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Abstract

The dynamic behaviour of footbridges is characterised by modal properties such

as natural frequencies, mode shapes, damping ratios and modal masses. Their

estimation via modal tests often requires expensive or difficult-to-operate equip-

ment (e.g. shaker and instrumented impact hammer) or, sometimes unavailable

high signal-to-noise ratios in tests relying on natural (e.g. wind, airborne noise

and ground-borne vibration) excitation. In addition, the modal properties deter-

mined in modal tests do not necessarily apply to the structure under pedestrian

traffic in case of amplitude-dependent frequencies and damping ratios. The

current work proposes a novel approach that stands in contrast to the widely

used tests, based on modal identification using an excitation induced by a single

pedestrian. In order to account for estimation and observation uncertainties,

the relationship between the power spectrum of the response and its modal

properties is described with a likelihood function. It is shown that it is possible

to reliably estimate modal properties using pedestrian walk forces measured in

the laboratory, and dynamic responses measured when the same pedestrian is

crossing a footbridge at timed pacing rates. The approach is validated using

numerical and field data for a 16.9 m long fibre reinforced polymer footbridge.
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This work paves a new way for simple and low cost modal testing in structural

dynamics.

Keywords: power spectral density, modal identification, FRP footbridge,

pedestrian excitation, Metropolis–Hastings, likelihood function.

1. Introduction

Structural assessment via modal testing is a vast area of research, enabled2

by advanced signal processing techniques and excitation methods [1]. The se-

lected approach is often based on operational constraints, such as time, cost-4

effectiveness, ease-of-use, type of structure and available excitation.

Flexible large-scale structures are usually best tested using ambient exci-6

tation. Data analysis employs methods that are developed assuming that vi-

brations are random (i.e. broadband) and that signal-to-noise ratio (SNR) is8

high. Much progress has been made in the processing techniques that utilise

these types of measurements [2–5]. For medium-scale structures, the most sig-10

nificant modes of vibration might be excitable with more controllable sources:

such as instrumented moving vehicles [6], or with medium/high-force shakers.12

Finally for structures such as footbridges, the main equipment for excitation are

portable shakers and hand-held impact hammers, although ambient testing is14

occasionally used as well.

Both shakers and impact hammers have their drawbacks. With a shaker,16

the frequency response function (FRF) is constructed from the excitation signal

(such as sweep sine, chirp, or random excitation) and simultaneously measured18

vibration responses. This type of test is very reliable, but it is expensive and

might be difficult to execute in difficult-to-access sites due to heavy weight of20

the shaker (often more than 50 kg). Hammer impact testing drawbacks are poor

SNR, high sensitivity to non-linearities and a lack of control over the frequency22

content of the excitation. Concerning cost-effectiveness of these two solutions,

the impact hammer provides the more economic option, that could be about ten24

times less expensive than testing with the shaker [7]. Ambient test is similarly
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affordable, but could suffer from low SNR.26

In all these tests the identification of natural frequencies is the most reliable

and modal masses are the most difficult (or even impossible in the ambient test-28

ing) to identify. It is not uncommon to see errors in the order of 1 % for natural

frequencies and 30 % for damping ratios and modal masses—as illustrated in30

Section 18.5.3 of [8] and Chapter 1 of [9]. As a consequence, some have instead

tried to estimate modal masses with human tests, as proposed by Brownjohn32

and Pavic [10]. Such tests are attractive since they are cost-effective, easy and

quick to perform. In addition, Brownjohn and his co-workers [11] used human34

excitation generated whilst jumping and measured using either a force plate or

inertial measurement units. They also measured acceleration response of the36

structure to estimate the frequency response function (FRF) of one vibration

mode at a time. It should be noted that nearly all examples of this body of38

research relied solely on jumping tests to identify properties of individual vi-

bration modes. Probabilistic models were seldom used despite of the inherent40

uncertainties [12–14].

This work investigates the applicability of a modal identification approach42

using the dynamic excitation by a pedestrian. In contrast to the previous re-

search, the proposed approach can be used for simultaneous identification of44

multiple vibration modes, and it accounts for estimation and observation uncer-

tainties using a likelihood function of the “bridge-pedestrian” spectral response.46

The identification process requires two main inputs: recordings at a range of

pacing rates of structural responses under passage of a given pedestrian; and the48

pedestrian-induced dynamic forces (measured on, say, an instrumented treadmill

in a laboratory at the same pacing rates). Validation is illustrated with both50

simulated and field data from a 16.9 m long fibre reinforced polymer (FRP)

footbridge, for which results of modal analysis are available [15, 16].52

The introduction section is followed by Section 2 that presents the footbridge

case-study for validation of the proposed approach. Section 3 details how the54

structural system is modelled and how it connects the input excitation to the

output response. Section 4 further details the human-input excitation. Section 556
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provides the linkage of this model with measured data, through a statistical

framework that identifies the target modal properties. Sections 6 and 7 highlight58

the main results/discussion and conclusions of this work, respectively.

