize the probability that a user retrieves
their desired contents while accounting for the number and
mobility models of moving users, with the available cache
capacity and link capacity. The optimal caching for producer
mobility support was investigated to minimize the total net-
work overhead. By exploiting location predictors and content
requests’ patterns, the demand contents can be cached proac-
tively before handover occurs [16].

The request aggregation mechanism has been verified to
provide considerable performance gain given a large enough
content request intensity [27]. The main research on request
aggregation mechanism came from the modeling and analyz-
ing of caching performance after considering request aggre-
gation mechanism. The early caching performance analysis

was realized in two steps. Firstly, the caching hit and caching
miss probabilities were derived with a two-state Markov
model. Consequently, the approximate request forwarded and
aggregated request probabilities were calculated by multiply-
ing the missed request probability to the coefficients after-
wards [28], [29]. In recent years, the realistic scenarios
with request aggregation have been considered. It has been
theoretically proved that the random process of the request
arrival distribution and the content arrival distribution became
different due to the request aggregationmechanism [20], [21].
The cache hit rate, average response time of requests and
the cache space size distribution occupied by the pending
interest table (PIT) were analyzed by using the cache strategy
with fixed content sojourn time [30]. Our previous research
on the caching performance analysis modeled the states of
the arrival content requests as a three-state Markov model to
explore a more accurate analysis model [31]. More analysis
has been extended to other general traffic models and alter-
native cache placement policies [32].
Although some existing work has analyzed the benefits

of request aggregation mechanism, they have not demon-
strated the performance gain to improve the caching strategy
optimization yet. Especially, in a massive content requests
scenario, the performance gain of adopting the request aggre-
gation mechanism can be evident and crucial to making
caching decisions. To fill this aforementioned gap, we will
formulate the accurate theoretical models for the traffic load
and content retrieval delay to jointly represent the contribu-
tion from content caching and request aggregation mecha-
nism. Moreover, since the request aggregation performance
gain relies on the content request intensity, we will work on
revealing the dynamic content request intensity in addition
to the dynamic content popularity to the proposed content
caching strategy.

III. SYSTEM MODEL
In this section, the network model, forwarding process of the
EN and the dynamic content requests model are described.
For the sake of clarity, the frequently used notations in this
paper are listed in Table 1.

A. NETWORK MODEL
As shown in Fig. 1, we exhibit the network model for the
proposed edge caching. From top to bottom, the network
model is composed of four elements, which are content
providers, Internet, edge nodes (ENs) and users (UEs). Con-
tent providers locate remotely and publish contents. Inter-
net contains several forwarding nodes, which transmit the
content requests and the targeting contents. The ENs locate
at the edge of the network, which have the abilities of
communication, content caching and computing. In addition,
the ENs adopt CCN architecture, which enable not only
content caching but also request aggregation mechanism to
reduce redundancy transmissions. Users access to the Internet
through ENs. They send their requests to ENs and receive
targeting contents from ENs.

TABLE 1. List of notation.

FIGURE 1. Network model for edge caching in CCN.

There are K contents published by M content providers.
The content set is denoted as C = {c1, . . . , cK }, and the
content provider set is expressed as P = {P1, . . . ,PM }.
Cm ⊂ C represents the contents that published by content
provider Pm. Assuming that every content is published by
only one content provider, it is fulfilled that Cm

⋂
Cm′ =

∅,∀m 6= m′ and
M⋃
Cm = C. Without loss of generality,

assuming that all contents are with the unified size f0. The
larger content is able to be sliced into multi contents (chunks)
with size of f0.

Based on this assumption, the size of the cache space
embedded to the EN is L contents. Define the set of cached
contents as A ⊂ C. Let a Boolean vector a = [ak]K×1
represents the caching contents, whose element ak is defined
as

ak =

{
1, ck ∈ A,
0, otherwise.

(1)

In order to satisfy the limitation of the caching space size,

the restriction of
K∑
k=1

ak ≤ L has to be fulfilled.

Assume that NU users retrieve their desired contents via
accessing to the EN. The external content requests generation
process arrived at EN is modeled as a Poisson process with
intensity of λ. Content popularity of ck ∈ C is defined as
the ratio of requests for ck to the total content requests. The

popularity of the content ck is denoted as qk . Referring to
statistics ofWeb services, denoting that the content popularity
obeys Zipf distribution with skewness factor α as

qk =
1/kα

K∑
i=1

1/iα
, α > 0. (2)

Considering the content request intensity λ, the content
request intensity to content ck is λk = λqk ,∀k .
Assume the network topology is static. The content

provider Pm,m ∈ [1,M] locates Dm hops away from the EN,
and the transmission speed of each hop is Bm. For a content
ck ∈ Cm, the hop distance is dk = Dm and the transmission
speed is bk = Bm. Therefore, transmitting content ck from
its provider to the EN consumes traffic load of f0 dk . Content
transmission delay of ck from its provider to EN is defined
as 1k . It is an index to indicate the network performance,
and also affect to user experience. As previously defined,
the content size is f0 and the transmission speed for ck is bk .
Then the transmission delay of ck is expressed as1k = f0/bk .

B. FORWARDING PROCESS
The forwarding process at a CCN node considering the
request aggregation mechanism is shown in Fig. 2 [33]. The
CCN architecture utilizes Interest and Data packets to trans-
mit content requests and the required contents, respectively.
There are three core functionality of a cache-enabled router in
the CCN architecture: the content store (CS) for caching con-
tent, the pending interest table (PIT) which keeps track of the
forwarded Interests that are not yet satisfied with a returned
Data packet, and the forwarding information base (FIB) to
guide the Interests forwarding [34]. After receiving a con-
tent request, the router first matches the request to its CS.
If the cache hit occurs, the router forwards the content to
the user. Otherwise, the cache missed request is handled to
PIT. The basic function of PIT is to record the name of every
requested content and the input interface of the request. These
PIT entries provide their recorded interfaces when transmit-
ting the requested contents to the users. After forwarding
the requested content, the router will erase the relative PIT
entry. For the content request aggregation, an extra judgement

FIGURE 2. Forwarding process at a CCN node.

is implemented on the PIT module, that the cache missed
request is matched to the existent PIT entries. When a PIT
match is found, the request is decided to be aggregated. The
router adds the input interface of the request to the matched
PIT entry and then skips the request. During the Data for-
warding process, the router will multicast the content to all the
recorded interfaces at once. The rest missed requests, said the
non-aggregated ones, are propagated to the content provider
from the interfaces recorded in FIB.

After proceeded by the EN, the arrival content request
might belong to one of the three states, which are cache hit,
request aggregated and request forwarded respectively. Let
pHk and pMk represent the cache hit probability and the cache
miss probability for acquiring ck , where pHk + pMk = 1.
Denote pAk and pNAk as the aggregated and non-aggregated
request probabilities, where pNAk + pAk = pMk . Furthermore,
assume that FIB contains all forwarding information, which
makes all the non-aggregated requests being forwarded to the
upstream network. Therefore the forwarded request probabil-
ity is denoted as pFk = pNAk .

