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Highlights 

 At 28 days, BS8110-97 and EC2 provide the most accurate predictions of punching shear 

capacity while ACI 318 (2014) and ECP-2018 equations seemed to be conservative for the 

studied specimens.   

 Equations developed by BS8110 - 97 and EC2 did not predict punching shear experimental 

results accurately for the test slabs under premature loading (early age during construction). 

 ACI 318 (2014) and ECP-2018 provided more reliable results for early loaded slabs when 

using the concrete compressive strength at the time of loading in prediction.  

 It is highly recommended to use the actual compressive strength of concrete at early age (7 

days for example) in calculating punching resistance of slabs in design phase. 

 

Abstract 

Premature loading of reinforced concrete flat slabs in multi storey buildings during construction 

may occur after shuttering removal  and loading slabs earlier than usual to meet project time 

targets.  Some case studies showed failure of flat slabs, which were prematurely loaded during the 

construction process before it reaches its full characteristic strength (at 28 days), which was used 

in structural design.  This research aims to address this problem through experimental testing and 

design application according to current building codes.  Eight specimens with dimensions of 1100 

* 1100 mm and a total thickness of 120 mm were experimentally tested to study the effect of 

concrete age and actual compressive strength at loading on the punching shear capacity of 

reinforced concrete slabs.  All specimens were supported by a square column with dimensions of 

150 ×150 mm and loaded at the four corners with a span of 1050 mm.  Accelerating admixture was 

used in three studied specimens to achieve higher concrete compressive strength at early ages 

compared to their companions of normal concrete without these admixtures.  It was found that 

increasing concrete compressive strength of slab from 25 𝑁/𝑚𝑚2  to 35 𝑁𝑙𝑚𝑚2 (40% increase) 

for normal concrete, without early admixture, improved punching shear capacity by 26%, while 

increasing it to 45 𝑁/𝑚𝑚2 (80% increase) improved punching shear capacity by 49% when the 
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specimens were loaded 7 days after casting.  In addition, using an accelerating admixture increased 

early concrete compressive strength, which improved punching shear capacity of reinforced 

concrete slab over that without accelerating admixture by 31% and 29% after 7 days and 14 days, 

respectively.  According to inclusion of reinforcement ratio, BS8110 - 97 and EC2 design codes 

showed the most accurate prediction of punching shear capacity at 28 days, while ACI and ECP 

seemed conservative as their equations do not take steel ratio into consideration. At early ages, 

BS8110 - 97 and EC2 design equations did not provide accurate prediction of punching shear 

capacity while ACI and ECP provided reliable equations.  It is highly recommended to use the 

actual compressive strength of concrete at early age (7 days for example) for calculating punching 

shear resistance of flat slabs in multi storey buildings prior to shuttering removal to prevent any 

premature loading. 

 

Keywords: flat slabs; immature concrete; punching shear; premature loading; failure; compressive 

strength 

 

Notations  

𝑓𝑐𝑢,   characteristic cube concrete strength, MPa 

α, Factor depends on the column location, α = 20 for corner columns; 30 for edge columns; 40 for 

interior columns 

d, Effective slab depth, mm 

a, b, Column short and long direction, respectively. 

𝑣, Nominal shear stress. 

LVDT, Linear Variable Displacement Transducer 

𝑓′𝑡, Cylindrical concrete tensile strength 

SNCS, Normal concrete slab. 

SECS, Early strength concrete slab 

𝑓𝑐
′
, Cylindrical concrete compressive strength 

ß𝑐, the column aspect ratio 

u, the critical punching perimeter 

ρ, the flexural steel ratio calculated for a width equal to (c + 3d) or (b + 3d), = (x + y)/2 < 0.03; 

400/d should not be taken as less than 1. 