2. Case-study footbridge60

This section presents a case-study FRP footbridge and a summary of testing

carried out to infer its dynamic properties. All modal properties, except modal62

masses, were estimated using the instrumented hammer modal testing technique

and free-decay measurements [15], whilst the modal masses were obtained from64

an FE model [16]. These properties will be used as a validation metric for the

approach developed in this work.66

2.1. General

The footbridge under analysis is a 16.9 m single span beam structure that68

crosses a river valley (Fig. 1(a)). Pultruded fibre-reinforced polymer panels

interlock to form a square 0.78 m wide cross-section (Fig 1(b)). The bridge’s70

total mass is approximately 1800 kg. Further details relating to the bridge can

be found elsewhere [15].

(a)

0.78 m

(b)

Figure 1: Lively footbridge (a) general view and (b) cross section of individual units that form

the footbridge deck.

72
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2.2. Modal testing

The current section summarises details about modal tests on the footbridge.74

A detailed description of modal tests can be found in [15] and of FE analy-

sis in [16]. A modal test using an impact hammer was carried out to iden-76

tify vertical flexural and/or torsional vibration modes in the frequency range

up to 30 Hz. Additionally, the structure was excited by a pedestrian walking78

at metronome controlled pacing rates from 1.40 Hz to 2.45 Hz in increments of

0.10 Hz or 0.05 Hz – depending of the pacing rate’s proximity to identified natu-80

ral frequencies. To check repeatability two walks were recorded for each pacing

rate. The vibration response was measured at two locations on the deck, and it82

included recording of the free decay in the response after each crossing.

A measurement grid of 18 points (Fig. 2(a)) was used to determine the modal84

properties. Three roving accelerometers, one of which is shown in Fig. 2(b)

(model QA750 by Honeywell, nominal sensitivity of 1300 mVg−1), were used86

to simultaneously measure response to hammer impact applied at test point

2 (TP2). After completing one set of measurements at three TPs, the ac-88

celerometers were moved to the next there points until the whole grid of 18

TPs was covered, as in a typical roving tri-axial accelerometer test [17]. Im-

[m]

0.76
1

2
3

4
5

6
7

8
9

10 11 12 13 14 15 16 17 18

3.38
1.69

2.11
1.69

1.69
1.69

2.11

2.54

(a) (b)

Figure 2: Impact hammer testing (a) measurement grid with circles and square representing

response and hammer impact points, respectively, and (b) accelerometer on footbridge deck.

90

pact was applied manually by an experienced operator using an instrumented

sledgehammer (model 5803A by Dytran, nominal sensitivity 0.23 mVN−1 and92

measurement range of 22.2 kN). Data were sampled at 512 Hz. For the walk
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tests, vertical responses were measured only at TP2 and TP5 at a sampling rate94

of 256 Hz. All signals were acquired using a 24-bit, four channel Quattro (by

Data Physics) data logger and analyser.96

The accelerance FRFs were calculated using six averages. Three flexural

vertical modes of vibration at about 4.8 Hz, 15.1 Hz and 28.9 Hz have been98

identified and their unity-normalised mode shapes are shown in Fig. 3. By

analysing free decay measurements, it was found that the natural frequency100

and damping ratio for the fundamental mode are amplitude-dependent, with

frequency decreasing from 4.87 Hz to 4.57 Hz and damping ratio increasing from102

2.05 % to 2.45 % when vibration amplitude increases up to 1.5 m s−2 [15]. The

(a) (b) (c)

Figure 3: Unity normalised (a) first (b) second and (c) third vertical mode shapes.

natural frequencies and damping ratios for the three modes are shown in Table 1.104

Finally, due to poor repeatability, the modal masses could not be estimated from

the experimental data. This is frequently the case in modal testing, which is the106

reason why modal mass information is rarely reported in literature. To overcome

this situation an FE model of the bridge has been developed, and it is described108

in detail in [16]. The estimated frequencies were 4.9 Hz, 15.8 Hz and 31.4 Hz,

and were judged to be sufficiently close to those measured (for estimation of110

the modal masses) so not to perform further FE model updating. The resulting

modal masses were found to be 862 kg, 907 kg and 839 kg, respectively.112

Sample acceleration responses to walking at 1.20 Hz, 2.00 Hz and 2.45 Hz are

displayed in Fig 4.114

These results constitute the main validation data for the pedestrian-based
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f1 f2 f3(Hz) ζ1 ζ2 ζ3(%)

4.57-4.87 15.1 28.9 2.05-2.45 2.8 2.7

Table 1: Modal properties identified in impact hammer and free decay tests.