Our previous research has explored the analytical expres-
sions of the steady probabilities distribution of cache
hit, request forwarded and request aggregated probabilities
regarding to the average content sojourn time in cache space
δk considering the content request aggregation mechanism in
CCN [31]. According to this work, these three probabilities
are presented as follows,

πH
k,δk = φkϕk

(
1− e−λkδk

)
πF
k,δk = φkϕke

−λkδk

πA
k,δk = φke

−λkδk
(
1− e−λk1k

)
,

(3)

where ϕk and φk are expressed as

ϕk =
1

1− e−λk1k

∞∑
m=1

[
(λk1k)m

m! e−λk1k
]2

1−
m−1∑
i=0

(λk1k)i
i! e−λk1k

, (4)

and

φk =
1

e−λkδk
(
1− e−λk1k

)
+ ϕk

. (5)

In addition, δk represents the average duration that content ck
is cached in the EN.

For a deterministic content caching strategy, caching con-
tent ck in the EN means that the content caching duration of

ck is δk →∞. In this case,
πH
k,∞(t) = 1
πF
k,∞(t) = 0
πA
k,∞(t) = 0.

(6)

On the contrary, when content ck is not cached in the EN,
the content caching duration is δk = 0. In this case,

πH
k,0(t) = 0

πF
k,0(t) =

ϕk(
1− e−λk1k

)
+ ϕk

πA
k,0(t) =

1− e−λk1k(
1− e−λk1k

)
+ ϕk

,

(7)

where ϕk refers to (4).
Jointly considering that ak (t) is the Boolean variable rep-

resenting whether the content ck is cached or not during inter-
val t , the cache hit, request forwarded and request aggregated
probabilities of a deterministic content caching strategy in
CCN are expressed as

pHk (t) = ak (t)
pFk (t) = π

F
k,0(t) [1− ak (t)]

pAk (t) = π
A
k,0(t) [1− ak (t)],

(8)

where the πF
k,0(t) and π

A
k,0(t) refer to (7).

C. DYNAMIC MODEL
Considering a discrete time system model. Assume the
duration of interval t is long enough to represent the
content request statistics. During an interval, the content
request intensity and content popularity maintain unchanged.
In terms of the functionalities of the EN, each interval is
partitioned into three steps, whose procedure is depicted
in Fig. 3. The first phase of every interval is the ‘‘content
delivery’’ phase, in which the caching content set at the
EN is denoted as A (t) ⊂ C. During this phase, the users
generate content requests and retrieve contents from the EN.
Meanwhile, the EN observes and derives the content requests
feature during this period, including the content request inten-
sity and the content popularity distribution, as well as the
cache performance indices, including the cache hit probabil-
ity, request forwarded probability, and the content retrieval
delay. The second phase pertains to ‘‘performance judge-
ment’’, where the EN calculates the content retrieval cost
based on the statistics during the prior phase. In addition,
the overall content retrieval state of the current period is
distinguished to a predefined category. Finally, ‘‘proactive

FIGURE 3. Three-step procedure in interval t .

FIGURE 4. Proposed proactive caching framework.

caching’’ is carried out and the selected contents are stored
for the next interval, named A(t + 1). If the idle cache space
is not enough for the coming contents, the EN also specifies
the existing contents to be replaced. Both the reserved and
the coming contents are stored during the next interval, and
serve the content requests targeting to the content retrieval
cost minimization.

IV. PROBLEM STATEMENT
In this section, we will describe the proactive caching prob-
lem in order to minimize the content retrieval cost at the
ENs. Prior to elaborating the optimization problem, wewould
like to give a description to the framework of the proposed
proactive caching problem, as illustrated in Fig. 4.

The framework is composed of three columns. The mid-
dle part represents the simplified network topology and the
key modules to implement the proposed proactive caching
algorithm. EN is the most adjacent forwarding node to users,
which owns three functionalities: packet forwarding (com-
munication), content caching (caching) and, the most impor-
tant, caching content decision (computation). Among these
functionalities, package forwarding and content caching are
operated under the CCN architecture. By means of the com-
putation capability of the EN, the caching content decision
module is to decide the optimal caching contents in order to
minimize the content retrieval cost. Content providers locate
remotely in the upstream network. The distance from the
content providers to the EN and the transmission speed of

every path are determined by the Internet deployment. The
users deliver their content requests to the EN, and receive the
required contents from the EN.
The right column in the framework demonstrates the

packet forwarding procedure based on CCN architecture.
It processes the arrival content requests through CS, PIT,
and FIB successively before transmits them to upstream net-
works. The details of the Interest/Data forwarding process
has been depicted in Section III-B. In order to demonstrate an
intuitive sight of the request aggregation mechanism, we plot
two line graphs representing the content popularity distribu-
tion arrival to and forwarded from the EN respectively. The
lower graph represents the user generated content requests
arrival to EN, which is so called the local content popularity.
And the upper graph represents the popularity distribution
of the forwarded content requests from EN, which is so
called global content popularity. Since the request aggre-
gation mechanism reduces part of the duplicated content
requests, the amount and content popularity of the forwarded
requests are changed, which further influences both the traffic
load and content retrieval delay consumptions. Therefore,
the accurate formulation of the content retrieval cost during
content dissemination needs to be studied comprehensively
considering the content caching and request aggregation
mechanism. Furthermore, the proactive caching algorithm
should adapt to the dynamic content requests.
Finally, the left column explains how the dynamic proac-

tive caching function operates. The EN gathers information

from both the users locating in its downstream networks and
the content providers and Internet locating in its upstream net-
works. From the downstream, EN experiences the features of
content requests. The dynamic content requests are described
by two parameters, the content request intensity λ(t) and
content popularity α(t), which denotes the skewness factor
of Zipf distribution, at interval t . From the upstream, EN is
aware of the network topology including the hop distance to
content providers dk as well as the transmission speed for
each content bk . All these collected information are utilized to
formulate the content retrieval cost function Ĉ . The cost func-
tion will represents both traffic load CT and content retrieval
delay CD. Finally, the optimal content caching strategy is
developed to minimize the proposed content retrieval cost
adapting to the dynamic content requests.

In this paper, we study the proactive caching algorithm on
one EN to serve the users accessing to it. This algorithm can
be deployed to other parallel ENs, based on their parameters
of dynamic content requests and network topology. On the
basis of the proactive caching framework, we will elaborate
the proactive edge caching problem in the rest of this section.

A. COST FUNCTIONS FORMULATION
Two cost function metrics, the traffic load cost and con-
tent retrieval delay cost, are formulated in this section. The
mathematical model of the request aggregation mechanism
is precisely presented for both cost functions.

1) TRAFFIC LOAD
Traffic load in interval t , CT(t), is composed of two aspects.
One is the content dissemination traffic load caused by trans-
mitting the cache missed content requests, denoted as CT1(t).
The other is the proactive caching traffic load caused by
prefetching the desired contents, denoted as CT2(t). There-
fore, the traffic load is expressed as

CT(t) = CT1(t)+ CT2(t). (9)

The content dissemination traffic load is incurred during
the ‘‘Content Delivery’’ phase. According to the request pro-
cess in CCN, only the content requests, which are neither
cache hit nor aggregated, are forwarded to the upstream net-
work, and introduce traffic load consumptions. So, the con-
tent dissemination traffic load generated in interval t is
expressed as

CT1(t) = f0λ (t)T (t)
K∑
k=1

[1− ak (t)] qk (t) dkπF
k,0(t), (10)

where f0 and dk are the unified content size and hop distance
to acquire ck . λ (t) is the content requests arrival intensity dur-
ing interval t . T (t) presents the duration of interval t . qk (t)
denotes the content popularity of ck . πF

k,0 (t) indicates the
request forward probability when the content is not cached,
referring to (7).