𝑃𝑒𝑥𝑝, experimental ultimate load 

𝑃𝑐𝑟, cracking load of slabs 

Ppred, predicted load  
∆𝑢, Maximum deflection of slabs 

c, Material Reduction Factor for Concrete = 1.50 in this research. 

m= 1.25 

c1 is the long side length of the column 

c 2 is the short side length of the column 

1. Introduction 

The first use of reinforced-concrete flat slabs, supported solely on columns, dates back to the early 

twentieth century (Bartolac et al., 2015).  Over the years, researchers reported that the significant 

parameters influencing the punching strength of slabs are primarily the compressive strength of 
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concrete, reinforcement ratio, size and geometry of columns, and effective depth of the slab 

(Einpaul et al, 2015; Muttoni et al., 2018).  Muttoni (2008) developed a theoretical approach to 

slab punching, which is based on the critical shear crack theory. According to Muttoni’s theory, 

punching shear strength of slabs depends on the slab rotation due to load, the position of the crack, 

the opening of the critical shear crack, and the roughness of the crack.  Avoidance of brittle failure 

of slabs by punching shear can be achieved by various reinforcement systems in the form of 

inclined stirrups (Broms, 2019; Almeida, André, et al., 2019) and also in the form of shear studs 

(Torabian, Ala, et al, 2019; Ferreira, et al., 2019; Isufi, Brisid et al, 2019).  In Eurocode-2 (2004), 

the punching shear strength is expressed as a function of the concrete cube compressive strength, 

(𝑓𝑐𝑢)
1
3⁄ .  On the other hand, ACI Code 318 (ACI 318 - 14) reported that the punching shear 

strength is a function of cylinder compressive strength (√𝑓′𝑐) for concretes whose compressive 

strength does not exceed 69 MPa. In different building codes, the reinforcement ratio, defined as 

the ratio of the tensile reinforcement area to the effective area of the slab, is the parameter that 

significantly influences punching strength. 

Premature loading of reinforced concrete flat slabs during construction generally occurs because of 

the efforts to meet project time targets (Ding et al., 2009).  Hongyan, 2015, reported that the loads 

applied on the partially completed structure due to the construction process could be larger than the 

design service load.  This construction load may exceed the design loads, which in turn, led to 

early failure of slabs. Wood (2003) reported that the available strength of the immature partially 

completed structure is dependent upon the concrete strength in those members, which may be less 

than the specified strength, and the failure would occur if the available strength were less than that 

required to support the construction loads. Premature failure of such slabs is generally associated 

with a concentration of high shear forces and bending moments at the column peripheries (Rizk et 

al., 2011). This type of failure is catastrophic because there are no external visible signs prior to 

the occurrence of the failure (ACI SP-232, 2005).  When a slab is loaded prematurely, its 

serviceability is compromised (RILEM Committee 42-CEA, 1981).  Therefore, it is necessary to 

investigate the effect of premature loading on reinforced concrete slabs to avoid cracking and 

possible failure (Hongyan, 2015).  Hawkins et al., 1974; Gardner, 1990; Abdel Hafez, 2005; 

Wood, 2003; Sagaseta et al., 2014; Rankin and Long, 2019, reported that insufficient early-age 

punching shear capacity under relatively high construction loads is one of the common reasons of 

failure of flat slab structures during construction.  They also reported that punching shear failure is 

caused by the failure of concrete in tension.  Figure 1 shows real case studies for the collapse of a 

factory building (Vetogate, 2014) and a residential building (Elshorouk City Website, 2019) in 

Egypt as a result of premature loading of reinforced concrete flat slab.  Sudden punching failure 

took place during the concrete casting process of second floor.  The consultant reported that the 

low strength of concrete at the time of early removal of the first-floor formwork was the main 

reason for the building collapse. 

The current investigation aims to study the effect of concrete age and the actual compressive 

strength at the time of premature loading during construction on the punching shear capacity of 

reinforced concrete slabs. Experimental testing of eight flat slab specimens was carried out in 

Concrete lab at Cairo University to gain a better understanding of the relation between the 

punching shear behaviour and the actual concrete compressive strength at the time of testing.  In 

addition, the effect of using accelerating admixtures to achieve higher strength at early age of test 

specimens was studied experimentally and verified theoretically using the design equations of the 

international design Building codes.  This may help structural designers of projects, which the time 

of construction is very tight.  
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2. Codes provisions for punching shear equations 