Figure 4: Acceleration responses of footbridge at TP2 and TP5 for three pacing rates at

1.20 Hz, 2.00 Hz and 2.45 Hz.

approach presented next.116

3. Theoretical framework

The pedestrian-based approach is detailed in the following sections and is118

illustrated in Fig. 5. The core idea is to match power spectral densities (PSD)

of responses induced by a pedestrian on the bridge against theoretical PSDs.120

The latter are based on forces obtained using a laboratory treadmill and a

probabilistic model of the structure. For the current work there is a eight years122

gap between in-field and treadmill experiments. Although this is a significant

period of time, the test subject is well experienced in walking tests, has body124

mass which hardly changed over time, and has been generating very much the

same peak responses when walking over structures similar to the one presented.126

The to-be-identified modal properties – natural frequencies, damping ratios

and modal masses – are denoted as θ. The framework was implemented with128

Matlab and is available in [18].
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Figure 5: Diagram of spectral pedestrain-based approach.

3.1. Equation of motion – time domain130

The general equation of motion of a structural system with Nd DOFs can

be written as follows132

Mÿ(t) + Cẏ(t) + Ky(t) = x(t) (1)

for a scenario of damped forced vibrations. M,C and K are Nd × Nd mass,

damping and stiffness matrices, ÿ, ẏ,y and x are Nd × 1 time-dependent vec-134

tors of acceleration, velocity, displacement and force induced by a pedestrian at

each DOF, respectively. Commonly this equation is transformed into its modal136

equivalent by using the transformation y(t)Nd×1 = ΦNd×n q(t)n×1 (for n inde-

pendent vibration modes), with Φ = [Φ1 Φ2 . . . Φn] defined as an Nd×n mode138

shape matrix. Pre-multiplying Eq. (1) by the transposed mode shape matrix

ΦT results in140

mq̈(t) + 2mζωnq̇(t) + mω2
nq(t) = ΦT(t)x(t) (2)
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where m, ζ, ωn are the n-dimensional diagonal matrices that contain the modal

masses, damping ratios and circular natural frequencies, respectively. The vec-142

tor on the right-hand side represents time-dependent modal forces for given

modes, and q, q̇, q̈ are the modal response vectors of displacement, velocity144

and acceleration, respectively. It should be noted that the mode shape matrix

on the RHS of Eq. (2) can be transformed from spatial to time domain using146

t = l/v, where l is the longitudinal position of the pedestrian on the bridge

while v is the pedestrian speed (assumed to be constant).148

3.2. Frequency response function – frequency domain

In this section Eq. (1) is analysed in the frequency domain with the aid of150

the Fourier transform (FT). Taking Eq. (2) as a basis, and applying the FT to

convert it from time into frequency domain, results in152

mQ̈(ω) + 2mζωnQ̇(ω) + mω2
nQ(ω) = X(ω) (3)

where Q̈, Q̇,Q and X represent the FTs of the modal responses and modal

forces, respectively. In the present work the complex form of the FT is defined154

as

X(ω) =
1

2π

∫ ∞
−∞

x(t)e−iωtdt. (4)

By definition Q̈ = −ω2Q, Q̇ = iωQ and Q̈ = iωQ̇. The FT of the modal156

acceleration response can be written as:

Q̈(ω) = H(ω)X(ω). (5)

where H is an n-dimensional diagonal FRF matrix, which is a function of the158

structural modal properties. Accelerance FRF for a single degree of freedom

system is given by160

H(ω) =
−ω2

m(−ω2 + ω2
n + 2ζiωnω)

. (6)

Now the FT of physical acceleration can be written as

Ÿ(ω)Nd×1 = ΦNd×nQ̈(ω)n×1 = ΦNd×nH(ω)n×nX(ω)n×1. (7)
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Assuming that the response has random fluctuations in it, anNd-dimensional162

Hermitian PSD matrix at frequency ω can be obtained from the FT of the

response in Eq. (7) as follows164

Sÿ(ω) = E[Ÿ(ω)Ÿ(ω)H] = ΦNd×n H(ω)n×n SX(ω)n×nH(ω)Hn×nΦT
n×Nd

, (8)

where SX is an n-dimensional Hermitian PSD matrix of modal forces. This

matrix contains in its diagonal and off-diagonal entries the auto and cross PSD166

between modal forces, respectively. Eq. (8) is the central result of random vibra-

tion theory for a multiple DOF system, and it will be utilised as a data model168

of the bridge-pedestrian system which allows to estimate modal properties.