Another traffic load cost is generated by the procedure
of proactive caching, when the EN downloads the contents

for the next interval. In order to further reduce the proactive
caching traffic load, the contents that are decided to be cached
in the contiguous intervals will be maintained by CS, instead
of being downloaded duplicately. Therefore, the proactive
caching traffic load cost is defined as

CT2 (t) = f0
K∑
k=1

ak (t) [1− ak (t − 1)]dk , (11)

where [1− ak (t − 1)] ak (t) = 1 represents that ck is
prefetched from the content provider.

2) CONTENT RETRIEVAL DELAY
Another component of the content retrieval cost is induced
by content retrieval delay, denoted as CD (t). The content
retrieval delay is categorized into three possible types accord-
ing the three states of the arrival content request: i) The cache
hit requests are immediately satisfied, which introduces zero
extra delay. ii) The aggregated requests consumers partially
shortened content retrieval delay, since they are able to reuse
the previously required contents. iii) The forwarded content
requests cause the complete transmission delay from the con-
tent providers. Therefore, the content retrieval delay CD (t) is
expressed as

CD (t) = λ (t)T (t)
K∑
k=1

[1− ak (t)]qk (t)

×

[
πF
k,0 (t)1k + π

A
k,0 (t) τ̄k (t)

]
, (12)

where 1k indicates the content transmission delay from the
content providers to the EN, τ̄k (t) represents the average
delay that an aggregated request has to wait until the previ-
ously request content arrives at the EN. πF

k,0 (t) and π
A
k,0 (t)

represent the request forwarded and aggregated probabilities
when the required content is not cached, whose expressions
are referring to (7).
To clarify the average content retrieval delay for the aggre-

gated content requests, a duration denoted as ’a request aggre-
gation round’ is defined. A request aggregation around starts
from t (0)k when the request for ck is forwarded upstream and
terminates at t (0)k + 1k when the previously requested ck
arrives back to the EN. The request aggregation round and the
events that occur during this duration are depicted in Fig. 5.

FIGURE 5. The sequence diagram of a request aggregation round.

Assume that there are m ∈ Z+ requests for ck arrives at
EN in an round, and the time interval between two adjacent
arrival requests for ck is random process

{
ξ
(i)
k , i = [1,m]

}
.

The arrival time of the ith aggregated request in this content
request aggregation round is expressed as t (i)k = t (0)k +∑i

j=1 ξ
(j)
k . The content retrieval delay of the ith aggregated

request is τ (i)k = 1k−
∑i

j=1 ξ
(j)
k . Therefore, the mean content

retrieval delay of the m aggregated requests in a content
request aggregation round, denoted as τ̂k,m, is expressed as

τ̂k,m (t) = 1k −
1
m

m∑
i=1

i∑
j=1

ξ
(j)
k , (m ∈ Z+). (13)

Furthermore, the average content retrieval delay of the m
aggregated requests is expressed as τ̄k,m (t) = E

[
τ̂k,m (t)

]
.

Given the content request arrival process for ck is modeled as
a Poisson process with intensity of λk (t), the probability of
m request arriving during a request aggregation round with
interval of 1k is

P {N (1k) = m} =
(λk1k)m

m!
e−λk1k , m ∈

{
0,Z+

}
. (14)

Based on the expressions of (13) and (14), the overall content
retrieval delay for all aggregated requests during interval t is
expressed as

τ̄k (t) =
∞∑
m=1

τ̂k,m (t)P {N (1k) = m}. (15)

B. PROPOSED OPTIMIZATION PROBLEM
The network traffic offloading and the content retrieval delay
reduction are two kernel purpose of edge caching. Our tar-
get is to formulate an optimization problem to achieve both
aforementioned performance gain. However, there exists a
magnitude gap between the traffic load and delay. We employ
normalization to eliminate the magnitude gap. CT,∅ (t) and
CD,∅ (t) represent the original traffic load and content
retrieval delay benefiting from neither content caching nor
request aggregation mechanism, which are expressed as

CT,∅ (t) = f0λ (t)T (t)
K∑
k=1

qk (t) dk

CD,∅ (t) = λ (t)T (t)
K∑
k=1

qk (t)1k .

(16)

Therefore, we denote C ′T (t) and C
′

D (t) to represent the nor-
malized traffic load and content retrieval delay as

C ′T (t) =
CT (t)
CT,∅ (t)

C ′D (t) =
CD (t)
CD,∅ (t)

,

(17)

where CT (t) and CD (t) have been defined previously in (9)
and (12).

After filling the magnitude gap between the traffic load
and content retrieval delay, we formulate the proposed opti-
mization edge caching problem as a weighted sum for
multi-objective optimization problem. Denote ωT and ωD
as the weighting factors of the traffic load and content

retrieval delay, representing their importance in the total con-
tent retrieval cost function. The comprehensively weighted
content retrieval cost function is constructed as

C (t) = ωTC ′T (t)+ ωDC ′D (t). (18)

Without loss of generality, we assume that the two weighting
factors satisfies

ωT + ωD = 1. (19)

Based on this assumption, the proposed optimization problem
has two special circumstances. When ωT = 1 and ωD =

1 − ωT = 0, the proposed cost function only concerns the
traffic load. On the contrary, when ωT = 0 and ωD = 1,
the proposed cost becomes content retrieval delay. By varying
the weighting factors, it is able to adjust the importance of the
traffic load and content retrieval delay in the content retrieval
cost function according to the system design requirements.
The proactive caching problem in the dynamic content

requests scenario is formulated as an optimization problem,
whose objective is to minimize the long-term average content
retrieval cost for each content request, denoted as Ĉ ,

Ĉ =

∞∑
t=1

C (t)λ (t)T (t)

∞∑
t=1

λ (t)T (t)
. (20)

The optimization problem is indicated as follows,

min
A

Ĉ (21a)

s.t. ak (t) ∈ {0, 1}, ∀k, t (21b)
K∑
k=1

ak (t) ≤ L, ∀t, (21c)

where A represents set of caching contents. The defini-
tion of the Boolean variable ak (t) refers to (1). Equa-
tion (21c) restricts that the maximum amount of caching
contents should not exceed the cache space size L.
The proposed optimization problem (21) is an integer

programming problem. We discuss its time complexity as
follows. The local content retrieval cost during interval t has
been modeled as (18). Because of considering the caching
replacement traffic load cost, the performance is affected
by the caching contents of both the current and the previ-
ous intervals, namely {ak (t)} and {ak (t − 1)} respectively,
as (11). Assuming that the set of caching contents in the
previous interval is known, the local content retrieval cost
minimization problem transforms to a typical Knapsack prob-
lem trying to determine whether to cache each content, so that
the local caching contents is no more than the cache space
and the content retrieval cost during this interval is as small
as possible [35], whose time complexity is NP-complete.
Therefore, the proposed proactive caching problem (21) is
also a NP-complete problem. To solve the proposed proactive
caching problem, we will develop a Q-learning algorithm
adapting to the dynamic content requests and derive the
long-term minimization of the content retrieval cost.

V. PROPOSED Q-LEARNING ALGORITHM
Since the proposed problem is NP-complete,we employ
Q-learning algorithm to derive the optimal caching strategy.
We first model the proposed proactive edge caching prob-
lem with the dynamic content requests process to a Markov
decision process (MDP). Particularly, the reward function is
carefully design to represent the performance in upcoming
interval with the assistant of the temporal proactive caching
strategy. Q-learning is implemented to jointly infer the opti-
mal policy and obtain the long-term cost minimization.