The calculation of the punching shear capacity is outlined in different Design Codes as follows: 

2.1 Eurocode-2 (2004)  

The nominal shear stress definition in Eurocode-2 takes into account the effect of reinforcement 

ratio and size as follows: 

𝑣𝑅𝑑,𝑐 = 𝐶𝑅𝑑,𝑐 𝑘(100𝜌𝑓𝑐𝑢)
1
3⁄ + 𝑘1𝜎𝑐𝑝         …………………………..……..(1) 

𝑢 = 2(𝑐1 + 𝑐2 + 2𝜋𝑑)          ……………………………………..…(2) 

𝑘 = 1 + √
200

𝑑
 , 𝐶𝑅𝑑,𝑐 =

18

𝛾𝑐
 and u is located at 2d away from column face defined 

in Equation (2)  

2.2 British Standard BS 8110-97 

The British Standards, BS 8110-97, use a rectangular control perimeter, 1.5d, from the loaded area 

for both the circular and rectangular loaded areas.  Although BS 8110-97 has been replaced in the 

UK by Euro code 2, its inclusion in this investigation is relevant, as it has been used as the basis 

for some other Building codes.  

𝑣 = 0.29 (100𝜌𝑓𝑐𝑢)
1
3⁄ (
400

𝑑
)
1
4⁄                  ……………………….……..………(3)    

𝑢 = 2(𝑐1 + 𝑐2 + 6𝑑)               ……………………………………….……(4) 

2.3 ACI -318 (2014) 

ACI 318 - 14 defines the nominal shear stress, 𝑣, as the minimum of the following three 

expressions, which consider the effects of the rectangularity of the column, location of the 

connection, and ratio of the loading area to effective thickness on the nominal shear stress.  It is 

worth mentioning that𝑓𝑐
′
, can be calculated from fcu according to the well-known relation between 

cylinder and cube strength as the strength of cylinder is taken as 0.8 times the strength of cube. 

𝑣 = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑜𝑓 

{
 
 

 
 0.33 √𝑓𝑐

′

0.083√𝑓𝑐
′(2 +

4

ß𝑐
)

0.083√𝑓𝑐
′(2 +

𝛼𝑑

𝑢
)

                  ……………………….……........... (5) 

𝑢 = 2(𝑐1 + 𝑐2 + 2𝑑)                                   ………………………….………………… (6) 

2.4 Egyptian code of practice (E.C.P.-2018) 

According to the Egyptian code of practice, the critical section for punching shear is located at a 

distance of (0.5d) from the column faces, where (d) is the effective slab depth. This code of 

practice does not account for the effect of the reinforcement ratio on the punching shear strength. 
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Additionally, no provisions have been introduced in this code of practice for the use of transverse 

reinforcement in flat slabs. 

The ultimate punching shear strength for slab column connections is calculated as the minimum of 

the three values obtained from the following equations: 

𝑞 = 0.80 ( 0.20 +
𝛼𝑑

𝑏0
)√

𝑓𝑐𝑢

Ɣ𝑐
                   …………………..………………………….. (7) 

𝑞 = 0.316 ( 0.50 +
𝑎

𝑏
)√

𝑓𝑐𝑢

Ɣ𝑐
             ……………………………………………………. (8) 

𝑞 = 0.316√
𝑓𝑐𝑢

Ɣ𝑐
                          ……………………..………………………………….. (9) 

3. Experimental Program  

3.1 Test Specimens 

Eight reduced-scale slab specimens were tested at Cairo University Structural Engineering 

Laboratory. The size of specimens was 1100 mm by 1100mm with a uniform thickness of 120 

mm.  The reinforcement ratio was the same for all specimens (𝜌= 1.90%) using 12 mm diameter 

bars, and the effective depth (d) was 100 mm.  Figures 2a and b show the specimen dimensions 

and reinforcement.  The eight specimens were divided to three groups.  The first group was cast 

specifically to test the effect of early (premature) loading by testing at different times of loading, 

after 7, 14, and 28 days.  It was consisted of three specimens (SNC1-1, SNC1-2, SNC1-3) made 

with Ordinary Portland Cement (OPC) only (without accelerating admixture).  Each of the 