4. Spectral model of the excitation170

This section details how the PSD matrix of modal forces in Eq. (8) is ob-

tained. The following text adopts a discretised formulation whereby the PSD of172

modal forces at frequency k, sampled at N points at time interval ∆t is denoted

as SX,k (fk = k/(N∆t), k = 1, . . . , Nf ), where Nf is the frequency bin number174

correspondent to the Nyquist frequency of the discretised signal.

The modal force for each mode is calculated by weighting the time history176

of force by the mode shape. Fig. 6(a) shows vertical component of walking

forces by each leg sampled at 200 Hz. The sum of the forces by two feet is then178

calculated and the static weight is removed. The resulting dynamic force is

shown in Fig. 6(b). The force in this example is for walking at 1.20 Hz. The180

modal forces for the three modes from Fig. 3 are shown in Fig. 7.

The auto (ASD) and cross (CSD) spectral density terms of the modal forces182

can now be determined. The CSD is a particularly relevant quantity, as it

highlights the correlations between different modal forces.184

Assuming now that the modal forces are wide-sense stationary processes,

their PSDs can be estimated by multiplying their DFT with its complex con-186

jugate. Fig. 8 shows an example of the calculated ASD and CSD of the modal

forces. The visible spread of energy around the peaks is characteristic of the188
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(a) (b)

Figure 6: Pedestrian’s dynamic load recorded using an instrumented treadmill: (a) individual

forces for two feet (solid and dashed lines) and (b) total force with its static component

removed.

Figure 7: Vertical modal forces for the first three vibration modes walking at 1.20 Hz.

quasi-harmonic human walking nature. In addition to the shown magnitude,

the CSD also contains a phase spectrum (not shown here). Thus, at each fre-190

quency band k of the spectrum a matrix SX,k is built from the aforementioned

data and substituted into Eq. (8) to obtain a Sÿ,k PSD matrix of simulated192

responses.

5. Probabilistic modal identification approach194

This section details how the natural frequencies, damping ratios, and modal

masses can be identified using acceleration responses.196
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(a) (b)

Figure 8: (a) Auto spectral density of modal forces and (b) cross spectral density of modal

force pairs. The peaks represent the 1.20 Hz pacing rate and its higher harmonics.

5.1. Scaled discrete Fourier transform of observations

Let us assume that a given stochastic process, in this case the vibration198

response of the bridge, has N time observations yej , j = 0, . . . , N − 1 at Nd

observation channels. The process is dependent on modal properties θ, presented200

in Section 2.2, as well as on the PSD of the noise at each observation channel.

The scaled discrete Fourier transform (DFT) of the observations (frequency202

fk = k/(N∆t)) is given by

Yk =

√
2∆t

N

N−1∑
j=0

yeje
−i2πjk/N (9)

where ∆t is the sampling time interval. The scaled DFTs on a selected frequency204

band represent the core evidence used to identify the modal properties.

5.2. Likelihood function206

The likelihood function is a joint probability density function (PDF) of a

collection of variables indexed by k {Yk} for given θ. Assuming long data,208

{Yk} are (circularly symmetric) complex Gaussian and independent at different

frequencies. This gives210

p({Yk}|θ) =
∏
k

p(Yk|θ) (10)
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where the product is taken over all frequencies in the selected band with Nf

DFT points, assumed to be large compared to 1 (long data); and212

p(Yk|θ) =
π−Nd

|Sk(θ)|
exp [−YH

k Sk(θ)−1Yk] (11)

where Sk(θ) is a theoretical PSD matrix of data (Hermitian) for a given θ. The

complex Gaussian probability density function (PDF) in Eq. (10) is central to214

the proposed modal analysis framework, as it holds for general stationary data

regardless of the frequency content of contributing activities. The latter affects216

Sk(θ) but not the form of the PDF.

Next the derivation of Sk(θ) is detailed. Within a selected frequency band218

k, the following model is assumed

Yk = Ŷk + εk (12)

where Ŷk and εk represent scaled DFTs of a theoretical structural dynamic220

response and measurement noise, respectively. Similarly, the theoretical PSD of

the data is given by222

Sk(θ) = E[ŶkŶ
H

k |θ] + E[εkε
H
k |θ] (13)

assuming that the modal forces and the measurement noise are independent.