A. FORMULATION OF A MARKOV DECISION PROCESS
The dynamic content request intensity and content popular-
ity distribution are modeled using two independent Markov
chains. The content requests process arrival to the EN is mod-
eled as a Poisson process with intensity of λ (t) in interval t .
Assume that request intensity is generated by an underlying
Markov process with |L| states collected in the set L ={
λ(1), . . . , λ(|L|)

}
. Similarly, the content popularity distribu-

tion q(t) is generated by an underlying Markov process with
|Q| states collected in the set Q =

{
q(1), . . . ,q(|Q|)

}
, where

q is a K × 1 vector representing the popularity of all K
contents. Assume that the set of L and Q are known to
the EN. Meanwhile, neither transition probability of the two
Markov chain are considered unknown by the EN. Then we
describe the dynamic process as a MDP characterized by a
quadruple (S,Z,P,R), where S and Z are finite state and
action spaces, respectively. P is the transition probability set,
and R represents the immediate reward set.

1) STATE
Given the request intensity L, the content popularity Q as
well as the caching contents a, the overall set of system states
in the network is

S =
{
s
∣∣∣s = {λ,q>,A} , λ ∈ L,q ∈ Q

}
. (22)

The size of S is |L| × |Q| × | {A} |. The state in interval t is
denoted as s(t) ∈ S.

2) ACTION
The EN’s action is to refresh its cache space according to its
caching strategy. The action consists of two step: to decide the
eviction contents and to pull the requested contents from their
content providers. Let Z−(t) = {ck (t)} , ck ∈ A(t − 1) repre-
sent the eviction contents the EN evicts from its cache space
in interval t . Denote Z+(t) = {ck (t)} , ck ∈ (C \A(t − 1))
as the prefetched contents that the EN pulls and caches in
interval t . Therefore, the strategy is to determine Z(t) =
(Z−(t),Z+(t)). After these two steps, the caching contents
in the EN in interval t becomes A(t) as

A(t) = A(t − 1) \ Z−(t) ∪ Z+(t), ∀t > 0, (23)

where symbol \ represents content eviction, and symbol ∪
represents prefetching fresh contents.

3) TRANSITION PROBABILITY
PZ (s, s′) ∈ P,∀s, s′ ∈ S is the probability that action Z in
state s at interval t − 1 will lead to state s′ at interval t , that is

PZ (s, s′) = Pr
{
s (t) = s′ |s (t − 1) = s,Z(t) = Z

}
. (24)

4) IMMEDIATE REWARD
Our purpose is to minimize the content retrieval cost, which
means that the actions that leads to the lower cost is supposed
to obtain the higher immediate reward. Therefore, we define
the reward function as

RZ (s, s′) = C−2 [λ(t),q(t),A(t),A(t − 1)] , (25)

where the cost function C refers to (18). The size of the
immediate reward R is |S|2 × |Z|.
Let us now define the policy function π : S → Z , which

maps state to the action. Under policy π (·), the action z(t +
1) = π [s (t)] represents the proactive caching contents during
interval t + 1 under the state s(t). Respecting to the policy π ,
the caching performance is measured through the state-value
function

Vπ [s (t+1)]= lim
T→∞

E

{
T∑
τ=t

γ τ−tC−2π [s(τ)] [s (τ) , s (τ+1)]

}
,

(26)

which represents the total average content retrieval cost
incurred over an infinite time with a discounted factor γ ∈
[0, 1). A large γ implies that the current state value is highly
affected by the future.
Our purpose is to derive the optimal policyπ∗, which could

achieve the maximal value of any state s

π∗ = argmax
π∈5

Vπ (s) , ∀s ∈ S, (27)

where 5 is the set of all feasible policies.
In MDP, Bellman equations express the state-value func-

tion (26) by a recursion for expected reward

Vπ (s)=C−2π(s)(s, s
′)+γ

∑
s′∈S

Pπ(s)(s, s′)Vπ (s′), ∀s, s′. (28)

The equation describes the expected reward for taking the
action prescribed by the policy π .
The optimal policy π∗ is referred to as the Bellman opti-

mality equation,

Vπ∗ (s) = max
z

{
C−2z (s, s′)+ γ

∑
s′
Pz(s, s′)Vπ∗ (s′)

}
, (29)

where π∗ indicates the optimal policy and Vπ∗ (s) refers to the
value function of the optimal policy.
For a policyπ , defineQ value, named the state-action value

function as

Qπ (s, z) = C−2π(s)(s, s
′)+ γ

∑
s′
Pz(s, s′)Vπ (s′), (30)

where the Q value is the expected discounted reward for
executing action z at state s and following policy π thereafter.

Given the transition probability P and the initialized pol-
icy π0, the best policy is derived through the policy iteration
algorithm as follow,

1) Policy evaluation: Determine Vπt (s) for all states
s ∈ S under the current policy πt , given the value-state
function in (28).

2) Q function update: For each state-action pair, calculate
its state-action value function Qπt (s, z) as (30).

3) Policy update: Update the policy πt+1 using

πt+1(s) = argmax
ζ

Qπt (s, ζ) , ∀s ∈ S. (31)

The iteration terminates until the difference πt+1(S) =
πt (S), when the caching policy is proved to converge to the
best policy.

The per iteration complexity of the policy iteration algo-
rithm isO

(
|S|3 + |S|2|Z|

)
[36]. Furthermore, this algorithm

depends on the known transition probability P , which is not
practical in real systems. In contrast, the Q-learning algorithm
does not require to estimate the model of the environment, i.t.
the transition probability P with size of |S|2 × |Z|, to obtain
the optimal policy π∗ as well as the optimal state value Vπ (s).

B. Q-LEARNING ALGORITHM
Q-learning is a form of model-free reinforcement learning.
It provides the EN with the capability of learning to act opti-
mally in Markov domains by experiencing the consequences
of actions [37]. Q-learning jointly infers the optimal policy
π∗, and estimate the optimal state-action value function of

Q∗ (s, z) = Qπ∗ (s, z) , ∀s, z. (32)

It is straightforward to show that

V ∗ (s) = Vπ∗ (s) = max
ζ

Q∗ (s, ζ) , (33)

and that if π∗ is the optimal policy which the maximum is
attained, it is easily decide what is the optimal todo as

π∗ (s) = argmax
ζ

Q∗ (s, ζ) , ∀s ∈ S. (34)

During every interval, the estimated Q value is updated
according to

Q̂πt [s (t − 1) , z (t)]

= (1− βt) Q̂πt−1 [s (t − 1) , z (t)]+ βt

·

{
C−2 [s (t − 1) , z (t) |λ (t) ,q (t)]

+ γ max
ζ

Q̂πt−1 [s (t) , ζ]
}
, (35)

where βt is the learning rate, which affects the learning result
to the Q values. γ is discount factor representing that the
future action influence to the current decision making. While
the rest Q values keep unchanged.
The Q-learning scheme for the proactive caching policy is

listed under Algorithm 1.

Algorithm 1 Q-Learning Based Proactive Caching Algo-
rithm
Input: f0, L, {dk}, {bk}, ωT, ωD, e-greedy value ε,

discount factor γ , a relatively small value ε.
Output: The optimal caching strategy π∗.
1: Initialization: random s(0), Q0 (s, z) = 0.
2: repeat
3: Generate random value ε(t).

4: z(t) =

argmax
ζ

Q̂πt [s(t − 1), ζ] , ε(t) > ε,

random z, ε(t) ≤ ε.
5: Derive caching contents in interval t , A(t), as (23).
6: Observe state in interval t , s(t).
7: Calculate the immediate reward as (25).
8: Update Q̂πt [s (t − 1) , z (t)] value as (35).
9: Update the policy πt+1 as (31).
10: Calculate the state-value function Vπ [s (t)] as (26).
11: until |Vπt+1 [S]− Vπt [S] | ≤ ε
12: Return π∗ = πt .