specimens had a target concrete compressive strength of 35 MPa after 28 days, and they were 

tested after 7, 14, and 28 days.  The second group was cast to test the effect of the attained concrete 

compressive strength at the age of 7 days.  It was consisted of two specimens (SNC2-1, SNC2-2) 

made with OPC (no addition of accelerated admixtures) where (SNC2-1) had a target concrete 

compressive strength of 25 MPa after 28 days and (SNC2-2) had a target concrete compressive 

strength of 45 MPa after 28 days and they were tested at 7 days.  The third group specimens were 

cast to test the effect of adding accelerating admixture to the concrete mix and this group consisted 

of three specimens (SESC3-1, SESC3-2, and SESC3-3) that allow concrete to gain higher strength 

at early age compared to their companions of normal concrete without accelerating admixtures.  

These specimens had a target concrete compressive strength of 35 MPa after 28 days, and they 

were tested after 3, 7, and 14 days respectively as shown in Table 1. 

3.2 Material properties  

Normal crushed dolomite stone was used for concrete mix with maximum aggregate size (𝑑𝑔) of 

10 mm, also natural sand as fine aggregates, OPC, and tap water.  In addition, an accelerating 

admixture was used for producing higher early strength concrete. The mix proportions of the 

concrete is given in Table 1.  Hot-rolled steel bars were used with a well-defined yield plateau and 

a strain-hardening branch. The yield strength of the reinforcement measured from tensile tests was 

392 MPa. Three companion concrete cube samples were prepared from the same mixes as the 

slabs were measured at the time of testing and the average of results are shown in Table 2. 

Jo
ur

na
l P

re
-p

ro
of



3.3 Instrumentation and test set-up 

The specimens were loaded using hydraulic jacks of 500 KN capacity, manually operated by a 

pump.  The LVDTs were used to measure the vertical deflection in the specimens at different load 

levels (see schematic diagram in Figure 2b). The specimens were placed in a horizontal position 

between the jack and a square rigid steel frame in simply supported conditions as shown in the 

schematic diagram and the photo in Figure 2(c).  To achieve the simply supported condition in the 

laboratory, a bar of diameter 22 mm was welded to the top of the steel frame.  The displacement 

was measured at five control points. The first control point was in the middle of the slab, at the 

center of the column to measure the maximum deflection. The other control points were located at 

a distance equal to one and half times the slab effective depth (1.5d). The strain gauges, LVDTs 

and load cells were connected to the data acquisition system.  All the tests were force controlled.  

Test setup is shown in Figure 2c. 

4. Experimental Results and Discussion 

The experimental results (crack pattern, slab deflection and steel strain) obtained during the tests 

are discussed in the following sections.  The load–deflection values were measured using five 

LVDTs placed on the tension surface of the studied slabs.  The load-deflection relationships are 

shown in Figure 4 and the experimental results for cracking load, 𝑃𝑐𝑟, ultimate load Pu, and 

maximum deflection, Δu, for studied slab are recorded in Table 3.  Strain gauges attached to the 

bottom longitudinal bars (tension face) were used to measure the steel reinforcement strain during 

the testing process and connected to the data acquisition system.  Figure 5 shows the load-tensile 

strain at column face for the studied specimens. 

4.1 Crack Pattern 

The failure mode of all tested specimens was brittle. Figure 3 shows the crack patterns for the 

specimens, which exhibited a typical punching shear-inclined cracking the vicinity of the column. 

For all experimentally tested specimens, the first crack was developed in the tension surface. 

Starting from the region underneath the loading area, the cracks propagated diagonally to the 

corners, and more cracks were developed in the tension surface. These cracks formed the classical 

punching critical zone.  This is in agreement with Oliveira et al., 2004; Ozden et al., 2006; and 

Papanikolaou et al., 2005 who observed similar crack pattern in their studied specimens. 