E[εkε
H
k |θ] = diag(S1

e , S
2
e , . . . , S

Nd
e ), is a diagonal matrix, where each entry Sje224

is the PSD of noise in the frequency band (assumed as constant) at the j-th

observation channel. Finally, the PSD of the structural response term can be226

obtained from a modal contribution form, already presented in Eq. (8), and the

DFT of the structural dynamic response Ŷk is obtained from Eq. (7).228

5.3. Log-likelihood function

Mainly for numerical reasons, it is common practice to work with the log-230

likelihood function (LFF) instead of the likelihood in Eq. (11), which can be

expressed as232

`(θ) = −NdNf lnπ −
∑
k

ln |Sk(θ)| −
∑
k

YH
k Sk(θ)−1Yk. (14)
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In order to identify the modal properties the LLF is sampled with the Metropolis–

Hastings (MH) algorithm [19]. The samples of θ indicate in which regions of234

the parameter space the bridge-pedestrian model matches available data. In

addition to the likelihood maximum, the samples allow to compute other un-236

certainties, such as the variance of the estimate.

The current section is closed with a discussion of some numerical details. In238

order to increase the numerical stability of the matrix inversion in Eq. (14), the

matrix is transformed with a Cholesky decomposition routine. Further details240

of this operation are given in Appendix A.1. Relatively to the MH algorithm,

it is necessary to set a proposal probability distribution (proportional to the242

target distribution), amongst other options which are summarised in Appendix

A.2.244

6. Results and discussion

6.1. Numerical tests - constant modal properties246

A large number of numerical tests have been run to assess the performance

of the pedestrian-based approach. Based on the results from Section 2.2, fixed248

modal parameters were used to generate responses to walking at 12 pacing rates

(see Table 2) using Matlab. Each force time history measured on the treadmill250

was weighted by the measured shape of each vibration mode (as in the RHS of

Eq. (2)) to determine modal forces for each mode. The modal forces were used252

to calculate the modal responses in each individual vibration mode using the

Fox and Goodwin’s numerical procedure [20]. Then, the mode superposition254

principle was employed to calculate the final acceleration response ÿi(t) at a

location i on the deck, given by:256

ÿi(t) =

3∑
k=1

φi,kq̈k(t), (15)

where φi,k is the amplitude of the kth mode shape (k = 1, 2, 3) at location i(i =

1, . . . , 9) along the midline of the bridge (crosses in Fig. 2(a)) and q̈k(t) is the258

modal response in the kth mode. Three sets were generated for each pacing rate,

14



by dividing the available walking data into three segments, each long enough260

for a bridge crossing. This was done to assess the impact of the variability in

the force and responses on the accuracy of the system identification.262

The parameters were identified by maximising the LLF in Eq. (14) by means

of the fmincon Matlab function, rather than sampling it with the MH algo-264

rithm; mainly to avoid having to adjust the MH settings for each run. Therefore

the identified values correspond to maximum likelihood estimates. It is also im-266

portant to stress that a small amount of white noise (σ = 1× 10−2 m s−2) has

been added to the signal, so that matrix SX in Eq. (8) remains semi-positive268

definite in regions of low spectral density. Not doing so in a simulated example

can lead to numerical instabilities and inaccurate identifications.

f1 f2 f3(Hz) ζ1 ζ2 ζ3(%) m1 m2 m3 (kg)

4.70 15.1 28.9 2.4 2.8 2.7 862 907 839

Pacing rates (Hz)

1.40 1.55 1.60 1.75 1.80 1.88 2.00 2.05 2.20 2.25 2.30 2.45

Table 2: Fixed modal parameters and pacing rates used for response generation.

270

The identified natural frequencies, damping ratios and modal masses are

shown in Figs. 9 and 10. The modal properties are identified within a small error272

margin except for the first damping ratio, which ranges from 1.5 % to 3.0 %. The

other two damping ratios are less scattered and have a smaller relative error (up274

to 10.7 % for ζ2 and 18.5 % for ζ3). Squares, crosses and circles in Fig. 9 and 10

represent results for the first, two and all three runs, respectively.276

For the identification of modal masses, Fig. 10, the method performs well

across all vibration modes, attaining the best results in the central region of278

pacing rates.

The relative error is shown in Table 3. Each row of the table corresponds to280

an error of a cumulative average of the values shown in the above plots, i.e., for

one, two and all three runs across the bridge. The averages were calculated con-282

sidering all pacing rates. It can be seen that the errors for natural frequencies

15



(a) (b) (c)

(d) (e) (f)

Figure 9: Identified (a-c) natural frequencies and (d-f) damping ratios at several pacing rates

for first (squares), second (crosses) and third runs (circles), and their true value (horizontal

dashed line).