C. CONVERGENCE ANALYSIS
The convergence of the Q-learning has been proved. Accord-
ing to theTheorem 1 in [38], given the predefined finiteMDP
(S,Z,P,R), the Q-learning algorithm, whose update rule
refers to (35), converges to w.p.1 to the optimal Q-function
as long as the learning rate satisfies∑

t

βt (s, z) = ∞
∑
t

β2t (s, z) <∞ (36)

for all (s, z) ∈ S × Z . Therefore, we define t(s, z) as the
amount that state-action pair (s, z) is visited. Furthermore,
define βt (s, z) = t(s, z)−1, which satisfies the convergence
requirement clarified in (36).

VI. SIMULATION RESULTS
In this section, in order to verify the performance of the pro-
posed proactive caching algorithm, we simulate the proposed
proactive caching algorithm and compare it with following
benchmarks caching algorithms:
• Greedy algorithms: the linear programming caching
algorithms which proposes the caching content decision
based on the previous interval. Since the content retrieval
cost is composed of weighted sum of traffic load and
content retrieval delay, we proposes two Greedy algo-
rithms, i.t. Greedy TL2DL and Greedy DL2TL. Greedy
TL2DL searches 2L candidates caching contents which
achieve maximum traffic load firstly and then picks L
contents which introduce largest content retrieval delay
among the 2L candidates. Greedy DL2TL is imple-
mented in the opposite order.

• MPC algorithms: the widely-used caching algorithm,
in which the most popular contents in current interval
is cached in the next interval. The local MPC algorithm
determines the most popular contents according to the
received content request at EN. On the other hand,

TABLE 2. Simulation parameters.

the global MPC algorithm determines the most popular
contents arrival to content providers. Influenced by the
request aggregation mechanism, local MPC is no longer
coincide with global MPC.

• RND algorithm: randomly caching contents regardless
the content request characteristics and network environ-
ments. The performance of RND is seen as a baseline.

A. SIMULATION ASSUMPTIONS
Assume that 10 contents are published by 10 content
providers. Every content provider publishes only one content.
The network topology of Internet is an arbitrary network.
Let’s imagine that there is an end to end path from every
content provider to the EN. The number of intermediate nodes
between the content providers to the EN are randomly set
between 0 and 9. Therefore, the hop accounts of the paths
are set between 1 and 10 hops. Meanwhile, the transmission
rates of the paths are selected between 10Mbps and 100Mbps.
In order to reflect the network heterogeneity, the hop accounts
and transmission rates of the paths are independently set.
Consequently, a path with large hop account may serve with
high transmission rate. The content size is f0 = 1Mb identi-
cally. Considering the confliction between the vast amount of
contents and the limited cache space, the cache space is set to
be L = 2, which is 20% of the total contents at most.

Assuming that the request arriving at the EN obeys the
Poisson process with strength λ. Considering the dynamic
content request, the content request intensity varies among
[1, 10] requests per second. Content popularity is modeled
by Zipf distribution, with the skewness factor of α. The value
range of α is [0.3, 1.5]. The larger α implies the high consis-
tency of the user’s preference for a small amount of contents,
while the requests for the rest contents is relatively few. The
weight of the traffic load cost ωT and the content retrieval
delay cost ωD vary from 0 to 1 and satisfy ωT + ωD = 1.
The default value of weighting factors are set as ωT = 0.2
and ωD = 0.8. Given this parameter setting, the content
retrieval delay cost dominates the proposed content retrieval
cost, while the proportion of the traffic load cost is relatively
low. The aforementioned parameters and the default value
adopted in the simulation are concluded in Table 2.

The dynamic content request intensity and content popu-
larity distribution are modulated by two independent Markov
process. Each Markov process has two states, respectively.
Define the content requests intensity λ to present the busy

hour and the idle hour. The content request intensity transition
probability is

P(λ) =

[
p(λ)11 p(λ)12
p(λ)21 p(λ)22

]
=

[
0.6 0.4
0.2 0.8

]
. (37)

While the transition probability of dynamic content popular-
ity is represented as

P(α) =

[
p(α)11 p(α)12
p(α)21 p(α)22

]
=

[
0.2 0.8
0.75 0.25

]
. (38)

The dynamic content popularity contains two aspects. One
aspect is the skewness factor of the Zipf distribution α, which
reflects the centralization degree of the content requests. The
other aspect is the alternation of the most popular contents.
In state 1, the descend content popularity follows the order
of {c1, . . . , c10}. In state 2, the descend content popularity
follows the order of {c3, . . . , c10, c1, c2}.

B. SIMULATION RESULTS
In this section, we express the simulation results of the
proposed proactive edge caching algorithm in three aspects.
First, we verify the convergence of the proposed Q-learning
algorithm, which is the foundation of adopting Q-learning
algorithm to solve the proactive caching problem. Then, with
the purpose of verifying the effectiveness of the proposed
caching algorithm with highly dynamic content requests,
the performance of the proposed proactive caching algo-
rithm is demonstrated with diverse content request intensity,
content popularity, transmission speed and weighting factor.
Finally, to explore the algorithm’s performance gain under
massive content requests, we compare the proposed caching
algorithm with and without adopting the request aggregation
mechanism.
The convergence of the proposed Q-learning algorithm is

shown in Fig. 6. According to the simulation assumption,
the Q table is size of |S|2×|Z| = (|L|×|Q|)2×CL

K = 8100.
The simulation results show that when Q-learning algorithm
iterates to about 1.4 × 104 times, until it converges to the
optimal performance.
From Fig. 7 to Fig. 10, we demonstrate the proposed

content retrieval cost, the traffic load and the content retrieval
delay of the proposed proactive caching algorithm as well as
the benchmark algorithms, with vary content request inten-
sity, content popularity, transmission speed and weighting
factors, respectively.

FIGURE 6. Q-learning strategy convergence.

Fig. 7 plots the content retrieval cost, traffic load and
content retrieval delay varying with content request intensity.
In this simulation, λ(1) = 1, λ(2) varies from 1 to 10, α(1) =
0.3, α(2) = 0.7, ωT = 0.2 and ωD = 0.8. As shown
in Fig. 7(a), all algorithms achieve lower content retrieval
cost with larger content request intensity. The proposed
Q-learning algorithm always outperforms the benchmark
algorithms, which verifies that the proposed algorithm is able
to learn and therefore forecast the content request dynamics.
The Greedy algorithms are the sub-optimal algorithms. The
Greedy DL2TL performs better than the Greedy TL2DL. It is
because that the content retrieval delay dominates 80% of the
overall content retrieval cost, the Greedy DL2TL are likely
to selects the caching contents that consumes less content
retrieval delay. In addition, the MPC algorithms perform
unsatisfactory, because of the dynamic content requests and
the distance and transmission speed difference for each con-
tent retrieval path. The performance gap between the two
MPC algorithms is caused by the request aggregation mech-
anism. It demonstrates that the request aggregation mech-
anism not only influences the upstream content popularity
distribution, but also changes the sort of the content popu-
larity distributions. Furthermore, it is worth to mention that
RND algorithm plays a special role among these benchmark
algorithms. It is well known that the performance of RND
algorithm does not affected by content request intensity if