4.2 Effect of Premature Loading (Group 1 specimens) 

The effect of early age (premature) loading on the punching shear capacity was clear from the 

results of Group 1 specimens in Figures 4-5 and Tables 2-4.  Figure 4(a) shows the load-

deformation behavior of the tested specimens. Time of loading had a significant effect on the 

deformation of the specimens because their concrete compressive strength changed over time, and 

the deflection at the maximum load ranged from 5.75 mm to 8.75, as shown in Figure 4(a).  It can 

be observed from Table 3 and Figure 4a that SNC1-3 (tested after 7 days) was able to reach only 

57% of the punching shear capacity of SNC1-1 (tested at 28 days), whereas SNC1-2 (tested 

after14 days) was able to reach approximately 70% of the punching shear capacity of SNC1-1 

(tested at 28 days).  It was observed that the punching shear capacity was affected by the time of 

loading as some of cube strengths of this group did not achieve the target compressive strength as 

shown in Table 2.  These results indicate also that the development of punching shear capacity was 

slower than the development rate of increase in the concrete compressive strength.  In addition, 

SNC1-3 had a higher deflection value because it had the lowest concrete compressive strength 

(tested after 7 days). 
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Figure 5(a) shows the load-steel strain behavior of the specimens.  It was noticed that brittle failure 

of the concrete occurred first, and all the specimens experienced punching shear failure before the 

steel yielded.  None of the flexural steel reached the yield stress, as the brittle failure of concrete 

occurred first, and the maximum recorded steel strain occurred in specimen SNC1-1, which was 

tested after 28 days, as shown in Figure 5(a).  At the same load, Specimen SNC1-3 had a higher 

steel strain than those of the other specimens since Specimen SNC1-3 was cracked before the other 

specimens.  This may be attributed to the fact that the tensile stress occurred in concrete exceeded 

its tensile strength. 

4.3 Effect of Concrete Compressive Strength (Group 2 specimens) 

The load-deformation behavior of the Group 2 specimens is shown in Figure 4(b).  It can be seen 

from the figure that increasing the target concrete compressive strength by 40% led to an increase 

in the punching shear capacity by 26% and increasing the target concrete compressive strength by 

80% resulted in enhancing the punching shear capacity by only 49%.  The concrete compressive 

strength had a significant effect on the deformation of slabs, as punching failure is caused by the 

failure of concrete in tension, and the tensile strength of concrete varies between 8% and 15% of 

the compressive strength.  The ultimate punching load ranged from 154 KN for SNC2-1 to 230 KN 

for SNC2-2, whereas the deflection at maximum load ranged from 4.69 mm to 6.2 mm, as shown 

in Figure 4(b).  In addition, Specimen SNC2-1 had a higher deflection compared to that of the 

other groups because it had the lowest concrete compressive strength compared to that of the other 

groups as shown in Figure 4b.  None of the flexural steel reached the yield stress, as the brittle 

failure of concrete occurred first, and the maximum steel strain occurred in Specimen SNC2-2 as 

shown in Figure 5(b). 

4.4 Effect of Accelerating Admixture (Group 3 specimens) 

The accelerating admixture used in the Group 3 mix increased the early concrete compressive 

strength compared to that of normal concrete without accelerating admixture, and in turn, 

enhanced the punching shear capacity under premature loading tests.  This effect is clearly 

observed in Tables 2-3 and Figure 4c for Group 3 specimens.  The punching shear capacity was 

affected by the time of loading, even for the specimens with accelerating admixture, but the 

punching shear capacity was improved compared to that of their companions without accelerating 

admixture at the same time of loading.  Figure 4c shows the load-deformation behavior of the 

Group 3 specimens.  It can be seen from the figure that the deflection at maximum load ranged 

from 6.22 mm to 7.85 mm.  In addition, Specimens S3-3 had a higher deflection compared to that 

of its companion from the other groups because it had the lowest concrete compressive strength 

compared to those of the other group specimens as shown in Figure 4c.  Figure 5(c) shows the 

load-steel strain behavior of the tested specimens. It was found also that none of the flexural steel 

reached the yield stress. 