(a) (b) (c)

Figure 10: Identified (a–c) modal masses at several pacing rates for first (squares), second

(crosses) and third runs (circles), and their true value (horizontal dashed line).

are negligible and the largest absolute value for the error is about 8 % for ζ3.284

There is no significant error improvement beyond a single run across the bridge.

This error is a consequence of treating the measured signals as wide sense sta-286

tionary in Eq. (8). The error can be said to be sufficiently small for practical

purposes. Note that for longer bridges this error would further decrease.288
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Averages f1 f2 f3 ζ1 ζ2 ζ3 m1 m2 m3

1 0.13 0.23 0.30 1.63 -0.61 -8.07 -5.66 -4.20 -3.26

2 0.06 0.20 0.30 -1.02 -1.45 -7.44 -5.26 -4.38 -3.99

3 0.10 0.17 0.30 -0.71 -1.79 -7.53 -6.76 -5.55 -5.32

Table 3: Relative error (%) of identifications for an increasing number of runs averages.

Parameter α0 α1 α2 α3 α4 α5

f1 Hz 4.872 −0.4958 0.3387 −0.1227 0.02112 −0.001364

ζ1 % 2.073 1.167 −1.368 0.6789 −0.1526 0.012 35

Table 4: Polynomial regression coefficients of amplitude-dependent modal properties.

6.2. Numerical tests - amplitude-dependent modal properties

This section highlights a more challenging simulated example of modal iden-290

tification with amplitude-dependent modal properties. In an attempt to emulate

the real behaviour of the footbridge, the first natural frequency and damping292

ratio were modelled as amplitude-dependent. Specifically, they were modelled

as 5th order polynomial functions of the peak acceleration (see Table 4) as ob-294

tained fitting free-decay data. The equation of motion was solved by using Fox

and Goodwin’s numerical procedure [20]. Since the damping ratio and natural296

frequency of the first mode are functions of vibration amplitude (Table 4), their

values for simulating the response in the next vibration cycle are taken using298

maximum absolute values from the previous cycle. When simulating response

in the first cycle, the values of 4.872 Hz and 2.073 % were used (free coefficients300

in Table 4). All the other modal parameters were kept constant, as defined in

the previous section.302

The identified natural frequencies are shown in Fig. 11. The shaded area

in Fig. 11(a) shows an actual range of natural frequencies that corresponds to304

the vibration amplitude range. The identified natural frequency lies within the

area, i.e., the method approximates the amplitude-dependent natural frequency306

with a constant value from within the actual range. Similarly to the previous
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section, the other natural frequencies are identified within a small error margin308

(up to 1.99 % for f2 and 1.38 % for f3).

(a) (b) (c)

Figure 11: Identified (a–c) natural frequencies at several pacing rates for first (squares),

second (crosses) and third runs (circles) and their true values (shaded area and horizontal

dashed lines).

Fig. 12 shows the identified damping ratios and modal masses. Similarly310

to the previous section, modal masses are identified in a consistent manner

across all three vibration modes, whereas the first damping ratio has a larger312

variability across pacing rates than the other two ratios. Compared with the

results in the previous section the estimate of damping ratios identification314

have worsened, which suggests that identification of these modal properties is

susceptible to nonlinear effects. For the modal masses, Figs. 12(d)12(e)12(f)316

indicate a reliable estimation within a central band, from 1.75 Hz to 2.20 Hz

of the pacing rates, while the results are more erroneous for pacing rates at318

1.55 Hz and 2.30 Hz, whose third and second harmonic, respectively, are close to

the natural frequency of the first mode. In the authors’ opinion, the reason is320

that close peaks are present in the spectrum in these tests and the identification

becomes sensitive to frequency resolution of the signal, which is particularly322

coarse in case of faster walking (when the time domain signal is shorter).

As in the previous section, the relative error of the identifications is shown324

in Table 5. For the amplitude-dependent modal properties, the “true” value

was considered as the mid-value of the lines that outline the shaded areas in326

Figs. 11(a) and 12(a). For the current example the damping ratios have the

largest observed errors, and once again, there is no considerable difference be-328
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(a) (b) (c)

(d) (e) (f)

Figure 12: Identified (a-c) damping ratios and (d-f) modal masses at several pacing rates for

first (squares), second (crosses) and third runs (circles), and their true value (shaded areas

and horizontal dashed lines).

tween the average error with one or more runs across the bridge.