without request aggregation mechanism. While, the decreas-
ing content retrieval cost of RND algorithm reveals that,
by adopting the request aggregation mechanism, larger pro-
portion of the duplicated content requests are aggregated at
the EN. Therefore, it verifies that the request aggregation
benefits to traffic load and the content retrieval delay reduc-
tion. The performance gap between the proposed algorithm
to RND algorithm comes from the intelligent content caching
decision, targeting the content retrieval cost minimization. In
Fig. 7(b) and Fig. 7(c), both traffic load and content retrieval
delay decrease with larger content request intensity. Because
the content retrieval delay dominates the content retrieval
cost, the proposed algorithm prefers to cache the contents that
can shorten the content retrieval delay.
The influence of content popularity to the content retrieval

cost is demonstrated in Fig. 8. In this simulation, λ(1) = 1,
λ(2) = 10, α(1) = 0.3, α(2) varies from 0.3 to 1.5, ωT = 0.2
and ωD = 0.8. From Fig. 8(a), the content retrieval cost of
the proposed Q-learning algorithm performs best among all
these algorithms, which is no more than 35% with varying
skewness factor of Zipf distribution α. However, from a
relative uniform content popularity distribution (α(2) = 0.3)
to a concentrative content popularity distribution (α(2) =
1.5), the content retrieval cost only decreases 8%. Given the
massive content requests, the request aggregation mechanism
already produces a remarkable proportion of the aggregated
content requests, which significantly reduces the redundancy
transmission. The popularity distribution of the forwarded
content requests is flattened, which eliminates the perfor-
mance difference between caching the popular contents and
the non-popular ones. That is the reason why significantly
increasing the skewness factor of the Zipf distribution only
introduces very little performance gain under a massive con-
tent requests circumstance. When the content requests is
dense, it is the request aggregation mechanism rather than the
content caching technique contributes dominant performance
gain in CCN. Fig. 8(b) and Fig. 8(c) represent simulation
results of the traffic load and content retrieval delay with
varying content popularity. It is worthy to notice that the
proposed algorithm achieves no more than 1/5 traffic load
and 40% content retrieval delay even when α(2) = 0.3.

FIGURE 7. Network performance comparison with varying content request intensity.

FIGURE 8. Network performance comparison with varying content popularity.

FIGURE 9. Network performance comparison with varying transmission speed.

The simulation result indicates that even the content popular-
ity is relatively flat, the proposed algorithm is able to provide
good enough performance.

Increasing the transmission speed introduces performance
variation of the proposed caching algorithm, as shown
in Fig. 9. In this simulation, λ(1) = 1, λ(2) = 10, α(1) =
0.3, α(2) = 0.7, ωT = 0.2 and ωD = 0.8. Transmission
speed increase from 10Mbps to 100Mbps. Fig. 9(a) represents
that the content retrieval cost raises from 33% to 63% when
transmission speed increase from 10Mpbs to 100Mbps.When
transmission speed exceeds 70Mbps, the content retrieval
cost of all algorithms becomes nearly constant. At this time,
the request aggregation rarely occurs, and the cost gain comes
from content caching. Comparing Fig. 9(b) with Fig. 9(c),
we indicate that with high transmission speed, the local MPC
overlaps global MPC algorithm, because the global content
popularity distribution is same as the local content popularity
distribution without the influence from the request aggrega-
tion. However, when the transmission speed is relatively low,
their performances become distinguished, since their content
popularity distribution are changed by request aggregation
mechanism.

In Fig. 7, 8 and 9, the weighting factors are set asωT = 0.2,
ωD = 0.8, which means that the content retrieval delay cost
dominates the proposed content retrieval cost. That is the
reason why the proposed caching algorithm outperforms all

other algorithms with respect to content retrieval delay as
shown in Fig. 7(c), 8(c) and 9(c). Meanwhile, because of
the network heterogeneity, the caching strategy that achieves
the lowest content retrieval delay usually does not achieve the
lowest traffic load at the same time. Therefore, the proposed
Q-learning algorithm performs worse than the benchmarks
sometimes, as shown in Fig. 7(b), 8(b) and 9(b).
The importance of the traffic load and the content retrieval

delay in the total content retrieval cost is tuned by the
weighting factors, i.t. ωT and ωD. Fig. 10 represents the
content retrieval cost, traffic load, and content retrieval delay
influenced by variant weighting factors, respectively. It is
seen from Fig. 10(a) that the proposed Q-learning algo-
rithm achieves the lowest content retrieval cost among all
these algorithms. Except the proposed algorithm, all the
caching performance of the benchmark algorithms drops lin-
early with increasing the weighing factor of the traffic load.
Jointly analyzing Fig. 10(b) and Fig. 10(c), the benchmark
algorithms obtain constant traffic load and content retrieval
delay, because their caching decisions are not affected by the
weighting factors at all. However, the proposed Q-learning
algorithm has the capability to track the optimization objec-
tive and adjust its caching algorithm according to it. The
simulation contains two extreme situations. When ωT = 1
and ωD = 0, the proposed algorithm derives the mini-
mum traffic load, which is 12% as shown in Fig. 10(b).

FIGURE 10. Network performance comparison with varying weighting factors.

FIGURE 11. Content retrieval cost comparison between with and without
request aggregation mechanism.

In contrast, when ωT = 0 and ωD = 1, the minimum
content retrieval delay is obtained, which is 37% as illustrated
in Fig. 10(c). Apparently, the proposed algorithm outper-
forms in network traffic offloading than content retrieval
delay reduction. The reason is that the aggregated content
requests do not generate traffic load to the upstream network
just like the caching hit. However, the aggregated content
requests can not be satisfied immediately as the caching hit
content requests. They have to wait the previous required
contents to be transmitted back from is content providers.
Thus, the content retrieval delay of the aggregated requests
can not be totally removed. Instead, the delay is only partly
reduced.

Fig. 11 represents an intuitive simulation result to compare
the system performance with and without request aggrega-
tion mechanism, with varying content request intensity. The
content retrieval cost without request aggregation remains
constant with varying content request intensity. It is because,
in this scenario, every caching missed content request is
forwarded to upstream networks. Given the traffic load and
transmission delay for transmitting every content remains sta-
ble, increasing content request intensity only raises the total
amount of the content requests, while the content retrieval
cost per each content request keeps unchanged. On the con-
trary, when adopting request aggregation mechanism, the

performance significantly declines with the increasing con-
tent request intensity, taking advantage of the request aggre-
gation mechanism. The simulation results represent that the
performance with request aggregation mechanism is always
better than the one without request aggregation. When the
content request intensity is small, request aggregation occurs
occasionally, therefore the request aggregation gain is small
consequently. Meanwhile, when the content request intensity
is getting larger, more content requests are aggregated. There-
fore, less network traffic load and content retrieval delay are
consumed to satisfy each content request. The simulation
result confirms that taking into request aggregation mecha-
nism is able to reduce the content retrieval cost. Moreover,
the content retrieval cost with request aggregationmechanism
outperforms the onewithout request aggregation especially in
heavy traffic networks.

VII. CONCLUSION
In this paper, we proposed a proactive edge caching algo-
rithm to handle the massive and highly dynamic content
requests to ENs. We adopted CCN architecture at the edge
caching, not only to exploit the in-network content caching,
but also to utilize its inherent request aggregation mechanism
to further reduce the amount of content request. The more
accurate cost function was explored to represent the perfor-
mance gain for CCN architecture considering the request
aggregation mechanism. The request aggregation mechanism
dramatically reduced the content retrieval cost in the sce-
nario of massive content requests. It is capable of providing
a solution to supplement the content caching performance
gain which is limited by caching space restriction. The
Q-learning caching algorithm was developed to derive the
optimal caching strategy in the scenario of highly dynamic
content requests. Simulation results represented that imple-
menting CCN architecture at ENs can dramatically reduce
the content retrieval cost in the scenario of massive content
request. Our research also demonstrated that the proposed
Q-learning based caching algorithm obtained the minimized
content retrieval cost among the Greedy, MPC and RND
algorithms.