                                      

5. Comparison between Experimental Results and Code Provisions  

The experimental results were compared with the theoretical values predicted by the ACI 318 

(2014), ECP-2018, EC2, and BS 8110-97 equations above in Section 2 to understand their 

applicability to concrete specimens at different ages. In the analytical evaluations, all the safety 

coefficients were assumed equal to one and the average experimental values were considered for 

the strength analysis.  The predicted values according to the above-mentioned codes were recorded 

in Table 4.  It was found that, at 28 days, BS8110-97 and EC2 provided the most accurate 

predictions where the punching shear capacity is proportional to the cubic root of the concrete 
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strength.  On the other hand, ACI 318 (2014) and ECP-2018 equations seemed to be conservative 

for the studied specimens at 28 days where the square root of the concrete strength controls the 

punching shear capacity.  On the contrary, Ala Torabian et al., 2019; Guandalini et al., 2009, 

showed that ACI 318 (2014) equations may be not conservative for low reinforcement ratios.  It 

can be argued that the reinforcement ratio used in the current investigation was adequate according 

to ACI 318 (2014) and ECP-2018 codes provisions.  At early ages (less than 28 days), the BS8110-

97 and EC2 equations did not predict punching shear values for studied slabs accurately while ACI 

318 (2014) and ECP-2018 equations seemed to be conservative and their results were lower than 

the experimental results.  At this point we can say that ACI 318 (2014) and ECP-2018 equations 

can be considered acceptable in predicting shear capacity of flat slabs, when the premature loading 

is applied during construction before the concrete gain its full strength.  However, actual concrete 

compressive strength at the time of loading has to be taken into account in prediction as shown in 

Table 4. 

6. Conclusions 

This paper presents an experimental investigation undertaken to evaluate the punching shear 

behaviour of concrete slabs. Eight reduced scale slab specimens were cast and tested until failure 

by punching. The experimental results were analysed and compared with codes provisions. The 

following conclusions can be drawn from this study as follows: 

1- It was found that the rate of increase of punching shear capacity with time is slower than that 

of concrete compressive strength for the same studied slabs. For example, punching shear 

capacity of normal concrete slab tested after 7 days and 14 days reached approximately to 57% 

and 70% of their companions after 28 days while its concrete compressive strength at the same 

periods reached 69% and 80% of that of their companions after 28 days. 

2- Increasing concrete compressive strength of slab from 25 𝑁/𝑚𝑚2  to 35 𝑁𝑙𝑚𝑚2 (40%) led to 

an improvement in punching shear capacity by 26%, while increasing it to 45 𝑁/𝑚𝑚2 (80%) 

improved punching shear capacity by 49% after 7 days. 

3- Punching shear capacity of concrete slabs made with accelerating admixture tested after 3 days 

and 7 days reached approximately to 58% and 82% of their 14 days strength while their 

compressive strength reached 66% and 88% of their compressive strength after 14 days.  Slab 

specimens made with accelerating admixture had punching shear capacities higher than that of 

their companions of normal specimens without accelerating admixtures by 31% and 29% after 

7 days and 14 days, respectively.   

4- It was found that, at 28 days, BS8110-97 and EC2 provided the most accurate predictions 

while ACI 318 (2014) and ECP-2018 equations seemed to be conservative for the studied 

specimens.   

5- Equations developed by BS8110 - 97 and EC2 did not predict punching shear experimental 

results accurately for the test slabs under premature loading while ACI 318 (2014) and ECP-

2018 provided more reliable results for early loaded slabs when using the concrete compressive 

strength at the time of loading in prediction. Therefore, it is highly recommended to use the 

actual compressive strength of concrete at early age (7 days for example) in calculating 

punching resistance of slabs in design phase. 
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(a) Collapse of a factory, Elobour city, Cairo (Vetogate, 2014) 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) Collapse of residential building in Elshourok city, Cairo  (Elshorouk City Website, 2019) 
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Figure 1 Recent collapses according to early punching of slabs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) Specimen dimensions 
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(b) Positions of LVDTs, strain gauges, and reinforcement details 
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(c) Test setup 
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Figure 2 Details and testing of studied specimens  
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SESC (3-2) SESC (3-3) 