Averages f1 f2 f3 ζ1 ζ2 ζ3 m1 m2 m3

1 -0.82 0.06 0.19 18.16 -3.26 -11.24 -3.03 -3.67 -4.44

2 -0.96 0.06 0.18 21.04 -3.87 -10.06 -3.12 -4.88 -5.91

3 -1.00 0.05 0.17 20.55 -3.89 -9.41 -4.20 -5.75 -6.90

Table 5: Relative error (%) of identifications for an increasing number of runs averages.

6.3. Measurements on the footbridge330

In this section acceleration data measured at TP2 and TP5 on the actual

footbridge (Fig. 4) are used for validation of the pedestrian-based approach.332

Results will be compared against measured modal properties reported in Sec-

tion 2.2.334

The MH algorithm was fine-tuned to obtain the distribution of the modal

properties with a burn-in period of 6000 samples, followed by a total of 10 000336
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samples. Since the data in Sections 2.2 and 4 were sampled at 256 Hz and

200 Hz, respectively, the former has been resampled down to 200 Hz, so that the338

theoretical and experimental PSD responses have the same frequency resolution.

The results related to walking at 1.40 Hz, 1.55 Hz, 1.60 Hz, 1.75 Hz, 1.80 Hz,340

1.88 Hz, 2.00 Hz, 2.05 Hz, 2.25 Hz, 2.30 Hz and 2.45 Hz are presented.

One of the differences relative to the previous numerical examples is that342

the measured vibration response is caused by a force generated by a person

walking over the bridge that inevitably differs from the treadmill force used in344

the analysis [21, 22].

The estimated natural frequencies and damping ratios are shown in Fig. 13.346

The error bars represent a 99.7 % confidence interval of the estimate computed

from the MH samples, and the squares and crosses represent the identified mean348

value for the first and second run, respectively. The identifications of the second

(a) (b) (c)

(d) (e) (f)

Figure 13: Identified (a-c) natural frequencies and (d-f) damping ratios, mean values (circles)

and 99.7 % confidence intervals (error bars) for different pacing rates. The reference values

are the shaded area and horizontal dashed lines.

and third damping ratio are biased because of their sensitivity to nonlinearities350

and the now present intra-subject variability. If the walking frequency in Fig. 8
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is slightly offset from the pedestrian’s step rate on the bridge, there is an off-352

set between the harmonics of these two types of excitation, which would be

increasingly larger the higher the harmonic is. Thus, higher frequencies are354

more affected by intra-subject variability than lower frequencies, which agrees

with the presented results for the second/third and the first damping ratio,356

respectively.

To further minimise errors, the time lag between treadmill and in-field358

recordings should also be as small as possible, especially if the test subject

is inexperienced with walking tests.360

Lastly, the modal masses identification is shown in Fig. 14. The error has

increased in comparison with the numerical examples, but it is still within 30 %362

mark achieved when using other more elaborate test setups. The increase in

this error is partially due to uncertainty of the actual modal masses associated364

with estimating them using the FE model.

(a) (b) (c)

Figure 14: Identified (a–c) modal masses mean values (circles) and 99.7 % confidence intervals

(error bars) at several pacing rates. Their reference values are the horizontal dashed lines.

The relative errors are presented in Table 6. The maximum absolute value of366

the error is up to 3 %, 69 % and 22 % for natural frequencies, damping ratios and

modal masses, respectively. The main difference comparatively to the numerical368

examples is the more pronounced bias of the identified second and third damping

ratios.370

The errors for natural frequencies and modal masses are sufficiently small

to be competitive against other types of tests (shaker, impact hammer and372

ambient), whilst the errors in damping ratios can be large. Overall, simplicity
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Averages f1 f2 f3 ζ1 ζ2 ζ3 m1 m2 m3

1 2.94 -1.62 -0.61 -1.79 -58.61 -65.61 -29.25 3.94 -26.06

2 2.23 -1.47 -0.52 -6.28 -58.99 -68.97 -22.03 6.15 -20.97

Table 6: Relative error (%) of average of identifications for field measurements.

in data collection using the proposed method and promising nature of the results374

suggest that the method has potential to be used in system identification and

it is worth investigating and improving further in future research.376

7. Conclusions

An approach, with potential to identify modal properties using a pedestrian378

excitation, has been developed and applied to a lightweight FRP footbridge.