REFERENCES
[1] N. Hassan, K.-L.-A. Yau, and C. Wu, ‘‘Edge computing in 5G: A review,’’

IEEE Access, vol. 7, pp. 127276–127289, 2019.
[2] M. Satyanarayanan, ‘‘The emergence of edge computing,’’ Computer,

vol. 50, no. 1, pp. 30–39, Jan. 2017.
[3] M. Zhang, H. Luo, and H. Zhang, ‘‘A survey of caching mechanisms in

information-centric networking,’’ IEEE Commun. Surveys Tuts., vol. 17,
no. 3, pp. 1473–1499, 3rd Quart., 2015.

[4] T. Zhang, X. Fang, Y. Liu, and A. Nallanathan, ‘‘Content-centric mobile
edge caching,’’ IEEE Access, vol. 8, pp. 11722–11731, 2020.

[5] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and B. Ohlman,
‘‘A survey of information-centric networking,’’ IEEE Commun. Mag.,
vol. 50, no. 7, pp. 26–36, Jul. 2012.

[6] D. Saxena, V. Raychoudhury, N. Suri, C. Becker, and J. Cao, ‘‘Named data
networking: A survey,’’ Comput. Sci. Rev., vol. 19, pp. 15–55, Feb. 2016.

[7] I. Abdullahi, S. Arif, and S. Hassan, ‘‘Survey on caching approaches
in information centric networking,’’ J. Netw. Comput. Appl., vol. 56,
pp. 48–59, Oct. 2015.

[8] I. U. Din, S. Hassan, M. K. Khan, M. Guizani, O. Ghazali, and A. Habbal,
‘‘Caching in information-centric networking: Strategies, challenges, and
future research directions,’’ IEEE Commun. Surveys Tuts., vol. 20, no. 2,
pp. 1443–1474, 2nd Quart., 2018.

[9] A. Kabir, G. Rehman, S. M. Gilani, E. J. Kitindi, Z. Ul Abidin Jaffri, and
K. M. Abbasi, ‘‘The role of caching in next generation cellular networks:
A survey and research outlook,’’ Trans. Emerg. Telecommun. Technol.,
vol. 31, no. 2, p. e3702, Feb. 2020.

[10] A. Ioannou and S. Weber, ‘‘A survey of caching policies and forwarding
mechanisms in information-centric networking,’’ IEEE Commun. Surveys
Tuts., vol. 18, no. 4, pp. 2847–2886, 4th Quart., 2016.

[11] S. Shan, C. Feng, T. Zhang, and J. Loo, ‘‘Proactive caching placement for
arbitrary topologywithmulti-hop forwarding in ICN,’’ IEEEAccess, vol. 7,
pp. 149117–149131, 2019.

[12] C. Fang, F. Richard Yu, T. Huang, J. Liu, and Y. Liu, ‘‘An energy-
efficient distributed in-network caching scheme for green content-centric
networks,’’ Comput. Netw., vol. 78, pp. 119–129, Feb. 2015.

[13] B. Nour, K. Sharif, F. Li, H. Moungla, A. E. Kamal, and H. Afifi, ‘‘NCP:
A near ICN cache placement scheme for IoT-based traffic class,’’ in
Proc. IEEE Global Commun. Conf. (GLOBECOM), Abu Dhabi, UAE,
Dec. 2018, pp. 1–6.

[14] N. Abani, T. Braun, and M. Gerla, ‘‘Proactive caching with mobility
prediction under uncertainty in information-centric networks,’’ in Proc. 4th
ACM Conf. Inf.-Centric Netw., Berlin, Germany, 2017, pp. 88–97.

[15] G. Mauri, M. Gerla, F. Bruno, M. Cesana, and G. Verticale, ‘‘Optimal
content prefetching in NDN Vehicle-to-Infrastructure scenario,’’ IEEE
Trans. Veh. Technol., vol. 66, no. 3, pp. 2513–2525, Mar. 2017.

[16] H. Farahat and H. Hassanein, ‘‘Optimal caching for producer mobility
support in named data networks,’’ inProc. IEEE Int. Conf. Commun. (ICC),
Kuala Lumpur, Malaysia, May 2016, pp. 1–6.

[17] Y. Zhang, X. Tan, andW. Li, ‘‘PPC: Popularity prediction caching in ICN,’’
IEEE Commun. Lett., vol. 22, no. 1, pp. 5–8, Jan. 2018.

[18] W.-X. Liu, J. Zhang, Z.-W. Liang, L.-X. Peng, and J. Cai, ‘‘Content
popularity prediction and caching for ICN: A deep learning approach with
SDN,’’ IEEE Access, vol. 6, pp. 5075–5089, 2018.

[19] X. He, K. Wang, and W. Xu, ‘‘QoE-driven content-centric caching with
deep reinforcement learning in edge-enabled IoT,’’ IEEE Comput. Intell.
Mag., vol. 14, no. 4, pp. 12–20, Nov. 2019.

[20] M. Dehghan, B. Jiang, A. Dabirmoghaddam, and D. Towsley, ‘‘On the
analysis of caches with pending interest tables,’’ in Proc. 2nd Int. Conf.
Information-Centric Netw. (ICN), New York, NY, USA, 2015, pp. 69–78.

[21] H. Dai, B. Liu, H. Yuan, P. Crowley, and J. Lu, ‘‘Analysis of tandem PIT
and CS with non-zero download delay,’’ in Proc. IEEE Conf. Comput.
Commun. (INFOCOM), May 2017, pp. 1–9.

[22] H. S. Goian, O. Y. Al-Jarrah, S. Muhaidat, Y. Al-Hammadi, P. Yoo, and
M. Dianati, ‘‘Popularity-based video caching techniques for cache-enabled
networks: A survey,’’ IEEE Access, vol. 7, pp. 27699–27719, 2019.

[23] P. Yang, N. Zhang, S. Zhang, L. Yu, J. Zhang, and X. Shen, ‘‘Content
popularity prediction towards location-aware mobile edge caching,’’ IEEE
Trans. Multimedia, vol. 21, no. 4, pp. 915–929, Apr. 2019.

[24] K. N. Doan, T. Van Nguyen, T. Q. S. Quek, and H. Shin, ‘‘Content-
aware proactive caching for backhaul offloading in cellular network,’’
IEEE Trans. Wireless Commun., vol. 17, no. 5, pp. 3128–3140, May 2018.

[25] S. O. Somuyiwa, A. Gyorgy, and D. Gündüz, ‘‘A reinforcement-learning
approach to proactive caching in wireless networks,’’ IEEE J. Sel. Areas
Commun., vol. 36, no. 6, pp. 1331–1344, Jun. 2018.

[26] T. Zhang, X. Xu, L. Zhou, X. Jiang, and J. Loo, ‘‘Cache space efficient
caching scheme for content-centric mobile ad hoc networks,’’ IEEE Syst.
J., vol. 13, no. 1, pp. 530–541, Mar. 2019.