Figure 3  Crack pattern for specimens 
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Figure 4 Deflection comparisons between three groups of specimens. 
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Figure 5 Steel strain comparisons between the three groups of specimens. 
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Table 1   Concrete mixture proportions 
 

 

Material 

 

Mix (1) 

 

 

Mix (2) 

 

 

Mix (3) 

 

 

Mix (4) 

 

Target compressive 

strength 

after 28 days 

 

25 MPa 

 

35 MPa 

 

35 MPa 

 

 

45 MPa 

Cement 280 375 375 470 

Sand 715 600 600 565 

Crushed stone 1250 1200 1200 1130 

Water (w/c) 170 (0.6) 200 (0.54) 200 (0.54) 245 (0.52) 

Accelerating 

Admixture 

 

- 

 

- 

 

6 

 

- 

Group/Sample 

designation 

Group 2 

SNC2-1 

Group 1 

SNC1-1  

SNC1-2 

SNC1-3 

Group 3 

SESC3-1 

SESC3-2 

SESC3-3 

Group 2 

SNC2-2 

Testing age (days) 7 7, 14, 28 3, 7, 14 7 
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Table 2   Summary of test specimens and average results of three cubes and cylinders  

Specimens 
Target, 𝒇𝒄𝒖 

(𝑴𝑷𝒂) 

Test Age 

(days) 

Average 

𝒇𝒄𝒖 (𝑴𝑷𝒂) 

Average   

𝒇𝒕 (𝑴𝑷𝒂) 
Remarks 

SNC (1-1) 35 28 35.5 3.25 Control 

SNC (1-2) 35 14 28.3 2.43 - 

SNC (1-3) 35 7 24.6 2.21 - 

SNC (2-1) 25 7 17.2 1.65 - 

SNC (2-2) 45 7 31.3 2.82 - 

SESC (3-1) 35 14 34.4 3.14 Accelerating 

admixture  SESC (3-2) 35 7 30.7 2.76 

SESC (3-3) 35 3 22.8 2.1 
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Table 3 Summary of cracking and failure loads of specimens 

 

 

 

 

 

 

 

 

  

Specimens Loading 

Time (days) 
𝑷𝒄𝒓 

(𝑲𝑵) 
𝑷𝒆𝒙𝒑. 

(𝑲𝑵) 

𝜟𝒖 
(mm) 

Remarks 

SNC (1-1) 28 80 340 8.65 Control 

SNC (1-2) 14 70 240 6.52 - 

SNC (1-3) 7 60 195 5.74 - 

SNC (2-1) 7 45 154 4.69 - 

SNC (2-2) 7 70 230 6.22 - 

SESC (3-1) 14 80 310 7.82 Accelerating 

Admixture SESC (3-2) 7 75 255 6.96 

SESC (3-3) 3 55 182 5.53 
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Table 4 Comparison of experimental and predicted failure loads 

Specimens Loading 

Time 

(days) 

Average 

𝒇𝒄𝒖 

(𝑴𝑷𝒂) 

𝑷𝒆𝒙𝒑. 

(𝑲𝑵) 

𝑷𝒑𝒓𝒆𝒅. (KN) 

 
 
𝑷𝒆𝒙𝒑

𝑷𝒑𝒓𝒆𝒅.
⁄  

EC

P 

ACI EC2 BS ECP ACI EC2 BS 

SNC (1-1) 28 35.5 340 188 177 310 279 1.8 1.92 1.09 1.21 

SNC (1-2) 14 28.3 240 168 157 288 260 1.43 1.52 0.83 0.92 

SNC (1-3) 7 24.6 195 156 143 265 249 1.25 1.36 0.73 0.78 

SNC (2-1) 7 17.2 154 131 125 211 253 1.18 1.23 0.73 0.60 

SNC (2-2) 7 31.3 230 177 165 295 279 1.3 1.4 0.79 0.84 

SESC (3-1) 14 34.4 310 185 175 303 278 1.67 1.77 1.02 1.12 

SESC (3-2) 7 30.7 255 175 161 288 264 1.45 1.57 0.88 0.96 

SESC (3-3) 3 22.8 182 150 130 252

` 

255 
1.21 1.4 0.72 0.71 
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