The approach was validated against both numerical and field data.380

The methodology was found to provide reliable modal properties estimates,

with the exception of damping ratios when considering a structure with amplitude-382

dependent behaviour. Generally, the best results are obtained with pacing rates

that are not close to the structure’s resonant frequency. Additionally, pre-384

liminary numerical tests (not presented here) indicate that the approach can

be applied to heavier and less responsive bridges with similar error margins.386

Therefore, future work is required to explore the extents of the methodology.

The proposed model can be further developed by replacing the treadmill-388

based pedestrian walking forces by a probabilistic model of an overground

walker; or by enhancing the proposed statistical model to account for model390

bias and human-structure interaction effects; and reimplementing the approach

on the basis of a structure with amplitude-dependent behaviour to improve the392

identification of damping ratios.

Nevertheless, the reported errors for natural frequencies and modal masses394

are sufficiently small comparatively to the typically used tests. Thus, the

pedestrian-based approach’s reliability, cost-effectiveness and simplicity further396

justify future developments.
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Appendix A. Computational aspects404

Appendix A.1. Cholesky decomposition

This section details some of the computational aspects of the proposed frame-406

work. Although matrix Sk(θ) in Eq. (11) is not expected to be very large – its

dimension corresponds to the number of DOF – it can become ill-conditioned.408

Furthermore, determining its inverse and determinant can be computationally

costly. The current approach exploits the fact that it is an Hermitian semi-410

positive definite matrix, and therefore, can be factorised with the Cholesky

decomposition as412

Sk(θ) = C(θ)C(θ)H, (A.1)

with C(θ) as a lower triangular matrix. This transformation allows an orthog-

onal transformation from the generalised to ordinary least squares solution of414

the overdetermined system to be performed:

Ck(θ)Ỹk = Yk. (A.2)

Having presented the factorisation, the original dataset Y and the PSD matrix416

of the theoretical model can now be very simply replaced by their transformed

equivalents to simplify the likelihood functions shown in the original formula-418

tion. Thus, Eq. (11) becomes

p(Yk|θ) =
π−Nd

|Ck(θ)|2
exp [−Ỹ

H

k Ỹk] (A.3)

and Eq. (14) becomes420

`(θ) = −NdNf lnπ − 2
∑
k

ln |Ck(θ)| −
∑
k

Ỹ
H

k Ỹk. (A.4)
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Appendix A.2. Details of the Metropolis–Hastings algorithm

The Metropolis–Hastings algorithm belongs to the class of Markov Chain422

Monte Carlo (MCMC) algorithms, that approximate a target multi-dimensional

probability distribution with a large number of samples. The algorithm has to be424

fine-tuned so that the obtained samples reflect the target distribution faithfully,

i.e. regions of low probability density are visited less frequently by the sampling426

routine than regions of high density. In the context of the current work, each

dimension of the sampled target distribution corresponds to one of the modal428

properties and noise PSD.

An important aspect of the whole procedure is the correlation between iden-430

tified modal parameters, which has to be as low as possible. An indicator of the

correlation between modal properties marginal PDFs is the correlation matrix,432

defined as

R(θ) = (diag(Σ))−
1
2 Σ(diag(Σ))−

1
2 , (A.5)

where Σ is the modal parameters covariance matrix, and diag(Σ) is a diagonal434

matrix of the elements of Σ. The entries of the correlation matrix represent

the Pearson coefficients, i.e. the linear dependency between the parameters,436

with a −1, 0, 1 representing a perfectly negative, lack of, or perfectly positive

correlation between parameters, respectively.438

Furthermore, three other options have to be set:

1. a proposal distribution that guides where the Markov chain will move at440

each iterative step;

2. a random generator routine for each of the sampled parameters;442

3. the number of burn-in samples, to skip low probability density regions

during the initial steps of the chain;444

In the current work, a uniform distribution g has been adopted as the proposal

distribution, within an interval [−δ; δ] as follows446

g(θ′|θ) =

 1
2δ for − δ ≤ θ − θ′ ≤ δ

0 for θ − θ′ < −δ or θ − θ′ > δ
(A.6)
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where θ and θ′ correspond to a current and newly generated sample of the

modal properties, respectively. The random sample generator was also assumed448

as a uniform sampling grid, centred at θ and within a ±δ interval. The burn-in

period was set as 2000 for a total amount of 10 000 samples of a symmetric450

target distribution.

The factor with more influence in the correlation of the samples and conver-452

gence speed of the MH algorithm is the proposal distribution’s jumping width

vector, δ. The jumping width must be large enough so that the modal pa-454

rameters are not excessively correlated. In a scenario when there is a trade-off

between a reasonable acceptance rate and uncorrelated modal parameters, it is456

necessary to increase the total amount of samples and involved computational

effort.458
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