[27] G. Panwar, R. Tourani, S.Misra, andA.Mtibaa, ‘‘Request aggregation: The
good, the bad, and the ugly,’’ in Proc. 4th ACM Conf. Inf.-Centric Netw.,
New York, NY, USA, 2017, pp. 198–199.

[28] G. Carofiglio, M. Gallo, and L. Muscariello, ‘‘On the performance of
bandwidth and storage sharing in information-centric networks,’’ Comput.
Netw., vol. 57, no. 17, pp. 3743–3758, Dec. 2013.

[29] T. Huang, G. Wang, C. Fang, F. R. Yu, and Y. Liu, ‘‘Modeling of miss-
probability in content-centric networking,’’ Sci. China Inf. Sci., vol. 58,
no. 7, pp. 1–13, Jul. 2015.

[30] A. J. Abu, B. Bensaou, and J. M. Wang, ‘‘Interest packets retransmission
in lossy CCN networks and its impact on network performance,’’ in
Proc. 1st Int. Conf. Inf.-Centric Netw. (INC), New York, NY, USA, 2014,
pp. 167–176.

[31] X. Xu, C. Feng, T. Zhang, J. Loo, and G. Y. Li, ‘‘Caching performance of
information centric networking with content request aggregation,’’ in Proc.
IEEE Int. Conf. Commun. Workshops (ICC Workshops), Kansas City, MO,
USA, May 2018, pp. 1–6.

[32] M. Ahmadi, J. Roberts, E. Leonardi, and A. Movaghar, ‘‘Impact of
traffic characteristics on request aggregation in an NDN router,’’ 2019,
arXiv:1903.06419. [Online]. Available: http://arxiv.org/abs/1903.06419

[33] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, K. C. Claffy, P. Crowley,
C. Papadopoulos, L. Wang, and B. Zhang, ‘‘Named data networking,’’
SIGCOMM Comput. Commun. Rev., vol. 44, no. 3, pp. 66–73, Jul. 2014.

[34] M. Amadeo, C. Campolo, A. Molinaro, and G. Ruggeri, ‘‘Content-
centric wireless networking: A survey,’’ Comput. Netw., vol. 72, pp. 1–13,
Oct. 2014.

[35] J. Jiang, S. Zhang, B. Li, and B. Li, ‘‘Maximized cellular traffic offloading
via Device-to-Device content sharing,’’ IEEE J. Sel. Areas Commun.,
vol. 34, no. 1, pp. 82–91, Jan. 2016.

[36] A. Sadeghi, F. Sheikholeslami, andG. B. Giannakis, ‘‘Optimal and scalable
caching for 5G using reinforcement learning of space-time popularities,’’
IEEE J. Sel. Topics Signal Process., vol. 12, no. 1, pp. 180–190, Feb. 2018.

[37] C. J. C. H. Watkins and P. Dayan, ‘‘Q-learning,’’ Mach. Learn., vol. 8,
nos. 3–4, pp. 279–292, 1992.

[38] F. S. Melo, ‘‘Convergence of Q-learning: A simple proof,’’ Inst. Syst.
Robot., Lisbon, Portugal, Tech. Rep. 1, 2001, pp. 1–4.

XIAOGENG XU (Student Member, IEEE)
received the B.S. degree in communications
engineering from the Beijing University of Tech-
nology, China, in 2005, the M.S. degree in digi-
tal communication systems and technology from
the Chalmers University of Technology, Sweden,
in 2007. She is currently pursuing the Ph.D. degree
in communication and information systems from
the Beijing University of Posts and Telecommuni-
cations. Her current researches focus on caching

performance analysis and optimization in content-centric networks.

CHUNYAN FENG (Senior Member, IEEE)
received the B.S. degree in communications engi-
neering and the M.S. and Ph.D. degrees in com-
munication and information systems from the
Beijing University of Posts and Telecommunica-
tions (BUPT), Beijing, China. She is currently
a Professor with the School of Information and
Communication Engineering, BUPT. Her research
interests are in the areas of broadband networks
and wireless communication systems. Her current

research focuses on cognitive radio and green wireless communications.

SIYANG SHAN (StudentMember, IEEE) received
the B.S. degree in communications engineering
from the Beijing University of Posts and Telecom-
munications, China, in 2011, the M.S. degree from
Hainan University, China, in 2014. He is currently
pursuing the Ph.D. degree in communication and
information systems from the Beijing University
of Posts and Telecommunications. His current
research focuses on caching and routing in future
Internet architecture.

TIANKUI ZHANG (Senior Member, IEEE)
received the Ph.D. degree in information and com-
munication engineering and the B.S. degree in
communication engineering from the Beijing Uni-
versity of Posts and Telecommunications (BUPT),
China, in 2008 and 2003, respectively. He is cur-
rently a Professor with the School of Informa-
tion and Communication Engineering, BUPT. His
research interests include wireless communication
networks, mobile edge computing and caching,

signal processing for wireless communications, content centric wireless
networks. He has been an Associate Editor for IEEE ACCESS, since 2020.
He had published more than 100 articles including journal articles on the
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, the IEEE TRANSACTION

ON COMMUNICATIONS, and conference papers, such as the IEEE GLOBAL

COMMUNICATIONS CONFERENCE (GLOBECOM) and the IEEE INTERNATIONAL
CONFERENCE ON COMMUNICATIONS (ICC).

JONATHAN LOO (A.K.A. KOK KEONG LOO)
received the M.Sc. degree (Hons.) in electronics
and the Ph.D. degree in electronics and communi-
cations from the University of Hertfordshire, Hert-
fordshire, U.K., in 1998 and 2003, respectively.
In 2003 and 2010, he was a Lecturer in multimedia
communications with the School of Engineering
and Design, Brunel University, Uxbridge, U.K.
In June 2010 and May 2017, he was an Asso-
ciate Professor in communication networks with

the School of Science and Technology, Middlesex University, London, U.K.
From June 2017, he was a Chair Professor in computing and communication
engineering with the School of Computing and Engineering, University of
West London, U. K. He has successfully graduated 18 Ph.D. students as
their Principal Supervisor, and has coauthored over 350 journal and confer-
ence papers in the aforementioned specialized areas. His research interests
include natural language and image processing, machine learning and AI,
the IoT/cyber-physical systems, cyber-security, information centric network-
ing, communication networks, and wireless/mobile systems. He has been
an Associate Editor of the Wiley International Journal of Communication
Systems, since 2011. He was the Lead Editor of the book Mobile Ad Hoc
Networks: Current Status and Future Trends (CRC Press, 2011).

	INTRODUCTION
	RELATED WORK
	SYSTEM MODEL
	NETWORK MODEL
	FORWARDING PROCESS
	DYNAMIC MODEL

	PROBLEM STATEMENT
	COST FUNCTIONS FORMULATION
	TRAFFIC LOAD
	CONTENT RETRIEVAL DELAY

	PROPOSED OPTIMIZATION PROBLEM

	PROPOSED Q-LEARNING ALGORITHM
	FORMULATION OF A MARKOV DECISION PROCESS
	STATE
	ACTION
	TRANSITION PROBABILITY
	IMMEDIATE REWARD

	Q-LEARNING ALGORITHM
	CONVERGENCE ANALYSIS

	SIMULATION RESULTS
	SIMULATION ASSUMPTIONS
	SIMULATION RESULTS

	CONCLUSION
	REFERENCES
	Biographies
	XIAOGENG XU
	CHUNYAN FENG
	SIYANG SHAN
	TIANKUI ZHANG
	JONATHAN LOO (A.K.A. KOK KEONG LOO)

